Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2015

Open Access 01-09-2015 | Clinical

Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications

Authors: Teresa Helsten, Maria Schwaederle, Razelle Kurzrock

Published in: Cancer and Metastasis Reviews | Issue 3/2015

Login to get access

Abstract

Fibroblast growth factors (FGFs) and their receptors (FGFRs) are transmembrane growth factor receptors with wide tissue distribution. FGF/FGFR signaling is involved in neoplastic behavior and also development, differentiation, growth, and survival. FGFR germline mutations (activating) can cause skeletal disorders, primarily dwarfism (generally mutations in FGFR3), and craniofacial malformation syndromes (usually mutations in FGFR1 and FGFR2); intriguingly, some of these activating FGFR mutations are also seen in human cancers. FGF/FGFR aberrations reported in cancers are mainly thought to be gain-of-function changes, and several cancers have high frequencies of FGFR alterations, including breast, bladder, or squamous cell carcinomas (lung and head and neck). FGF ligand aberrations (predominantly gene amplifications) are also frequently seen in cancers, in contrast to hereditary syndromes. There are several pharmacologic agents that have been or are being developed for inhibition of FGFR/FGF signaling. These include both highly selective inhibitors as well as multi-kinase inhibitors. Of note, only four agents (ponatinib, pazopanib, regorafenib, and recently lenvatinib) are FDA-approved for use in cancer, although the approval was not based on their activity against FGFR. Perturbations in the FGFR/FGF signaling are present in both inherited and malignant diseases. The development of potent inhibitors targeting FGF/FGFR may provide new tools against disorders caused by FGF/FGFR alterations.
Literature
3.
go back to reference Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., & Stratton, M. R. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.PubMedCentralPubMedCrossRef Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., & Stratton, M. R. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.PubMedCentralPubMedCrossRef
4.
go back to reference Torkamani, A., & Schork, N. J. (2008). Prediction of cancer driver mutations in protein kinases. Cancer Research, 68(6), 1675–1682.PubMedCrossRef Torkamani, A., & Schork, N. J. (2008). Prediction of cancer driver mutations in protein kinases. Cancer Research, 68(6), 1675–1682.PubMedCrossRef
5.
go back to reference Muenke, M., Gripp, K. W., McDonald-McGinn, D. M., Gaudenz, K., Whitaker, L. A., Bartlett, S. P., & Wilkie, A. O. (1997). A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. American journal of human genetics, 60(3), 555–564.PubMedCentralPubMed Muenke, M., Gripp, K. W., McDonald-McGinn, D. M., Gaudenz, K., Whitaker, L. A., Bartlett, S. P., & Wilkie, A. O. (1997). A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. American journal of human genetics, 60(3), 555–564.PubMedCentralPubMed
6.
go back to reference Robin, N. H., Falk, M. J., & Haldeman-Englert, C. R. (1993). FGFR-Related Craniosynostosis Syndromes. In R. A. Pagon, M. P. Adam, H. H. Ardinger, T. D. Bird, C. R. Dolan, C.-T. Fong, … K. Stephens (Eds.), GeneReviews(®). Seattle (WA): University of Washington, Seattle. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK1455/. Robin, N. H., Falk, M. J., & Haldeman-Englert, C. R. (1993). FGFR-Related Craniosynostosis Syndromes. In R. A. Pagon, M. P. Adam, H. H. Ardinger, T. D. Bird, C. R. Dolan, C.-T. Fong, … K. Stephens (Eds.), GeneReviews(®). Seattle (WA): University of Washington, Seattle. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK1455/​.
7.
go back to reference Anderson, J., Burns, H. D., Enriquez-Harris, P., Wilkie, A. O., & Heath, J. K. (1998). Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Human molecular genetics, 7(9), 1475–1483.PubMedCrossRef Anderson, J., Burns, H. D., Enriquez-Harris, P., Wilkie, A. O., & Heath, J. K. (1998). Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Human molecular genetics, 7(9), 1475–1483.PubMedCrossRef
8.
go back to reference He, L., Horton, W., & Hristova, K. (2010). Physical basis behind achondroplasia, the most common form of human dwarfism. The Journal of biological chemistry, 285(39), 30103–30114.PubMedCentralPubMedCrossRef He, L., Horton, W., & Hristova, K. (2010). Physical basis behind achondroplasia, the most common form of human dwarfism. The Journal of biological chemistry, 285(39), 30103–30114.PubMedCentralPubMedCrossRef
9.
go back to reference Rousseau, F., el Ghouzzi, V., Delezoide, A. L., Legeai-Mallet, L., Le Merrer, M., Munnich, A., & Bonaventure, J. (1996). Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Human molecular genetics, 5(4), 509–512.PubMedCrossRef Rousseau, F., el Ghouzzi, V., Delezoide, A. L., Legeai-Mallet, L., Le Merrer, M., Munnich, A., & Bonaventure, J. (1996). Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Human molecular genetics, 5(4), 509–512.PubMedCrossRef
10.
go back to reference Dodé, C., Teixeira, L., Levilliers, J., Fouveaut, C., Bouchard, P., Kottler, M.-L., & Hardelin, J.-P. (2006). Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS genetics, 2(10), e175.PubMedCentralPubMedCrossRef Dodé, C., Teixeira, L., Levilliers, J., Fouveaut, C., Bouchard, P., Kottler, M.-L., & Hardelin, J.-P. (2006). Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS genetics, 2(10), e175.PubMedCentralPubMedCrossRef
12.
go back to reference Dodé, C., Levilliers, J., Dupont, J.-M., De Paepe, A., Le Dû, N., Soussi-Yanicostas, N., & Hardelin, J.-P. (2003). Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nature Genetics, 33(4), 463–465. doi:10.1038/ng1122.PubMedCrossRef Dodé, C., Levilliers, J., Dupont, J.-M., De Paepe, A., Le Dû, N., Soussi-Yanicostas, N., & Hardelin, J.-P. (2003). Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nature Genetics, 33(4), 463–465. doi:10.​1038/​ng1122.PubMedCrossRef
14.
go back to reference Trarbach, E. B., Abreu, A. P., Silveira, L. F. G., Garmes, H. M., Baptista, M. T. M., Teles, M. G., & Latronico, A. C. (2010). Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency. The Journal of Clinical Endocrinology and Metabolism, 95(7), 3491–3496. doi:10.1210/jc.2010-0176.PubMedCentralPubMedCrossRef Trarbach, E. B., Abreu, A. P., Silveira, L. F. G., Garmes, H. M., Baptista, M. T. M., Teles, M. G., & Latronico, A. C. (2010). Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency. The Journal of Clinical Endocrinology and Metabolism, 95(7), 3491–3496. doi:10.​1210/​jc.​2010-0176.PubMedCentralPubMedCrossRef
15.
go back to reference Turner, N., & Grose, R. (2010). Fibroblast growth factor signalling: from development to cancer. Nature Reviews Cancer, 10(2), 116–129.PubMedCrossRef Turner, N., & Grose, R. (2010). Fibroblast growth factor signalling: from development to cancer. Nature Reviews Cancer, 10(2), 116–129.PubMedCrossRef
16.
go back to reference Dienstmann, R., Rodon, J., Prat, A., Perez-Garcia, J., Adamo, B., Felip, E., & Tabernero, J. (2014). Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO, 25(3), 552–563. doi:10.1093/annonc/mdt419.CrossRef Dienstmann, R., Rodon, J., Prat, A., Perez-Garcia, J., Adamo, B., Felip, E., & Tabernero, J. (2014). Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO, 25(3), 552–563. doi:10.​1093/​annonc/​mdt419.CrossRef
17.
go back to reference Baselga, J. (2006). Targeting tyrosine kinases in cancer: the second wave. Science, 312(5777), 1175–1178.PubMedCrossRef Baselga, J. (2006). Targeting tyrosine kinases in cancer: the second wave. Science, 312(5777), 1175–1178.PubMedCrossRef
19.
go back to reference Verstovsek, S., Mesa, R. A., Gotlib, J., Levy, R. S., Gupta, V., DiPersio, J. F., & Kantarjian, H. M. (2012). A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. New England Journal of Medicine, 366(9), 799–807. doi:10.1056/NEJMoa1110557.PubMedCrossRef Verstovsek, S., Mesa, R. A., Gotlib, J., Levy, R. S., Gupta, V., DiPersio, J. F., & Kantarjian, H. M. (2012). A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. New England Journal of Medicine, 366(9), 799–807. doi:10.​1056/​NEJMoa1110557.PubMedCrossRef
20.
go back to reference Lee, E. B., Fleischmann, R., Hall, S., Wilkinson, B., Bradley, J. D., Gruben, D., & van Vollenhoven, R. F. (2014). Tofacitinib versus Methotrexate in Rheumatoid Arthritis. New England Journal of Medicine, 370(25), 2377–2386. doi:10.1056/NEJMoa1310476.PubMedCrossRef Lee, E. B., Fleischmann, R., Hall, S., Wilkinson, B., Bradley, J. D., Gruben, D., & van Vollenhoven, R. F. (2014). Tofacitinib versus Methotrexate in Rheumatoid Arthritis. New England Journal of Medicine, 370(25), 2377–2386. doi:10.​1056/​NEJMoa1310476.PubMedCrossRef
21.
go back to reference Hubbard, S. R., & Till, J. H. (2000). Protein tyrosine kinase structure and function. Annual review of biochemistry, 69, 373–398.PubMedCrossRef Hubbard, S. R., & Till, J. H. (2000). Protein tyrosine kinase structure and function. Annual review of biochemistry, 69, 373–398.PubMedCrossRef
22.
go back to reference Kim, I., Moon, S.-O., Yu, K.-H., Kim, U.-H., & Koh, G. Y. (2001). A novel fibroblast growth factor receptor-5 preferentially expressed in the pancreas. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1518(1–2), 152–156.CrossRef Kim, I., Moon, S.-O., Yu, K.-H., Kim, U.-H., & Koh, G. Y. (2001). A novel fibroblast growth factor receptor-5 preferentially expressed in the pancreas. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1518(1–2), 152–156.CrossRef
23.
go back to reference Sleeman, M., Fraser, J., McDonald, M., Yuan, S., White, D., Grandison, P., & Murison, J. G. (2001). Identification of a new fibroblast growth factor receptor, FGFR5. Gene, 271(2), 171–182.PubMedCrossRef Sleeman, M., Fraser, J., McDonald, M., Yuan, S., White, D., Grandison, P., & Murison, J. G. (2001). Identification of a new fibroblast growth factor receptor, FGFR5. Gene, 271(2), 171–182.PubMedCrossRef
24.
go back to reference Klint, P., & Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Frontiers in bioscience : a journal and virtual library, 4, D165–77.CrossRef Klint, P., & Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Frontiers in bioscience : a journal and virtual library, 4, D165–77.CrossRef
25.
go back to reference Jin, M., Du, X., & Chen, L. (2012). Cross-talk between FGF and other cytokine signalling pathways during endochondral bone development. Cell biology international, 36(8), 691–696.PubMedCrossRef Jin, M., Du, X., & Chen, L. (2012). Cross-talk between FGF and other cytokine signalling pathways during endochondral bone development. Cell biology international, 36(8), 691–696.PubMedCrossRef
26.
go back to reference Horton, W. A. (2006). MOLECULAR PATHOGENESIS OF ACHONDROPLASIA. Growth Genet Horm. Horton, W. A. (2006). MOLECULAR PATHOGENESIS OF ACHONDROPLASIA. Growth Genet Horm.
27.
go back to reference Katoh, M. (2008). Cancer genomics and genetics of FGFR2 (Review). International journal of oncology, 33(2), 233–237.PubMed Katoh, M. (2008). Cancer genomics and genetics of FGFR2 (Review). International journal of oncology, 33(2), 233–237.PubMed
28.
go back to reference Olsen, S. K., Garbi, M., Zampieri, N., Eliseenkova, A. V., Ornitz, D. M., Goldfarb, M., & Mohammadi, M. (2003). Fibroblast Growth Factor (FGF) Homologous Factors Share Structural but Not Functional Homology with FGFs. Journal of Biological \ldots. Olsen, S. K., Garbi, M., Zampieri, N., Eliseenkova, A. V., Ornitz, D. M., Goldfarb, M., & Mohammadi, M. (2003). Fibroblast Growth Factor (FGF) Homologous Factors Share Structural but Not Functional Homology with FGFs. Journal of Biological \ldots.
29.
go back to reference Itoh, N., & Ornitz, D. M. (2008). Functional evolutionary history of the mouse Fgf gene family. Developmental dynamics : an official publication of the American Association of Anatomists, 237(1), 18–27.CrossRef Itoh, N., & Ornitz, D. M. (2008). Functional evolutionary history of the mouse Fgf gene family. Developmental dynamics : an official publication of the American Association of Anatomists, 237(1), 18–27.CrossRef
30.
go back to reference Potthoff, M. J., Kliewer, S. A., & Mangelsdorf, D. J. (2012). Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes & development, 26(4), 312–324.CrossRef Potthoff, M. J., Kliewer, S. A., & Mangelsdorf, D. J. (2012). Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes & development, 26(4), 312–324.CrossRef
31.
go back to reference Fukumoto, S. (2008). Actions and mode of actions of FGF19 subfamily members. Endocrine journal, 55(1), 23–31.PubMedCrossRef Fukumoto, S. (2008). Actions and mode of actions of FGF19 subfamily members. Endocrine journal, 55(1), 23–31.PubMedCrossRef
33.
go back to reference Abuharbeid, S., Czubayko, F., & Aigner, A. (2006). The fibroblast growth factor-binding protein FGF-BP. The international journal of biochemistry & cell biology, 38(9), 1463–1468.CrossRef Abuharbeid, S., Czubayko, F., & Aigner, A. (2006). The fibroblast growth factor-binding protein FGF-BP. The international journal of biochemistry & cell biology, 38(9), 1463–1468.CrossRef
34.
go back to reference Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M., & Ornitz, D. M. (2006). Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. The Journal of biological chemistry, 281(23), 15694–15700.PubMedCentralPubMedCrossRef Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M., & Ornitz, D. M. (2006). Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. The Journal of biological chemistry, 281(23), 15694–15700.PubMedCentralPubMedCrossRef
35.
go back to reference Ornitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., & Goldfarb, M. (1996). Receptor specificity of the fibroblast growth factor family. The Journal of biological chemistry, 271(25), 15292–15297.PubMedCrossRef Ornitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., & Goldfarb, M. (1996). Receptor specificity of the fibroblast growth factor family. The Journal of biological chemistry, 271(25), 15292–15297.PubMedCrossRef
36.
go back to reference Itoh, N. (2007). The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biological & pharmaceutical bulletin, 30(10), 1819–1825.CrossRef Itoh, N. (2007). The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biological & pharmaceutical bulletin, 30(10), 1819–1825.CrossRef
37.
go back to reference Hehr, U., & Muenke, M. (1999). Craniosynostosis syndromes: from genes to premature fusion of skull bones. Molecular genetics and metabolism, 68(2), 139–151.PubMedCrossRef Hehr, U., & Muenke, M. (1999). Craniosynostosis syndromes: from genes to premature fusion of skull bones. Molecular genetics and metabolism, 68(2), 139–151.PubMedCrossRef
38.
go back to reference Wu, D. Q., Kan, M. K., Sato, G. H., Okamoto, T., & Sato, J. D. (1991). Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. The Journal of biological chemistry, 266(25), 16778–16785.PubMed Wu, D. Q., Kan, M. K., Sato, G. H., Okamoto, T., & Sato, J. D. (1991). Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. The Journal of biological chemistry, 266(25), 16778–16785.PubMed
39.
go back to reference Böttcher, R. T., Pollet, N., Delius, H., & Niehrs, C. (2004). The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nature cell biology, 6(1), 38–44.PubMedCrossRef Böttcher, R. T., Pollet, N., Delius, H., & Niehrs, C. (2004). The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nature cell biology, 6(1), 38–44.PubMedCrossRef
41.
go back to reference Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y., & Krasnow, M. A. (1998). sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell, 92(2), 253–263.PubMedCrossRef Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y., & Krasnow, M. A. (1998). sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell, 92(2), 253–263.PubMedCrossRef
42.
go back to reference Cabrita, M. A., & Christofori, G. (2008). Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis, 11(1), 53–62.PubMedCrossRef Cabrita, M. A., & Christofori, G. (2008). Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis, 11(1), 53–62.PubMedCrossRef
43.
go back to reference Tsang, M., & Dawid, I. B. (2004). Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Science’s STKE : signal transduction knowledge environment, 2004(228), pe17. Tsang, M., & Dawid, I. B. (2004). Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Science’s STKE : signal transduction knowledge environment, 2004(228), pe17.
44.
go back to reference Steinberg, F., Zhuang, L., Beyeler, M., Kälin, R. E., Mullis, P. E., Brändli, A. W., & Trueb, B. (2010). The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos. The Journal of biological chemistry, 285(3), 2193–2202.PubMedCentralPubMedCrossRef Steinberg, F., Zhuang, L., Beyeler, M., Kälin, R. E., Mullis, P. E., Brändli, A. W., & Trueb, B. (2010). The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos. The Journal of biological chemistry, 285(3), 2193–2202.PubMedCentralPubMedCrossRef
45.
go back to reference Trueb, B. (2011). Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cellular and molecular life sciences : CMLS, 68(6), 951–964.PubMedCrossRef Trueb, B. (2011). Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cellular and molecular life sciences : CMLS, 68(6), 951–964.PubMedCrossRef
46.
go back to reference Rieckmann, T., Zhuang, L., Flück, C. E., & Trueb, B. (2009). Characterization of the first FGFRL1 mutation identified in a craniosynostosis patient. Biochimica et biophysica acta, 1792(2), 112–121.PubMedCrossRef Rieckmann, T., Zhuang, L., Flück, C. E., & Trueb, B. (2009). Characterization of the first FGFRL1 mutation identified in a craniosynostosis patient. Biochimica et biophysica acta, 1792(2), 112–121.PubMedCrossRef
47.
go back to reference Schild, C., & Trueb, B. (2005). Aberrant expression of FGFRL1, a novel FGF receptor, in ovarian tumors. International journal of molecular medicine, 16(6), 1169–1173.PubMed Schild, C., & Trueb, B. (2005). Aberrant expression of FGFRL1, a novel FGF receptor, in ovarian tumors. International journal of molecular medicine, 16(6), 1169–1173.PubMed
48.
go back to reference Garcia, S., Dirat, B., Tognacci, T., Rochet, N., Mouska, X., Bonnafous, S., & Gouze, E. (2013). Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Science Translational Medicine, 5(203), 203ra–124. doi:10.1126/scitranslmed.3006247.CrossRef Garcia, S., Dirat, B., Tognacci, T., Rochet, N., Mouska, X., Bonnafous, S., & Gouze, E. (2013). Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Science Translational Medicine, 5(203), 203ra–124. doi:10.​1126/​scitranslmed.​3006247.CrossRef
49.
go back to reference Cohen, M. M. (2003). Neoplasms associated with alterations in fibroblast growth factor receptors. American journal of medical genetics Part A, 119A(2), 97–100.PubMedCrossRef Cohen, M. M. (2003). Neoplasms associated with alterations in fibroblast growth factor receptors. American journal of medical genetics Part A, 119A(2), 97–100.PubMedCrossRef
50.
go back to reference Andreou, A., Lamy, A., Layet, V., Cailliez, D., Gobet, F., Pfister, C., & Frebourg, T. (2006). Early-onset low-grade papillary carcinoma of the bladder associated with Apert syndrome and a germline FGFR2 mutation (Pro253Arg). American journal of medical genetics Part A, 140(20), 2245–2247.PubMedCrossRef Andreou, A., Lamy, A., Layet, V., Cailliez, D., Gobet, F., Pfister, C., & Frebourg, T. (2006). Early-onset low-grade papillary carcinoma of the bladder associated with Apert syndrome and a germline FGFR2 mutation (Pro253Arg). American journal of medical genetics Part A, 140(20), 2245–2247.PubMedCrossRef
51.
go back to reference Rouzier, C., Soler, C., Hofman, P., Brennetot, C., Bieth, E., & Pedeutour, F. (2008). Ovarian dysgerminoma and Apert syndrome. Pediatric blood & cancer, 50(3), 696–698.CrossRef Rouzier, C., Soler, C., Hofman, P., Brennetot, C., Bieth, E., & Pedeutour, F. (2008). Ovarian dysgerminoma and Apert syndrome. Pediatric blood & cancer, 50(3), 696–698.CrossRef
52.
go back to reference Barbosa, M., Almeida, M. do R., Reis-Lima, M., Pinto-Basto, J., & dos Santos, H. G. (2009). Muenke syndrome with osteochondroma. American journal of medical genetics. Part A, 149A(2), 260–261. Barbosa, M., Almeida, M. do R., Reis-Lima, M., Pinto-Basto, J., & dos Santos, H. G. (2009). Muenke syndrome with osteochondroma. American journal of medical genetics. Part A, 149A(2), 260–261.
53.
go back to reference Bourdeaut, F., Miquel, C., Di Rocco, F., Grison, C., Richer, W., Brugieres, L., & Collet, C. (2013). Germline mutations in FGF receptors and medulloblastomas. American journal of medical genetics Part A, 161A(2), 382–385.PubMedCrossRef Bourdeaut, F., Miquel, C., Di Rocco, F., Grison, C., Richer, W., Brugieres, L., & Collet, C. (2013). Germline mutations in FGF receptors and medulloblastomas. American journal of medical genetics Part A, 161A(2), 382–385.PubMedCrossRef
54.
go back to reference Logié, A., Dunois-Lardé, C., Rosty, C., Levrel, O., Blanche, M., Ribeiro, A., & Radvanyi, F. (2005). Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. Human molecular genetics, 14(9), 1153–1160.PubMedCrossRef Logié, A., Dunois-Lardé, C., Rosty, C., Levrel, O., Blanche, M., Ribeiro, A., & Radvanyi, F. (2005). Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. Human molecular genetics, 14(9), 1153–1160.PubMedCrossRef
55.
go back to reference Hafner, C., van Oers, J. M. M., Vogt, T., Landthaler, M., Stoehr, R., Blaszyk, H., & Hartmann, A. (2006). Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. Journal of Clinical Investigation, 116(8), 2201–2207.PubMedCentralPubMedCrossRef Hafner, C., van Oers, J. M. M., Vogt, T., Landthaler, M., Stoehr, R., Blaszyk, H., & Hartmann, A. (2006). Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. Journal of Clinical Investigation, 116(8), 2201–2207.PubMedCentralPubMedCrossRef
57.
go back to reference Hattori, Y., Itoh, H., Uchino, S., Hosokawa, K., Ochiai, A., Ino, Y., & Terada, M. (1996). Immunohistochemical detection of K-sam protein in stomach cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2(8), 1373–1381. Hattori, Y., Itoh, H., Uchino, S., Hosokawa, K., Ochiai, A., Ino, Y., & Terada, M. (1996). Immunohistochemical detection of K-sam protein in stomach cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2(8), 1373–1381.
58.
go back to reference Gust, K. M., McConkey, D. J., Awrey, S., Hegarty, P. K., Qing, J., Bondaruk, J., & Black, P. C. (2013). Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Molecular Cancer Therapeutics, 12(7), 1245–1254.PubMedCentralPubMedCrossRef Gust, K. M., McConkey, D. J., Awrey, S., Hegarty, P. K., Qing, J., Bondaruk, J., & Black, P. C. (2013). Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Molecular Cancer Therapeutics, 12(7), 1245–1254.PubMedCentralPubMedCrossRef
59.
go back to reference Gartside, M. G., Chen, H., Ibrahimi, O. A., Byron, S. A., Curtis, A. V., Wellens, C. L., & Pollock, P. M. (2009). Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Molecular cancer research : MCR, 7(1), 41–54.PubMedCentralPubMedCrossRef Gartside, M. G., Chen, H., Ibrahimi, O. A., Byron, S. A., Curtis, A. V., Wellens, C. L., & Pollock, P. M. (2009). Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Molecular cancer research : MCR, 7(1), 41–54.PubMedCentralPubMedCrossRef
60.
go back to reference Heist, R. S., Mino-Kenudson, M., Sequist, L. V., Tammireddy, S., Morrissey, L., Christiani, D. C., & Iafrate, A. J. (2012). FGFR1 Amplification in Squamous Cell Carcinoma of The Lung. Journal of Thoracic Oncology, 7(12), 1775–1780.PubMedCentralPubMedCrossRef Heist, R. S., Mino-Kenudson, M., Sequist, L. V., Tammireddy, S., Morrissey, L., Christiani, D. C., & Iafrate, A. J. (2012). FGFR1 Amplification in Squamous Cell Carcinoma of The Lung. Journal of Thoracic Oncology, 7(12), 1775–1780.PubMedCentralPubMedCrossRef
61.
go back to reference Weiss, J., Sos, M. L., Seidel, D., & Peifer, M. (2010). Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Science translational medicine, 2(62), 62ra93.PubMedCentralPubMedCrossRef Weiss, J., Sos, M. L., Seidel, D., & Peifer, M. (2010). Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Science translational medicine, 2(62), 62ra93.PubMedCentralPubMedCrossRef
62.
go back to reference Albiges, L., Quidville, V., Valent, A., Mathieu, M. C., Drusch, F., Koscielny, S., … Andre, F. (2009). FGFR1 amplification and FGF gain in breast cancer. In San Antonio Breast Cancer Symposium. Institut Gustave Roussy, villejuif, France. Albiges, L., Quidville, V., Valent, A., Mathieu, M. C., Drusch, F., Koscielny, S., … Andre, F. (2009). FGFR1 amplification and FGF gain in breast cancer. In San Antonio Breast Cancer Symposium. Institut Gustave Roussy, villejuif, France.
64.
go back to reference Liu, J., Guzman, M. A., Pezanowski, D., Patel, D., Hauptman, J., Keisling, M., & de Chadarévian, J.-P. (2011). FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 24(10), 1327–1335. doi:10.1038/modpathol.2011.98.CrossRef Liu, J., Guzman, M. A., Pezanowski, D., Patel, D., Hauptman, J., Keisling, M., & de Chadarévian, J.-P. (2011). FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 24(10), 1327–1335. doi:10.​1038/​modpathol.​2011.​98.CrossRef
65.
go back to reference Grand, E. K., Chase, A. J., Heath, C., Rahemtulla, A., & Cross, N. C. P. (2004). Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074. Leukemia, 18(5), 962–966. doi:10.1038/sj.leu.2403347.PubMedCrossRef Grand, E. K., Chase, A. J., Heath, C., Rahemtulla, A., & Cross, N. C. P. (2004). Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074. Leukemia, 18(5), 962–966. doi:10.​1038/​sj.​leu.​2403347.PubMedCrossRef
66.
go back to reference Yagasaki, F., Wakao, D., Yokoyama, Y., Uchida, Y., Murohashi, I., Kayano, H., & Bessho, M. (2001). Fusion of ETV6 to fibroblast growth factor receptor 3 in peripheral T-cell lymphoma with a t(4;12)(p16;p13) chromosomal translocation. Cancer Research, 61(23), 8371–8374.PubMed Yagasaki, F., Wakao, D., Yokoyama, Y., Uchida, Y., Murohashi, I., Kayano, H., & Bessho, M. (2001). Fusion of ETV6 to fibroblast growth factor receptor 3 in peripheral T-cell lymphoma with a t(4;12)(p16;p13) chromosomal translocation. Cancer Research, 61(23), 8371–8374.PubMed
67.
go back to reference Katoh, M., & Katoh, M. (2003). Recombination cluster around FGFR2-WDR11-HTPAPL locus on human chromosome 10q26. International Journal of Molecular Medicine, 11(5), 579–583.PubMed Katoh, M., & Katoh, M. (2003). Recombination cluster around FGFR2-WDR11-HTPAPL locus on human chromosome 10q26. International Journal of Molecular Medicine, 11(5), 579–583.PubMed
68.
go back to reference Singh, D., Chan, J. M., Zoppoli, P., Niola, F., Sullivan, R., Castano, A., & Iavarone, A. (2012). Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma. Science, 337(6099), 1231–1235.PubMedCentralPubMedCrossRef Singh, D., Chan, J. M., Zoppoli, P., Niola, F., Sullivan, R., Castano, A., & Iavarone, A. (2012). Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma. Science, 337(6099), 1231–1235.PubMedCentralPubMedCrossRef
69.
go back to reference Soria, J.-C., DeBraud, F., Bahleda, R., Adamo, B., Andre, F., Dientsmann, R., & Tabernero, J. (2014). Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO, 25(11), 2244–2251. doi:10.1093/annonc/mdu390.CrossRef Soria, J.-C., DeBraud, F., Bahleda, R., Adamo, B., Andre, F., Dientsmann, R., & Tabernero, J. (2014). Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO, 25(11), 2244–2251. doi:10.​1093/​annonc/​mdu390.CrossRef
70.
go back to reference Nakanishi, Y., Akiyama, N., Tsukaguchi, T., Fujii, T., Sakata, K., Sase, H., & Ishii, N. (2014). The Fibroblast Growth Factor Receptor Genetic Status as a Potential Predictor of the Sensitivity to CH5183284/Debio 1347, a Novel Selective FGFR Inhibitor. Molecular Cancer Therapeutics, 13(11), 2547–2558. doi:10.1158/1535-7163.MCT-14-0248.PubMedCrossRef Nakanishi, Y., Akiyama, N., Tsukaguchi, T., Fujii, T., Sakata, K., Sase, H., & Ishii, N. (2014). The Fibroblast Growth Factor Receptor Genetic Status as a Potential Predictor of the Sensitivity to CH5183284/Debio 1347, a Novel Selective FGFR Inhibitor. Molecular Cancer Therapeutics, 13(11), 2547–2558. doi:10.​1158/​1535-7163.​MCT-14-0248.PubMedCrossRef
71.
go back to reference Bellovin, D. I., Palencia, S., Hestir, K., Lee, E., DeYoung, M. P., Brennan, T., & Baker, K. (2014). Abstract 5449: FP-1039/GSK3052230, an FGF ligand trap, enhances VEGF antagonist therapy in preclinical models of RCC and HCC. Cancer Research, 74(19 Supplement), 5449–5449. doi:10.1158/1538-7445.AM2014-5449.CrossRef Bellovin, D. I., Palencia, S., Hestir, K., Lee, E., DeYoung, M. P., Brennan, T., & Baker, K. (2014). Abstract 5449: FP-1039/GSK3052230, an FGF ligand trap, enhances VEGF antagonist therapy in preclinical models of RCC and HCC. Cancer Research, 74(19 Supplement), 5449–5449. doi:10.​1158/​1538-7445.​AM2014-5449.CrossRef
72.
go back to reference Sohl, C. D., Ryan, M. R., Luo, B., Frey, K. M., & Anderson, K. S. (2015). Illuminating the Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance for the FGFR1 Gatekeeper Mutation: The Achilles’ Heel of Targeted Therapy. ACS chemical biology. doi:10.1021/acschembio.5b00014.PubMedCentralPubMed Sohl, C. D., Ryan, M. R., Luo, B., Frey, K. M., & Anderson, K. S. (2015). Illuminating the Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance for the FGFR1 Gatekeeper Mutation: The Achilles’ Heel of Targeted Therapy. ACS chemical biology. doi:10.​1021/​acschembio.​5b00014.PubMedCentralPubMed
73.
go back to reference Chell, V., Balmanno, K., Little, A. S., Wilson, M., Andrews, S., Blockley, L., & Cook, S. J. (2013). Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene, 32(25), 3059–3070. doi:10.1038/onc.2012.319.PubMedCrossRef Chell, V., Balmanno, K., Little, A. S., Wilson, M., Andrews, S., Blockley, L., & Cook, S. J. (2013). Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene, 32(25), 3059–3070. doi:10.​1038/​onc.​2012.​319.PubMedCrossRef
74.
go back to reference Byron, S. A., Chen, H., Wortmann, A., Loch, D., Gartside, M. G., Dehkhoda, F., & Pollock, P. M. (2013). The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib, and ponatinib ATP-competitive inhibitors. Neoplasia (New York, N.Y.), 15(8), 975–988.PubMedCentralCrossRef Byron, S. A., Chen, H., Wortmann, A., Loch, D., Gartside, M. G., Dehkhoda, F., & Pollock, P. M. (2013). The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib, and ponatinib ATP-competitive inhibitors. Neoplasia (New York, N.Y.), 15(8), 975–988.PubMedCentralCrossRef
75.
76.
go back to reference Harbinski, F., Craig, V. J., Sanghavi, S., Jeffery, D., Liu, L., Sheppard, K. A., & Tiedt, R. (2012). Rescue screens with secreted proteins reveal compensatory potential of receptor tyrosine kinases in driving cancer growth. Cancer Discovery, 2(10), 948–959. doi:10.1158/2159-8290.CD-12-0237.PubMedCrossRef Harbinski, F., Craig, V. J., Sanghavi, S., Jeffery, D., Liu, L., Sheppard, K. A., & Tiedt, R. (2012). Rescue screens with secreted proteins reveal compensatory potential of receptor tyrosine kinases in driving cancer growth. Cancer Discovery, 2(10), 948–959. doi:10.​1158/​2159-8290.​CD-12-0237.PubMedCrossRef
77.
go back to reference Javidi-Sharifi, N., Traer, E., Martinez, J., Gupta, A., Taguchi, T., Dunlap, J., & Tyner, J. W. (2015). Crosstalk between KIT and FGFR3 Promotes Gastrointestinal Stromal Tumor Cell Growth and Drug Resistance. Cancer Research, 75(5), 880–891. doi:10.1158/0008-5472.CAN-14-0573.PubMedCrossRef Javidi-Sharifi, N., Traer, E., Martinez, J., Gupta, A., Taguchi, T., Dunlap, J., & Tyner, J. W. (2015). Crosstalk between KIT and FGFR3 Promotes Gastrointestinal Stromal Tumor Cell Growth and Drug Resistance. Cancer Research, 75(5), 880–891. doi:10.​1158/​0008-5472.​CAN-14-0573.PubMedCrossRef
79.
go back to reference Schwaederlé, M., Daniels, G. A., Piccioni, D. E., Fanta, P. T., Schwab, R. B., Shimabukuro, K. A., … Kurzrock, R. (2014). Cyclin alterations in diverse cancers: Outcome and co-amplification network. Oncotarget. Schwaederlé, M., Daniels, G. A., Piccioni, D. E., Fanta, P. T., Schwab, R. B., Shimabukuro, K. A., … Kurzrock, R. (2014). Cyclin alterations in diverse cancers: Outcome and co-amplification network. Oncotarget.
80.
go back to reference Wheler, J. J., Parker, B. A., Lee, J. J., Atkins, J. T., Janku, F., Tsimberidou, A. M., … Kurzrock, R. (2014). Unique molecular signatures as a hallmark of patients with metastatic breast cancer: Implications for current treatment paradigms. Oncotarget. Wheler, J. J., Parker, B. A., Lee, J. J., Atkins, J. T., Janku, F., Tsimberidou, A. M., … Kurzrock, R. (2014). Unique molecular signatures as a hallmark of patients with metastatic breast cancer: Implications for current treatment paradigms. Oncotarget.
82.
go back to reference Tsimberidou, A.-M., Iskander, N. G., Hong, D. S., Wheler, J. J., Falchook, G. S., Fu, S., & Kurzrock, R. (2012). Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center initiative. Clinical cancer research: an official journal of the American Association for Cancer Research, 18(22), 6373–6383. doi:10.1158/1078-0432.CCR-12-1627.CrossRef Tsimberidou, A.-M., Iskander, N. G., Hong, D. S., Wheler, J. J., Falchook, G. S., Fu, S., & Kurzrock, R. (2012). Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center initiative. Clinical cancer research: an official journal of the American Association for Cancer Research, 18(22), 6373–6383. doi:10.​1158/​1078-0432.​CCR-12-1627.CrossRef
84.
go back to reference Cohen, M. M. (1993). Pfeiffer syndrome update, clinical subtypes, and guidelines for differential diagnosis. American journal of medical genetics, 45(3), 300–307.PubMedCrossRef Cohen, M. M. (1993). Pfeiffer syndrome update, clinical subtypes, and guidelines for differential diagnosis. American journal of medical genetics, 45(3), 300–307.PubMedCrossRef
86.
go back to reference Ibrahimi, O. A., Zhang, F., Eliseenkova, A. V., Linhardt, R. J., & Mohammadi, M. (2004). Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Human Molecular Genetics, 13(1), 69–78. doi:10.1093/hmg/ddh011.PubMedCrossRef Ibrahimi, O. A., Zhang, F., Eliseenkova, A. V., Linhardt, R. J., & Mohammadi, M. (2004). Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Human Molecular Genetics, 13(1), 69–78. doi:10.​1093/​hmg/​ddh011.PubMedCrossRef
87.
go back to reference Davies, H., Hunter, C., Smith, R., Stephens, P., Greenman, C., Bignell, G., … Futreal, P. A. (2005). Somatic Mutations of the Protein Kinase Gene Family in Human Lung Cancer. Davies, H., Hunter, C., Smith, R., Stephens, P., Greenman, C., Bignell, G., … Futreal, P. A. (2005). Somatic Mutations of the Protein Kinase Gene Family in Human Lung Cancer.
88.
go back to reference Ruhe, J. E., Streit, S., Hart, S., Wong, C.-H., Specht, K., Knyazev, P., … Ullrich, A. (2007). Genetic Alterations in the Tyrosine Kinase Transcriptome of Human Cancer Cell Lines. Cancer Research. Ruhe, J. E., Streit, S., Hart, S., Wong, C.-H., Specht, K., Knyazev, P., … Ullrich, A. (2007). Genetic Alterations in the Tyrosine Kinase Transcriptome of Human Cancer Cell Lines. Cancer Research.
89.
go back to reference White, K. E., Cabral, J. M., Davis, S. I., Fishburn, T., Evans, W. E., Ichikawa, S., & Econs, M. J. (2005). Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. American journal of human genetics, 76(2), 361–367.PubMedCentralPubMedCrossRef White, K. E., Cabral, J. M., Davis, S. I., Fishburn, T., Evans, W. E., Ichikawa, S., & Econs, M. J. (2005). Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. American journal of human genetics, 76(2), 361–367.PubMedCentralPubMedCrossRef
90.
go back to reference Riminucci, M., Collins, M. T., Fedarko, N. S., Cherman, N., Corsi, A., White, K. E., & Gehron Robey, P. (2003). FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. Journal of Clinical Investigation, 112(5), 683–692.PubMedCentralPubMedCrossRef Riminucci, M., Collins, M. T., Fedarko, N. S., Cherman, N., Corsi, A., White, K. E., & Gehron Robey, P. (2003). FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. Journal of Clinical Investigation, 112(5), 683–692.PubMedCentralPubMedCrossRef
91.
go back to reference Moloney, D. M., Slaney, S. F., Oldridge, M., Wall, S. A., Sahlin, P., Stenman, G., & Wilkie, A. O. (1996). Exclusive paternal origin of new mutations in Apert syndrome. Nature genetics, 13(1), 48–53.PubMedCrossRef Moloney, D. M., Slaney, S. F., Oldridge, M., Wall, S. A., Sahlin, P., Stenman, G., & Wilkie, A. O. (1996). Exclusive paternal origin of new mutations in Apert syndrome. Nature genetics, 13(1), 48–53.PubMedCrossRef
92.
go back to reference Miraoui, H., Ringe, J., & Häupl, T. (2010). Increased EFG-and PDGFα-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Human molecular \ldots. Miraoui, H., Ringe, J., & Häupl, T. (2010). Increased EFG-and PDGFα-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Human molecular \ldots.
93.
go back to reference Pollock, P. M., Gartside, M. G., Dejeza, L. C., Powell, M. A., Mallon, M. A., Davies, H., & Goodfellow, P. J. (2007). Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene, 26(50), 7158–7162.PubMedCentralPubMedCrossRef Pollock, P. M., Gartside, M. G., Dejeza, L. C., Powell, M. A., Mallon, M. A., Davies, H., & Goodfellow, P. J. (2007). Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene, 26(50), 7158–7162.PubMedCentralPubMedCrossRef
94.
go back to reference Byron, S. A., Gartside, M., Powell, M. A., Wellens, C. L., Gao, F., Mutch, D. G., & Pollock, P. M. (2012). FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS ONE, 7(2), e30801.PubMedCentralPubMedCrossRef Byron, S. A., Gartside, M., Powell, M. A., Wellens, C. L., Gao, F., Mutch, D. G., & Pollock, P. M. (2012). FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS ONE, 7(2), e30801.PubMedCentralPubMedCrossRef
95.
go back to reference Passos-Bueno, M. R., Wilcox, W. R., Jabs, E. W., Serti, A. L., Alonso, L. G., & Kitoh, H. (1999). Clinical spectrum of fibroblast growth factor receptor mutations. Human Mutation, 14(2), 115–125.PubMedCrossRef Passos-Bueno, M. R., Wilcox, W. R., Jabs, E. W., Serti, A. L., Alonso, L. G., & Kitoh, H. (1999). Clinical spectrum of fibroblast growth factor receptor mutations. Human Mutation, 14(2), 115–125.PubMedCrossRef
96.
go back to reference Reardon, W., Winter, R. M., Rutland, P., Pulleyn, L. J., Jones, B. M., & Malcolm, S. (1994). Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature genetics, 8(1), 98–103.PubMedCrossRef Reardon, W., Winter, R. M., Rutland, P., Pulleyn, L. J., Jones, B. M., & Malcolm, S. (1994). Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature genetics, 8(1), 98–103.PubMedCrossRef
97.
go back to reference Glaser, R. L., Jiang, W., Boyadjiev, S. A., Tran, A. K., Zachary, A. A., Van Maldergem, L., & Jabs, E. W. (2000). Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. American journal of human genetics, 66(3), 768–777.PubMedCentralPubMedCrossRef Glaser, R. L., Jiang, W., Boyadjiev, S. A., Tran, A. K., Zachary, A. A., Van Maldergem, L., & Jabs, E. W. (2000). Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. American journal of human genetics, 66(3), 768–777.PubMedCentralPubMedCrossRef
98.
go back to reference Jang, J. H., Shin, K. H., & Park, J. G. (2001). Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Research, 61(9), 3541–3543.PubMed Jang, J. H., Shin, K. H., & Park, J. G. (2001). Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Research, 61(9), 3541–3543.PubMed
99.
go back to reference Chokdeemboon, C., Mahatumarat, C., Rojvachiranonda, N., Tongkobpetch, S., Suphapeetiporn, K., & Shotelersuk, V. (2013). FGFR1 and FGFR2 mutations in Pfeiffer syndrome. The Journal of craniofacial surgery, 24(1), 150–152.PubMedCrossRef Chokdeemboon, C., Mahatumarat, C., Rojvachiranonda, N., Tongkobpetch, S., Suphapeetiporn, K., & Shotelersuk, V. (2013). FGFR1 and FGFR2 mutations in Pfeiffer syndrome. The Journal of craniofacial surgery, 24(1), 150–152.PubMedCrossRef
100.
go back to reference Cornejo-Roldan, L. R., Roessler, E., & Muenke, M. (1999). Analysis of the mutational spectrum of the FGFR2 gene in Pfeiffer syndrome - Springer. Human genetics. Cornejo-Roldan, L. R., Roessler, E., & Muenke, M. (1999). Analysis of the mutational spectrum of the FGFR2 gene in Pfeiffer syndrome - Springer. Human genetics.
101.
go back to reference Chen, L., Adar, R., Yang, X., Monsonego, E. O., Li, C., Hauschka, P. V., & Deng, C. X. (1999). Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. Journal of Clinical Investigation, 104(11), 1517–1525.PubMedCentralPubMedCrossRef Chen, L., Adar, R., Yang, X., Monsonego, E. O., Li, C., Hauschka, P. V., & Deng, C. X. (1999). Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. Journal of Clinical Investigation, 104(11), 1517–1525.PubMedCentralPubMedCrossRef
102.
go back to reference Monsonego-Ornan, E., Adar, R., Feferman, T., Segev, O., & Yayon, A. (2000). The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation. Molecular and cellular biology, 20(2), 516–522.PubMedCentralPubMedCrossRef Monsonego-Ornan, E., Adar, R., Feferman, T., Segev, O., & Yayon, A. (2000). The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation. Molecular and cellular biology, 20(2), 516–522.PubMedCentralPubMedCrossRef
103.
go back to reference Henderson, J. E., Naski, M. C., Aarts, M. M., Wang, D., Cheng, L., Goltzman, D., & Ornitz, D. M. (2000). Expression of FGFR3 with the G380R Achondroplasia Mutation Inhibits Proliferation and Maturation of CFK2 Chondrocytic Cells. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 15(1), 155–165.CrossRef Henderson, J. E., Naski, M. C., Aarts, M. M., Wang, D., Cheng, L., Goltzman, D., & Ornitz, D. M. (2000). Expression of FGFR3 with the G380R Achondroplasia Mutation Inhibits Proliferation and Maturation of CFK2 Chondrocytic Cells. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 15(1), 155–165.CrossRef
104.
go back to reference Knowles, M. A. (2008). Novel therapeutic targets in bladder cancer: mutation and expression of FGF receptors. Future oncology (London, England), 4(1), 71–83.CrossRef Knowles, M. A. (2008). Novel therapeutic targets in bladder cancer: mutation and expression of FGF receptors. Future oncology (London, England), 4(1), 71–83.CrossRef
105.
go back to reference Ahmad, I., Iwata, T., & Leung, H. Y. (2012). Mechanisms of FGFR-mediated carcinogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(4), 850–860.CrossRef Ahmad, I., Iwata, T., & Leung, H. Y. (2012). Mechanisms of FGFR-mediated carcinogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(4), 850–860.CrossRef
106.
go back to reference Delezoide, A. L., Lasselin-Benoist, C., Legeai-Mallet, L., Brice, P., Senée, V., Yayon, A., & Bonaventure, J. (1997). Abnormal FGFR 3 expression in cartilage of thanatophoric dysplasia fetuses. Human molecular genetics, 6(11), 1899–1906.PubMedCrossRef Delezoide, A. L., Lasselin-Benoist, C., Legeai-Mallet, L., Brice, P., Senée, V., Yayon, A., & Bonaventure, J. (1997). Abnormal FGFR 3 expression in cartilage of thanatophoric dysplasia fetuses. Human molecular genetics, 6(11), 1899–1906.PubMedCrossRef
107.
go back to reference Wilcox, W. R., Tavormina, P. L., Krakow, D., Kitoh, H., Lachman, R. S., Wasmuth, J. J., & Rimoin, D. L. (1998). Molecular, radiologic, and histopathologic correlations in thanatophoric dysplasia. American journal of medical genetics, 78(3), 274–281.PubMedCrossRef Wilcox, W. R., Tavormina, P. L., Krakow, D., Kitoh, H., Lachman, R. S., Wasmuth, J. J., & Rimoin, D. L. (1998). Molecular, radiologic, and histopathologic correlations in thanatophoric dysplasia. American journal of medical genetics, 78(3), 274–281.PubMedCrossRef
108.
go back to reference Brodie, S. G., Kitoh, H., Lachman, R. S., Nolasco, L. M., Mekikian, P. B., & Wilcox, W. R. (1999). Platyspondylic lethal skeletal dysplasia, San Diego type, is caused by FGFR3 mutations. American journal of medical genetics, 84(5), 476–480.PubMedCrossRef Brodie, S. G., Kitoh, H., Lachman, R. S., Nolasco, L. M., Mekikian, P. B., & Wilcox, W. R. (1999). Platyspondylic lethal skeletal dysplasia, San Diego type, is caused by FGFR3 mutations. American journal of medical genetics, 84(5), 476–480.PubMedCrossRef
109.
go back to reference Di Martino, E., Tomlinson, D. C., & Knowles, M. A. (2012). A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges. Advances in Urology, 2012, e429213. doi:10.1155/2012/429213.CrossRef Di Martino, E., Tomlinson, D. C., & Knowles, M. A. (2012). A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges. Advances in Urology, 2012, e429213. doi:10.​1155/​2012/​429213.CrossRef
112.
go back to reference Webster, M. K., D’Avis, P. Y., Robertson, S. C., & Donoghue, D. J. (1996). Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Molecular and cellular biology, 16(8), 4081–4087.PubMedCentralPubMedCrossRef Webster, M. K., D’Avis, P. Y., Robertson, S. C., & Donoghue, D. J. (1996). Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Molecular and cellular biology, 16(8), 4081–4087.PubMedCentralPubMedCrossRef
113.
go back to reference Lievens, P. M.-J., & Liboi, E. (2003). The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum. The Journal of biological chemistry, 278(19), 17344–17349.PubMedCrossRef Lievens, P. M.-J., & Liboi, E. (2003). The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum. The Journal of biological chemistry, 278(19), 17344–17349.PubMedCrossRef
114.
go back to reference Otsuka, M., Mizuki, M., Fujita, J., Kang, S., & Kanakura, Y. (2011, January). Constitutively active FGFR3 with Lys650Glu mutation enhances bortezomib sensitivity in plasma cell malignancy. Anticancer Research. Otsuka, M., Mizuki, M., Fujita, J., Kang, S., & Kanakura, Y. (2011, January). Constitutively active FGFR3 with Lys650Glu mutation enhances bortezomib sensitivity in plasma cell malignancy. Anticancer Research.
115.
go back to reference Walker, B. A., Murdoch, J. L., McKusick, V. A., Langer, L. O., & Beals, R. K. (1971). Hypochondroplasia. American journal of diseases of children (1960), 122(2), 95–104. Walker, B. A., Murdoch, J. L., McKusick, V. A., Langer, L. O., & Beals, R. K. (1971). Hypochondroplasia. American journal of diseases of children (1960), 122(2), 95–104.
116.
go back to reference Bellus, G. A., McIntosh, I., Smith, E. A., Aylsworth, A. S., Kaitila, I., Horton, W. A., & Francomano, C. A. (1995). A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nature genetics, 10(3), 357–359.PubMedCrossRef Bellus, G. A., McIntosh, I., Smith, E. A., Aylsworth, A. S., Kaitila, I., Horton, W. A., & Francomano, C. A. (1995). A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nature genetics, 10(3), 357–359.PubMedCrossRef
117.
go back to reference Bellus, G. A., Garber, A. T., Bryke, C. R., Weaver, C. A., Speiser, P. W., Webster, M. K., & Spector, E. B. (2000). FGFR3 Mutations K650N and K650Q Cause Hypochondroplasia. Genetics in Medicine, 2(1), 76–76.CrossRef Bellus, G. A., Garber, A. T., Bryke, C. R., Weaver, C. A., Speiser, P. W., Webster, M. K., & Spector, E. B. (2000). FGFR3 Mutations K650N and K650Q Cause Hypochondroplasia. Genetics in Medicine, 2(1), 76–76.CrossRef
118.
go back to reference Heuertz, S., Le Merrer, M., Zabel, B., Wright, M., Legeai-Mallet, L., Cormier-Daire, V., & Bonaventure, J. (2006). Novel FGFR3 mutations creating cysteine residues in the extracellular domain of the receptor cause achondroplasia or severe forms of hypochondroplasia. European Journal of Human Genetics, 14(12), 1240–1247.PubMedCrossRef Heuertz, S., Le Merrer, M., Zabel, B., Wright, M., Legeai-Mallet, L., Cormier-Daire, V., & Bonaventure, J. (2006). Novel FGFR3 mutations creating cysteine residues in the extracellular domain of the receptor cause achondroplasia or severe forms of hypochondroplasia. European Journal of Human Genetics, 14(12), 1240–1247.PubMedCrossRef
119.
go back to reference Abdel-Salam, G. M. H., Flores-Sarnat, L., El-Ruby, M. O., Parboosingh, J., Bridge, P., Eid, M. M., & Temtamy, S. A. (2011). Muenke syndrome with pigmentary disorder and probable hemimegalencephaly: An expansion of the phenotype. American journal of medical genetics Part A, 155A(1), 207–214.PubMedCrossRef Abdel-Salam, G. M. H., Flores-Sarnat, L., El-Ruby, M. O., Parboosingh, J., Bridge, P., Eid, M. M., & Temtamy, S. A. (2011). Muenke syndrome with pigmentary disorder and probable hemimegalencephaly: An expansion of the phenotype. American journal of medical genetics Part A, 155A(1), 207–214.PubMedCrossRef
121.
go back to reference Shiang, C. Y., Qi, Y., Wang, B., Lazar, V., Wang, J., Fraser Symmans, W., & Pusztai, L. (2010). Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate. Breast Cancer Research and Treatment, 123(3), 747–755.PubMedCrossRef Shiang, C. Y., Qi, Y., Wang, B., Lazar, V., Wang, J., Fraser Symmans, W., & Pusztai, L. (2010). Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate. Breast Cancer Research and Treatment, 123(3), 747–755.PubMedCrossRef
122.
go back to reference Brunello, E., Brunelli, M., Bogina, G., Caliò, A., Manfrin, E., Nottegar, A., & Bonetti, F. (2012). FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma. Journal of experimental & clinical cancer research : CR, 31, 103.PubMedCentralCrossRef Brunello, E., Brunelli, M., Bogina, G., Caliò, A., Manfrin, E., Nottegar, A., & Bonetti, F. (2012). FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma. Journal of experimental & clinical cancer research : CR, 31, 103.PubMedCentralCrossRef
123.
go back to reference Elbauomy Elsheikh, S., Green, A. R., Lambros, M. B. K., Turner, N. C., Grainge, M. J., Powe, D., & Reis-Filho, J. S. (2007). FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Research, 9(2), R23.PubMedCentralPubMedCrossRef Elbauomy Elsheikh, S., Green, A. R., Lambros, M. B. K., Turner, N. C., Grainge, M. J., Powe, D., & Reis-Filho, J. S. (2007). FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Research, 9(2), R23.PubMedCentralPubMedCrossRef
125.
go back to reference Freier, K., Schwaenen, C., Sticht, C., Flechtenmacher, C., Mühling, J., Hofele, C., & Joos, S. (2007). Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral oncology, 43(1), 60–66.PubMedCrossRef Freier, K., Schwaenen, C., Sticht, C., Flechtenmacher, C., Mühling, J., Hofele, C., & Joos, S. (2007). Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral oncology, 43(1), 60–66.PubMedCrossRef
126.
go back to reference Goke, F., Franzen, A., Roopika, M., Schroeck, A., Kirsten, R., Boehm, D., & Perner, S. (2013). In 25th European Congress of Pathology. Portugal: Lisbon. Goke, F., Franzen, A., Roopika, M., Schroeck, A., Kirsten, R., Boehm, D., & Perner, S. (2013). In 25th European Congress of Pathology. Portugal: Lisbon.
127.
128.
go back to reference Xie, L., Su, X., Zhang, L., Yin, X., Tang, L., Zhang, X., … Ji, Q. (2013). FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clinical cancer research : an official journal of the American Association for Cancer Research. Xie, L., Su, X., Zhang, L., Yin, X., Tang, L., Zhang, X., … Ji, Q. (2013). FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clinical cancer research : an official journal of the American Association for Cancer Research.
129.
go back to reference Matsumoto, K., Arao, T., Hamaguchi, T., Shimada, Y., Kato, K., Oda, I., & Yamada, Y. (2012). FGFR2 gene amplification and clinicopathological features in gastric cancer. British Journal of Cancer, 106(4), 727–732.PubMedCentralPubMedCrossRef Matsumoto, K., Arao, T., Hamaguchi, T., Shimada, Y., Kato, K., Oda, I., & Yamada, Y. (2012). FGFR2 gene amplification and clinicopathological features in gastric cancer. British Journal of Cancer, 106(4), 727–732.PubMedCentralPubMedCrossRef
130.
go back to reference Cancer Genome Atlas Research Network. (2011). Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353), 609–615.CrossRef Cancer Genome Atlas Research Network. (2011). Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353), 609–615.CrossRef
131.
go back to reference Barretina, J., Taylor, B. S., Banerji, S., Ramos, A. H., Lagos-Quintana, M., Decarolis, P. L., & Singer, S. (2010). Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature genetics, 42(8), 715–721.PubMedCentralPubMedCrossRef Barretina, J., Taylor, B. S., Banerji, S., Ramos, A. H., Lagos-Quintana, M., Decarolis, P. L., & Singer, S. (2010). Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature genetics, 42(8), 715–721.PubMedCentralPubMedCrossRef
133.
go back to reference Cancer Genome Atlas Research Network, Kandoth, C., Schultz, N., Cherniack, A. D., Akbani, R., Liu, Y., & Levine, D. A. (2013). Integrated genomic characterization of endometrial carcinoma. Nature, 497(7447), 67–73.CrossRef Cancer Genome Atlas Research Network, Kandoth, C., Schultz, N., Cherniack, A. D., Akbani, R., Liu, Y., & Levine, D. A. (2013). Integrated genomic characterization of endometrial carcinoma. Nature, 497(7447), 67–73.CrossRef
135.
137.
go back to reference Taylor, J. G., Cheuk, A. T., Tsang, P. S., Chung, J.-Y., Song, Y. K., Desai, K., & Khan, J. (2009). Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. The Journal of Clinical Investigation, 119(11), 3395–3407. doi:10.1172/JCI39703.PubMed Taylor, J. G., Cheuk, A. T., Tsang, P. S., Chung, J.-Y., Song, Y. K., Desai, K., & Khan, J. (2009). Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. The Journal of Clinical Investigation, 119(11), 3395–3407. doi:10.​1172/​JCI39703.PubMed
138.
go back to reference Turkington, R. C., Longley, D. B., Allen, W. L., Stevenson, L., McLaughlin, K., Dunne, P. D., & Johnston, P. G. (2014). Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer. Cell Death & Disease, 5(2), e1046. doi:10.1038/cddis.2014.10.CrossRef Turkington, R. C., Longley, D. B., Allen, W. L., Stevenson, L., McLaughlin, K., Dunne, P. D., & Johnston, P. G. (2014). Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer. Cell Death & Disease, 5(2), e1046. doi:10.​1038/​cddis.​2014.​10.CrossRef
139.
go back to reference Persson, F., Winnes, M., Andrén, Y., Wedell, B., Dahlenfors, R., Asp, J., & Stenman, G. (2008). High-resolution array CGH analysis of salivary gland tumors reveals fusion and amplification of the FGFR1 and PLAG1 genes in ring chromosomes. Oncogene, 27(21), 3072–3080. doi:10.1038/sj.onc.1210961.PubMedCrossRef Persson, F., Winnes, M., Andrén, Y., Wedell, B., Dahlenfors, R., Asp, J., & Stenman, G. (2008). High-resolution array CGH analysis of salivary gland tumors reveals fusion and amplification of the FGFR1 and PLAG1 genes in ring chromosomes. Oncogene, 27(21), 3072–3080. doi:10.​1038/​sj.​onc.​1210961.PubMedCrossRef
140.
go back to reference Arai, Y., Totoki, Y., Hosoda, F., Shirota, T., Hama, N., Nakamura, H., & Shibata, T. (2014). Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology, 59(4), 1427–1434. doi:10.1002/hep.26890.PubMedCrossRef Arai, Y., Totoki, Y., Hosoda, F., Shirota, T., Hama, N., Nakamura, H., & Shibata, T. (2014). Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology, 59(4), 1427–1434. doi:10.​1002/​hep.​26890.PubMedCrossRef
141.
go back to reference Wu, Y.-M., Su, F., Kalyana-Sundaram, S., Khazanov, N., Ateeq, B., Cao, X., … Chinnaiyan, A. M. (2013). Identification of Targetable FGFR Gene Fusions in Diverse Cancers. Cancer discovery. Wu, Y.-M., Su, F., Kalyana-Sundaram, S., Khazanov, N., Ateeq, B., Cao, X., … Chinnaiyan, A. M. (2013). Identification of Targetable FGFR Gene Fusions in Diverse Cancers. Cancer discovery.
142.
143.
go back to reference Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., & Aparicio, S. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486(7403), 395–399.PubMed Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., & Aparicio, S. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486(7403), 395–399.PubMed
144.
go back to reference Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., & Meyerson, M. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 486(7403), 405–409.PubMedCentralPubMedCrossRef Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., & Meyerson, M. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 486(7403), 405–409.PubMedCentralPubMedCrossRef
145.
go back to reference Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., & Stratton, M. R. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404.PubMedCentralPubMed Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., & Stratton, M. R. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404.PubMedCentralPubMed
147.
go back to reference Mountzios, G., Rampias, T., & Psyrri, A. (2014). The mutational spectrum of squamous-cell carcinoma of the head and neck: targetable genetic events and clinical impact. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO. doi:10.1093/annonc/mdu143. Mountzios, G., Rampias, T., & Psyrri, A. (2014). The mutational spectrum of squamous-cell carcinoma of the head and neck: targetable genetic events and clinical impact. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO. doi:10.​1093/​annonc/​mdu143.
149.
go back to reference Imielinski, M., Berger, A. H., Hammerman, P. S., Hernandez, B., Pugh, T. J., Hodis, E., & Meyerson, M. (2012). Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell, 150(6), 1107–1120.PubMedCentralPubMedCrossRef Imielinski, M., Berger, A. H., Hammerman, P. S., Hernandez, B., Pugh, T. J., Hodis, E., & Meyerson, M. (2012). Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell, 150(6), 1107–1120.PubMedCentralPubMedCrossRef
150.
go back to reference Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., & Wilson, R. K. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.PubMedCentralPubMedCrossRef Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., & Wilson, R. K. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.PubMedCentralPubMedCrossRef
151.
go back to reference Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., & Gerald, W. L. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell, 18(1), 11–22.PubMedCentralPubMedCrossRef Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., & Gerald, W. L. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell, 18(1), 11–22.PubMedCentralPubMedCrossRef
154.
go back to reference McLendon, R., Friedman, A., Bigner, D., Van Meir, E. G., Brat, D. J., Mastrogianakis, M. G., & Thomson, E. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.CrossRef McLendon, R., Friedman, A., Bigner, D., Van Meir, E. G., Brat, D. J., Mastrogianakis, M. G., & Thomson, E. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.CrossRef
155.
go back to reference Ho, A. S., Kannan, K., Roy, D. M., Morris, L. G. T., Ganly, I., Katabi, N., & Chan, T. A. (2013). The mutational landscape of adenoid cystic carcinoma. Nature genetics, 45(7), 791–798.PubMedCrossRef Ho, A. S., Kannan, K., Roy, D. M., Morris, L. G. T., Ganly, I., Katabi, N., & Chan, T. A. (2013). The mutational landscape of adenoid cystic carcinoma. Nature genetics, 45(7), 791–798.PubMedCrossRef
157.
go back to reference Cancer Genome Atlas Research Network. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England journal of medicine, 368(22), 2059–2074.CrossRef Cancer Genome Atlas Research Network. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England journal of medicine, 368(22), 2059–2074.CrossRef
158.
go back to reference Seshagiri, S., Stawiski, E. W., Durinck, S., Modrusan, Z., Storm, E. E., Conboy, C. B., & de Sauvage, F. J. (2012). Recurrent R-spondin fusions in colon cancer. Nature, 488(7413), 660–664.PubMedCentralPubMedCrossRef Seshagiri, S., Stawiski, E. W., Durinck, S., Modrusan, Z., Storm, E. E., Conboy, C. B., & de Sauvage, F. J. (2012). Recurrent R-spondin fusions in colon cancer. Nature, 488(7413), 660–664.PubMedCentralPubMedCrossRef
160.
go back to reference Smyth, E. C., Turner, N. C., Popat, S., Morgan, S., Owen, K., Gillbanks, A., & Cunningham, D. (2013). FGFR: Proof-of-concept study of AZD4547 in patients with FGFR1 or FGFR2 amplified tumours. ASCO Meeting Abstracts, 31(15_suppl), TPS2626. Smyth, E. C., Turner, N. C., Popat, S., Morgan, S., Owen, K., Gillbanks, A., & Cunningham, D. (2013). FGFR: Proof-of-concept study of AZD4547 in patients with FGFR1 or FGFR2 amplified tumours. ASCO Meeting Abstracts, 31(15_suppl), TPS2626.
161.
go back to reference Zhang, J., Zhang, L., Su, X., Li, M., Xie, L., Malchers, F., & Gavine, P. R. (2012). Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models. Clinical cancer research : an official journal of the American Association for Cancer Research, 18(24), 6658–6667.CrossRef Zhang, J., Zhang, L., Su, X., Li, M., Xie, L., Malchers, F., & Gavine, P. R. (2012). Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models. Clinical cancer research : an official journal of the American Association for Cancer Research, 18(24), 6658–6667.CrossRef
162.
go back to reference Johnson, P. J., Qin, S., Park, J.-W., Poon, R. T. P., Raoul, J.-L., Philip, P. A., & Cheng, A.-L. (2013). Brivanib Versus Sorafenib As First-Line Therapy in Patients With Unresectable, Advanced Hepatocellular Carcinoma: Results From the Randomized Phase III BRISK-FL Study. Journal of Clinical Oncology, JCO, 2012(48), 4410. doi:10.1200/JCO.2012.48.4410. Johnson, P. J., Qin, S., Park, J.-W., Poon, R. T. P., Raoul, J.-L., Philip, P. A., & Cheng, A.-L. (2013). Brivanib Versus Sorafenib As First-Line Therapy in Patients With Unresectable, Advanced Hepatocellular Carcinoma: Results From the Randomized Phase III BRISK-FL Study. Journal of Clinical Oncology, JCO, 2012(48), 4410. doi:10.​1200/​JCO.​2012.​48.​4410.
163.
go back to reference Huynh, H., Ngo, V. C., Fargnoli, J., Ayers, M., Soo, K. C., Koong, H. N., & Tran, E. (2008). Brivanib Alaninate, a Dual Inhibitor of Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Tyrosine Kinases, Induces Growth Inhibition in Mouse Models of Human Hepatocellular Carcinoma. Clinical Cancer Research, 14(19), 6146–6153.PubMedCrossRef Huynh, H., Ngo, V. C., Fargnoli, J., Ayers, M., Soo, K. C., Koong, H. N., & Tran, E. (2008). Brivanib Alaninate, a Dual Inhibitor of Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Tyrosine Kinases, Induces Growth Inhibition in Mouse Models of Human Hepatocellular Carcinoma. Clinical Cancer Research, 14(19), 6146–6153.PubMedCrossRef
164.
go back to reference Siu, L. L., Shapiro, J. D., Jonker, D. J., Karapetis, C. S., Zalcberg, J. R., Simes, J., … NCIC Clinical Trials Group and AGITG. (2012). Phase III randomized trial of cetuximab (CET) plus either brivanib alaninate (BRIV) or placebo in patients (pts) with metastatic (MET) chemotherapy refractory K-RAS wild-type (WT) colorectal carcinoma (CRC): The NCIC Clinical Trials Group and AGITG CO.20 trial. ASCO Meeting Abstracts, 30(4_suppl), 386. Siu, L. L., Shapiro, J. D., Jonker, D. J., Karapetis, C. S., Zalcberg, J. R., Simes, J., … NCIC Clinical Trials Group and AGITG. (2012). Phase III randomized trial of cetuximab (CET) plus either brivanib alaninate (BRIV) or placebo in patients (pts) with metastatic (MET) chemotherapy refractory K-RAS wild-type (WT) colorectal carcinoma (CRC): The NCIC Clinical Trials Group and AGITG CO.20 trial. ASCO Meeting Abstracts, 30(4_suppl), 386.
165.
go back to reference Meulenbeld, H. J., Bleuse, J. P., Vinci, E. M., Raymond, E., Vitali, G., Santoro, A., & de Wit, R. (2013). Randomized phase II study of danusertib in patients with metastatic castration-resistant prostate cancer after docetaxel failure. BJU international, 111(1), 44–52. doi:10.1111/j.1464-410X.2012.11404.x.PubMedCrossRef Meulenbeld, H. J., Bleuse, J. P., Vinci, E. M., Raymond, E., Vitali, G., Santoro, A., & de Wit, R. (2013). Randomized phase II study of danusertib in patients with metastatic castration-resistant prostate cancer after docetaxel failure. BJU international, 111(1), 44–52. doi:10.​1111/​j.​1464-410X.​2012.​11404.​x.PubMedCrossRef
166.
go back to reference Cohen, R. B., Jones, S. F., Aggarwal, C., von Mehren, M., Cheng, J., Spigel, D. R., & Burris, H. A. (2009). A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(21), 6694–6701. doi:10.1158/1078-0432.CCR-09-1445.CrossRef Cohen, R. B., Jones, S. F., Aggarwal, C., von Mehren, M., Cheng, J., Spigel, D. R., & Burris, H. A. (2009). A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(21), 6694–6701. doi:10.​1158/​1078-0432.​CCR-09-1445.CrossRef
167.
go back to reference Motzer, R. J., Porta, C., Vogelzang, N. J., Sternberg, C. N., Szczylik, C., Zolnierek, J., & Escudier, B. (2014). Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. The Lancet. Oncology, 15(3), 286–296. doi:10.1016/S1470-2045(14)70030-0.PubMedCrossRef Motzer, R. J., Porta, C., Vogelzang, N. J., Sternberg, C. N., Szczylik, C., Zolnierek, J., & Escudier, B. (2014). Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. The Lancet. Oncology, 15(3), 286–296. doi:10.​1016/​S1470-2045(14)70030-0.PubMedCrossRef
168.
go back to reference Motzer, R. J., Porta, C., Bjarnason, G. A., Szcylik, C., Rha, S. Y., Esteban, E., … Escudier, B. J. (2012). Phase III trial of dovitinib (TKI258) versus sorafenib in patients with metastatic renal cell carcinoma after failure of anti-angiogenic (VEGF-targeted and mTOR inhibitor) therapies. ASCO Meeting Abstracts, 30(15_suppl), TPS4683. Motzer, R. J., Porta, C., Bjarnason, G. A., Szcylik, C., Rha, S. Y., Esteban, E., … Escudier, B. J. (2012). Phase III trial of dovitinib (TKI258) versus sorafenib in patients with metastatic renal cell carcinoma after failure of anti-angiogenic (VEGF-targeted and mTOR inhibitor) therapies. ASCO Meeting Abstracts, 30(15_suppl), TPS4683.
169.
go back to reference Angevin, E., Lin, C., Pande, A. U., & Lopez, J. A. (2010). A phase I/II study of dovitinib (TKI258), a FGFR and VEGFR inhibitor, in patients (pts) with advanced or metastatic renal cell cancer: phase I results. ASCO Meeting \ldots. Angevin, E., Lin, C., Pande, A. U., & Lopez, J. A. (2010). A phase I/II study of dovitinib (TKI258), a FGFR and VEGFR inhibitor, in patients (pts) with advanced or metastatic renal cell cancer: phase I results. ASCO Meeting \ldots.
170.
go back to reference Dienstmann, R., Bahleda, R., Adamo, B., Rodon, J., Varga, A., Gazzah, A., & Soria, J.-C. (2014). Abstract CT325: First in human study of JNJ-42756493, a potent pan fibroblast growth factor receptor (FGFR) inhibitor in patients with advanced solid tumors. Cancer Research, 74(19 Supplement), CT325–CT325. doi:10.1158/1538-7445.AM2014-CT325.CrossRef Dienstmann, R., Bahleda, R., Adamo, B., Rodon, J., Varga, A., Gazzah, A., & Soria, J.-C. (2014). Abstract CT325: First in human study of JNJ-42756493, a potent pan fibroblast growth factor receptor (FGFR) inhibitor in patients with advanced solid tumors. Cancer Research, 74(19 Supplement), CT325–CT325. doi:10.​1158/​1538-7445.​AM2014-CT325.CrossRef
171.
go back to reference Schlumberger, M., Tahara, M., Wirth, L. J., Robinson, B., Brose, M. S., Elisei, R., … Sherman, S. I. (2014). A phase 3, multicenter, double-blind, placebo-controlled trial of lenvatinib (E7080) in patients with 131I-refractory differentiated thyroid cancer (SELECT) [abstract]. In Journal of clinical oncology : official journal of the American Society of Clinical Oncology (p. LBA6008). Schlumberger, M., Tahara, M., Wirth, L. J., Robinson, B., Brose, M. S., Elisei, R., … Sherman, S. I. (2014). A phase 3, multicenter, double-blind, placebo-controlled trial of lenvatinib (E7080) in patients with 131I-refractory differentiated thyroid cancer (SELECT) [abstract]. In Journal of clinical oncology : official journal of the American Society of Clinical Oncology (p. LBA6008).
172.
go back to reference Tohyama, O., Matsui, J., Kodama, K., Hata-Sugi, N., Kimura, T., Okamoto, K., & Funahashi, Y. (2014). Antitumor Activity of Lenvatinib (E7080): An Angiogenesis Inhibitor That Targets Multiple Receptor Tyrosine Kinases in Preclinical Human Thyroid Cancer Models. Journal of Thyroid Research, 2014, e638747. doi:10.1155/2014/638747.CrossRef Tohyama, O., Matsui, J., Kodama, K., Hata-Sugi, N., Kimura, T., Okamoto, K., & Funahashi, Y. (2014). Antitumor Activity of Lenvatinib (E7080): An Angiogenesis Inhibitor That Targets Multiple Receptor Tyrosine Kinases in Preclinical Human Thyroid Cancer Models. Journal of Thyroid Research, 2014, e638747. doi:10.​1155/​2014/​638747.CrossRef
173.
go back to reference Andre, F., Daly, F., Azim, H. A., Agrapart, V., Goulioti, T., Pinto, A. C. D. C. P., … Cortes, J. (2014). FINESSE: An open, three-cohort, phase II trial testing oral administration of lucitanib in patients with FGFR1-amplified or nonamplified estrogen receptor-positive metastatic breast cancer. Journal of Clinical Oncology, 32:5s(suppl; abstr TPS1134). Retrieved from http://meetinglibrary.asco.org/content/126911-144. Andre, F., Daly, F., Azim, H. A., Agrapart, V., Goulioti, T., Pinto, A. C. D. C. P., … Cortes, J. (2014). FINESSE: An open, three-cohort, phase II trial testing oral administration of lucitanib in patients with FGFR1-amplified or nonamplified estrogen receptor-positive metastatic breast cancer. Journal of Clinical Oncology, 32:5s(suppl; abstr TPS1134). Retrieved from http://​meetinglibrary.​asco.​org/​content/​126911-144.
174.
go back to reference Bello, E., Taraboletti, G., Colella, G., Zucchetti, M., Forestieri, D., Licandro, S. A., & Damia, G. (2013). The Tyrosine Kinase Inhibitor E-3810 Combined with Paclitaxel Inhibits the Growth of Advanced-Stage Triple-Negative Breast Cancer Xenografts. Molecular Cancer Therapeutics, 12(2), 131–140.PubMedCrossRef Bello, E., Taraboletti, G., Colella, G., Zucchetti, M., Forestieri, D., Licandro, S. A., & Damia, G. (2013). The Tyrosine Kinase Inhibitor E-3810 Combined with Paclitaxel Inhibits the Growth of Advanced-Stage Triple-Negative Breast Cancer Xenografts. Molecular Cancer Therapeutics, 12(2), 131–140.PubMedCrossRef
175.
go back to reference Bello, E., Colella, G., Scarlato, V., Oliva, P., Berndt, A., Valbusa, G., & Camboni, G. (2011). E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Research, 71(4), 1396–1405.PubMedCrossRef Bello, E., Colella, G., Scarlato, V., Oliva, P., Berndt, A., Valbusa, G., & Camboni, G. (2011). E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Research, 71(4), 1396–1405.PubMedCrossRef
176.
go back to reference Carter, E. P., Fearon, A. E., & Grose, R. P. (n.d.). Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends in Cell Biology. doi:10.1016/j.tcb.2014.11.003. Carter, E. P., Fearon, A. E., & Grose, R. P. (n.d.). Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends in Cell Biology. doi:10.​1016/​j.​tcb.​2014.​11.​003.
177.
go back to reference Pan, B.-S., Chan, G. K. Y., Chenard, M., Chi, A., Davis, L. J., Deshmukh, S. V., & Dinsmore, C. J. (2010). MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Research, 70(4), 1524–1533.PubMedCrossRef Pan, B.-S., Chan, G. K. Y., Chenard, M., Chi, A., Davis, L. J., Deshmukh, S. V., & Dinsmore, C. J. (2010). MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Research, 70(4), 1524–1533.PubMedCrossRef
178.
go back to reference Hanna, N. H., Kaiser, R., Sullivan, R. N., Aren, O. R., Ahn, M.-J., Tiangco, B., … Kim, J. H. (2013). Lume-lung 2: A multicenter, randomized, double-blind, phase III study of nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) after failure of first-line chemotherapy. ASCO Meeting Abstracts, 31(15_suppl), 8034. Hanna, N. H., Kaiser, R., Sullivan, R. N., Aren, O. R., Ahn, M.-J., Tiangco, B., … Kim, J. H. (2013). Lume-lung 2: A multicenter, randomized, double-blind, phase III study of nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) after failure of first-line chemotherapy. ASCO Meeting Abstracts, 31(15_suppl), 8034.
179.
go back to reference Richeldi, L., du Bois, R. M., Raghu, G., Azuma, A., Brown, K. K., Costabel, U., & Collard, H. R. (2014). Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370(22), 2071–2082. doi:10.1056/NEJMoa1402584.PubMedCrossRef Richeldi, L., du Bois, R. M., Raghu, G., Azuma, A., Brown, K. K., Costabel, U., & Collard, H. R. (2014). Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370(22), 2071–2082. doi:10.​1056/​NEJMoa1402584.PubMedCrossRef
180.
go back to reference Kristensen, G., Harter, P., Trédan, O., Sailer, M. O., Bamias, A., Colombo, N., … Bois, A. D. (2014). Independent review of AGO-OVAR 12, a GCIG/ENGOT-Intergroup phase III trial of nintedanib (N) in first-line therapy for ovarian cancer (OC). Journal of Clinical Oncology, 32:5s(suppl; abstr 5556^). Retrieved from http://meetinglibrary.asco.org/content/130341-144. Kristensen, G., Harter, P., Trédan, O., Sailer, M. O., Bamias, A., Colombo, N., … Bois, A. D. (2014). Independent review of AGO-OVAR 12, a GCIG/ENGOT-Intergroup phase III trial of nintedanib (N) in first-line therapy for ovarian cancer (OC). Journal of Clinical Oncology, 32:5s(suppl; abstr 5556^). Retrieved from http://​meetinglibrary.​asco.​org/​content/​130341-144.
181.
go back to reference Guagnano, V., Furet, P., Spanka, C., Bordas, V., Le Douget, M., Stamm, C., & Graus Porta, D. (2011). Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. Journal of Medicinal Chemistry, 54(20), 7066–7083. doi:10.1021/jm2006222.PubMedCrossRef Guagnano, V., Furet, P., Spanka, C., Bordas, V., Le Douget, M., Stamm, C., & Graus Porta, D. (2011). Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. Journal of Medicinal Chemistry, 54(20), 7066–7083. doi:10.​1021/​jm2006222.PubMedCrossRef
182.
go back to reference Guagnano, V., Kauffmann, A., Wöhrle, S., Stamm, C., Ito, M., Barys, L., & Graus-Porta, D. (2012). FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discovery, 2(12), 1118–1133. doi:10.1158/2159-8290.CD-12-0210.PubMedCrossRef Guagnano, V., Kauffmann, A., Wöhrle, S., Stamm, C., Ito, M., Barys, L., & Graus-Porta, D. (2012). FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discovery, 2(12), 1118–1133. doi:10.​1158/​2159-8290.​CD-12-0210.PubMedCrossRef
183.
go back to reference Konecny, G. E., Kolarova, T., O’Brien, N. A., Winterhoff, B., Yang, G., Qi, J., … Slamon, D. J. (2013). Activity of the Fibroblast Growth Factor Receptor Inhibitors Dovitinib (TKI258) and NVP-BGJ398 in Human Endometrial Cancer Cells. Molecular Cancer Therapeutics. Konecny, G. E., Kolarova, T., O’Brien, N. A., Winterhoff, B., Yang, G., Qi, J., … Slamon, D. J. (2013). Activity of the Fibroblast Growth Factor Receptor Inhibitors Dovitinib (TKI258) and NVP-BGJ398 in Human Endometrial Cancer Cells. Molecular Cancer Therapeutics.
184.
go back to reference Motzer, R. J., Hutson, T. E., McCann, L., Deen, K., & Choueiri, T. K. (2014). Overall survival in renal-cell carcinoma with pazopanib versus sunitinib. The New England Journal of Medicine, 370(18), 1769–1770. doi:10.1056/NEJMc1400731.PubMedCrossRef Motzer, R. J., Hutson, T. E., McCann, L., Deen, K., & Choueiri, T. K. (2014). Overall survival in renal-cell carcinoma with pazopanib versus sunitinib. The New England Journal of Medicine, 370(18), 1769–1770. doi:10.​1056/​NEJMc1400731.PubMedCrossRef
185.
go back to reference Kasper, B., Sleijfer, S., Litière, S., Marreaud, S., Verweij, J., Hodge, R. A., & van der Graaf, W. T. A. (2014). Long-term responders and survivors on pazopanib for advanced soft tissue sarcomas: subanalysis of two European Organisation for Research and Treatment of Cancer (EORTC) clinical trials 62043 and 62072. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO, 25(3), 719–724. doi:10.1093/annonc/mdt586.CrossRef Kasper, B., Sleijfer, S., Litière, S., Marreaud, S., Verweij, J., Hodge, R. A., & van der Graaf, W. T. A. (2014). Long-term responders and survivors on pazopanib for advanced soft tissue sarcomas: subanalysis of two European Organisation for Research and Treatment of Cancer (EORTC) clinical trials 62043 and 62072. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO, 25(3), 719–724. doi:10.​1093/​annonc/​mdt586.CrossRef
186.
go back to reference O’Hare, T., Shakespeare, W. C., Zhu, X., Eide, C. A., Rivera, V. M., Wang, F., & Clackson, T. (2009). AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 16(5), 401–412.PubMedCentralPubMedCrossRef O’Hare, T., Shakespeare, W. C., Zhu, X., Eide, C. A., Rivera, V. M., Wang, F., & Clackson, T. (2009). AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 16(5), 401–412.PubMedCentralPubMedCrossRef
187.
go back to reference Cortes, J. E., Kim, D.-W., Pinilla-Ibarz, J., le Coutre, P., Paquette, R., Chuah, C., & Investigators, P. A. C. E. (2013). A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. The New England Journal of Medicine, 369(19), 1783–1796. doi:10.1056/NEJMoa1306494.PubMedCrossRef Cortes, J. E., Kim, D.-W., Pinilla-Ibarz, J., le Coutre, P., Paquette, R., Chuah, C., & Investigators, P. A. C. E. (2013). A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. The New England Journal of Medicine, 369(19), 1783–1796. doi:10.​1056/​NEJMoa1306494.PubMedCrossRef
188.
go back to reference Demetri, G. D., Reichardt, P., Kang, Y.-K., Blay, J.-Y., Rutkowski, P., Gelderblom, H., & GRID study investigators. (2013). Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 381(9863), 295–302. doi:10.1016/S0140-6736(12)61857-1.PubMedCrossRef Demetri, G. D., Reichardt, P., Kang, Y.-K., Blay, J.-Y., Rutkowski, P., Gelderblom, H., & GRID study investigators. (2013). Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 381(9863), 295–302. doi:10.​1016/​S0140-6736(12)61857-1.PubMedCrossRef
189.
go back to reference Grothey, A., Van Cutsem, E., Sobrero, A., Siena, S., Falcone, A., Ychou, M., & CORRECT Study Group. (2013). Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 381(9863), 303–312. doi:10.1016/S0140-6736(12)61900-X.PubMedCrossRef Grothey, A., Van Cutsem, E., Sobrero, A., Siena, S., Falcone, A., Ychou, M., & CORRECT Study Group. (2013). Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 381(9863), 303–312. doi:10.​1016/​S0140-6736(12)61900-X.PubMedCrossRef
190.
go back to reference Ochiiwa, H., Fujita, H., Itoh, K., Sootome, H., Hashimoto, A., Fujioka, Y., & Utsugi, T. (2013). Abstract A270: TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Molecular Cancer Therapeutics, 12(11 Supplement), A270–A270. doi:10.1158/1535-7163.TARG-13-A270.CrossRef Ochiiwa, H., Fujita, H., Itoh, K., Sootome, H., Hashimoto, A., Fujioka, Y., & Utsugi, T. (2013). Abstract A270: TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Molecular Cancer Therapeutics, 12(11 Supplement), A270–A270. doi:10.​1158/​1535-7163.​TARG-13-A270.CrossRef
191.
go back to reference Powers, C. J., McLeskey, S. W., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer, 7(3), 165–197.PubMedCrossRef Powers, C. J., McLeskey, S. W., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer, 7(3), 165–197.PubMedCrossRef
Metadata
Title
Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications
Authors
Teresa Helsten
Maria Schwaederle
Razelle Kurzrock
Publication date
01-09-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9579-8

Other articles of this Issue 3/2015

Cancer and Metastasis Reviews 3/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine