Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2014

01-12-2014

MTA family of proteins in DNA damage response: mechanistic insights and potential applications

Authors: Da-Qiang Li, Yinlong Yang, Rakesh Kumar

Published in: Cancer and Metastasis Reviews | Issue 4/2014

Login to get access

Abstract

The DNA damage, most notably DNA double-strand breaks, poses a serious threat to the stability of mammalian genome. Maintenance of genomic integrity is largely dependent on an efficient, accurate, and timely DNA damage response in the context of chromatin. Consequently, dysregulation of the DNA damage response machinery is fundamentally linked to the genomic instability and a likely predisposition to cancer. In turn, aberrant activation of DNA damage response pathways in human cancers enables tumor cells to survive DNA damages, thus, leading to the development of resistance of tumor cells to DNA damaging radio- and chemotherapies. A substantial body of experimental evidence has established that ATP-dependent chromatin remodeling and histone modifications play a central role in the DNA damage response. As a component of the nucleosome remodeling and histone deacetylase (NuRD) complex that couples both ATP-dependent chromatin remodeling and histone deacetylase activities, the metastasis-associated protein (MTA) family proteins have been recently shown to participate in the DNA damage response beyond its well-established roles in gene transcription. In this thematic review, we will focus on our current understandings of the role of the MTA family proteins in the DNA damage response and their potential implications in DNA damaging anticancer therapy.
Literature
1.
go back to reference Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. Journal of Biological Chemistry, 282, 1529–1533.PubMed Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. Journal of Biological Chemistry, 282, 1529–1533.PubMed
2.
go back to reference Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, e010.PubMedCentralPubMed Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, e010.PubMedCentralPubMed
3.
go back to reference Yang, N., & Xu, R. M. (2013). Structure and function of the BAH domain in chromatin biology. Critical Reviews in Biochemistry and Molecular Biology, 48, 211–221.PubMed Yang, N., & Xu, R. M. (2013). Structure and function of the BAH domain in chromatin biology. Critical Reviews in Biochemistry and Molecular Biology, 48, 211–221.PubMed
4.
go back to reference Kuo, A. J., Song, J., Cheung, P., Ishibe-Murakami, S., Yamazoe, S., Chen, J. K., et al. (2012). The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature, 484, 115–119.PubMedCentralPubMed Kuo, A. J., Song, J., Cheung, P., Ishibe-Murakami, S., Yamazoe, S., Chen, J. K., et al. (2012). The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature, 484, 115–119.PubMedCentralPubMed
5.
go back to reference Onishi, M., Liou, G. G., Buchberger, J. R., Walz, T., & Moazed, D. (2007). Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Molecular Cell, 28, 1015–1028.PubMed Onishi, M., Liou, G. G., Buchberger, J. R., Walz, T., & Moazed, D. (2007). Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Molecular Cell, 28, 1015–1028.PubMed
6.
go back to reference Wang, L., Charroux, B., Kerridge, S., & Tsai, C. C. (2008). Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Reports, 9, 555–562.PubMedCentralPubMed Wang, L., Charroux, B., Kerridge, S., & Tsai, C. C. (2008). Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Reports, 9, 555–562.PubMedCentralPubMed
7.
go back to reference Ding, Z., Gillespie, L. L., & Paterno, G. D. (2003). Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain. Molecular Cell. Biology, 23, 250–258. Ding, Z., Gillespie, L. L., & Paterno, G. D. (2003). Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain. Molecular Cell. Biology, 23, 250–258.
8.
go back to reference Li, S., Paterno, G. D., & Gillespie, L. L. (2013). Nuclear localization of the transcriptional regulator MIER1alpha requires interaction with HDAC1/2 in breast cancer cells. PLoS One, 8, e84046.PubMedCentralPubMed Li, S., Paterno, G. D., & Gillespie, L. L. (2013). Nuclear localization of the transcriptional regulator MIER1alpha requires interaction with HDAC1/2 in breast cancer cells. PLoS One, 8, e84046.PubMedCentralPubMed
9.
go back to reference Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21, 87–88.PubMed Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21, 87–88.PubMed
10.
go back to reference Boyer, L. A., Langer, M. R., Crowley, K. A., Tan, S., Denu, J. M., & Peterson, C. L. (2002). Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Molecular Cell, 10, 935–942.PubMed Boyer, L. A., Langer, M. R., Crowley, K. A., Tan, S., Denu, J. M., & Peterson, C. L. (2002). Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Molecular Cell, 10, 935–942.PubMed
11.
go back to reference Yu, J., Li, Y., Ishizuka, T., Guenther, M. G., & Lazar, M. A. (2003). A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO Journal, 22, 3403–3410.PubMedCentralPubMed Yu, J., Li, Y., Ishizuka, T., Guenther, M. G., & Lazar, M. A. (2003). A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO Journal, 22, 3403–3410.PubMedCentralPubMed
12.
go back to reference Boyer, L. A., Latek, R. R., & Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nature Reviews Molecular Cell Biology, 5, 158–163.PubMed Boyer, L. A., Latek, R. R., & Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nature Reviews Molecular Cell Biology, 5, 158–163.PubMed
13.
go back to reference Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26, 5433–5438.PubMed Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26, 5433–5438.PubMed
14.
go back to reference Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. (2012). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Research, 72, 387–394.PubMedCentralPubMed Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. (2012). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Research, 72, 387–394.PubMedCentralPubMed
15.
go back to reference Lai, A. Y., & Wade, P. A. (2011). Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nature Reviews Cancer, 11, 588–596.PubMedCentralPubMed Lai, A. Y., & Wade, P. A. (2011). Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nature Reviews Cancer, 11, 588–596.PubMedCentralPubMed
16.
go back to reference Chou, D. M., Adamson, B., Dephoure, N. E., Tan, X., Nottke, A. C., Hurov, K. E., et al. (2010). A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 107, 18475–18480.PubMedCentralPubMed Chou, D. M., Adamson, B., Dephoure, N. E., Tan, X., Nottke, A. C., Hurov, K. E., et al. (2010). A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 107, 18475–18480.PubMedCentralPubMed
17.
go back to reference Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106, 17493–17498.PubMedCentralPubMed Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106, 17493–17498.PubMedCentralPubMed
18.
go back to reference Li, D. Q., & Kumar, R. (2010). Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle, 9, 2071–2079.PubMedCentralPubMed Li, D. Q., & Kumar, R. (2010). Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle, 9, 2071–2079.PubMedCentralPubMed
19.
go back to reference Li, D. Q., Divijendra Natha Reddy, S., Pakala, S. B., Wu, X., Zhang, Y., Rayala, S. K., et al. (2009). MTA1 coregulator regulates p53 stability and function. Journal of Biological Chemistry, 284(50), 34545–34552.PubMedCentralPubMed Li, D. Q., Divijendra Natha Reddy, S., Pakala, S. B., Wu, X., Zhang, Y., Rayala, S. K., et al. (2009). MTA1 coregulator regulates p53 stability and function. Journal of Biological Chemistry, 284(50), 34545–34552.PubMedCentralPubMed
20.
go back to reference Li, D. Q., Ohshiro, K., Khan, M. N., & Kumar, R. (2010). Requirement of MTA1 in ATR-mediated DNA damage checkpoint function. Journal of Biological Chemistry, 285(26), 19802–19812.PubMedCentralPubMed Li, D. Q., Ohshiro, K., Khan, M. N., & Kumar, R. (2010). Requirement of MTA1 in ATR-mediated DNA damage checkpoint function. Journal of Biological Chemistry, 285(26), 19802–19812.PubMedCentralPubMed
21.
go back to reference Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. Journal of Biological Chemistry, 285(13), 10044–10052.PubMedCentralPubMed Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. Journal of Biological Chemistry, 285(13), 10044–10052.PubMedCentralPubMed
22.
go back to reference Smeenk, G., Wiegant, W. W., Vrolijk, H., Solari, A. P., Pastink, A., & van Attikum, H. (2010). The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. Journal of Cell Biology, 190, 741–749.PubMedCentralPubMed Smeenk, G., Wiegant, W. W., Vrolijk, H., Solari, A. P., Pastink, A., & van Attikum, H. (2010). The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. Journal of Cell Biology, 190, 741–749.PubMedCentralPubMed
23.
go back to reference Luijsterburg, M. S., & van Attikum, H. (2012). Close encounters of the RNF8th kind: when chromatin meets DNA repair. Current Opinion in Cell Biology, 24, 439–447.PubMed Luijsterburg, M. S., & van Attikum, H. (2012). Close encounters of the RNF8th kind: when chromatin meets DNA repair. Current Opinion in Cell Biology, 24, 439–447.PubMed
24.
go back to reference Cann, K. L., & Dellaire, G. (2011). Heterochromatin and the DNA damage response: the need to relax. Biochemical Cell Biology, 89, 45–60. Cann, K. L., & Dellaire, G. (2011). Heterochromatin and the DNA damage response: the need to relax. Biochemical Cell Biology, 89, 45–60.
25.
go back to reference Toiber, D., Erdel, F., Bouazoune, K., Silberman, D. M., Zhong, L., Mulligan, P., et al. (2013). SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Molecular Cell, 51, 454–468.PubMedCentralPubMed Toiber, D., Erdel, F., Bouazoune, K., Silberman, D. M., Zhong, L., Mulligan, P., et al. (2013). SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Molecular Cell, 51, 454–468.PubMedCentralPubMed
26.
go back to reference Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071–1078.PubMedCentralPubMed Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071–1078.PubMedCentralPubMed
27.
go back to reference Harper, J. W., & Elledge, S. J. (2007). The DNA damage response: ten years after. Molecular Cell, 28, 739–745.PubMed Harper, J. W., & Elledge, S. J. (2007). The DNA damage response: ten years after. Molecular Cell, 28, 739–745.PubMed
28.
go back to reference Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., & Jackson, S. P. (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell, 123, 1213–1226.PubMed Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., & Jackson, S. P. (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell, 123, 1213–1226.PubMed
29.
go back to reference Chen, C. C., Carson, J. J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., et al. (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134, 231–243.PubMedCentralPubMed Chen, C. C., Carson, J. J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., et al. (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134, 231–243.PubMedCentralPubMed
30.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMed Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMed
31.
go back to reference Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300, 1542–1548.PubMed Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300, 1542–1548.PubMed
32.
go back to reference Vidanes, G. M., Bonilla, C. Y., & Toczyski, D. P. (2005). Complicated tails: histone modifications and the DNA damage response. Cell, 121, 973–976.PubMed Vidanes, G. M., Bonilla, C. Y., & Toczyski, D. P. (2005). Complicated tails: histone modifications and the DNA damage response. Cell, 121, 973–976.PubMed
33.
go back to reference Ciccia, A., & Elledge, S. J. (2010). The DNA damage response: making it safe to play with knives. Molecular Cell, 40, 179–204.PubMedCentralPubMed Ciccia, A., & Elledge, S. J. (2010). The DNA damage response: making it safe to play with knives. Molecular Cell, 40, 179–204.PubMedCentralPubMed
34.
go back to reference Pandita, T. K., & Richardson, C. (2009). Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Research, 37, 1363–1377.PubMedCentralPubMed Pandita, T. K., & Richardson, C. (2009). Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Research, 37, 1363–1377.PubMedCentralPubMed
35.
go back to reference Sulli, G., Di Micco, R., & d’Adda di Fagagna, F. (2012). Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nature Reviews Cancer, 12, 709–720.PubMed Sulli, G., Di Micco, R., & d’Adda di Fagagna, F. (2012). Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nature Reviews Cancer, 12, 709–720.PubMed
36.
go back to reference Stracker, T. H., & Petrini, J. H. (2011). The MRE11 complex: starting from the ends. Nature Reviews Molecular Cell Biology, 12, 90–103.PubMedCentralPubMed Stracker, T. H., & Petrini, J. H. (2011). The MRE11 complex: starting from the ends. Nature Reviews Molecular Cell Biology, 12, 90–103.PubMedCentralPubMed
37.
go back to reference Parrilla-Castellar, E. R., Arlander, S. J., & Karnitz, L. (2004). Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst), 3, 1009–1014. Parrilla-Castellar, E. R., Arlander, S. J., & Karnitz, L. (2004). Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst), 3, 1009–1014.
38.
go back to reference Lee, J. H., & Paull, T. T. (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 304, 93–96.PubMed Lee, J. H., & Paull, T. T. (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 304, 93–96.PubMed
39.
go back to reference Morrison, A. J., Kim, J. A., Person, M. D., Highland, J., Xiao, J., Wehr, T. S., et al. (2007). Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell, 130, 499–511.PubMed Morrison, A. J., Kim, J. A., Person, M. D., Highland, J., Xiao, J., Wehr, T. S., et al. (2007). Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell, 130, 499–511.PubMed
40.
go back to reference Lee, J. H., & Paull, T. T. (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308, 551–554.PubMed Lee, J. H., & Paull, T. T. (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308, 551–554.PubMed
41.
go back to reference Shiloh, Y., & Ziv, Y. (2013). The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology, 14, 197–210. Shiloh, Y., & Ziv, Y. (2013). The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology, 14, 197–210.
42.
go back to reference Cimprich, K. A., & Cortez, D. (2008). ATR: an essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 9, 616–627.PubMedCentralPubMed Cimprich, K. A., & Cortez, D. (2008). ATR: an essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 9, 616–627.PubMedCentralPubMed
43.
go back to reference Falck, J., Coates, J., & Jackson, S. P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 434, 605–611.PubMed Falck, J., Coates, J., & Jackson, S. P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 434, 605–611.PubMed
44.
go back to reference Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nature Reviews Cancer, 3, 155–168.PubMed Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nature Reviews Cancer, 3, 155–168.PubMed
45.
go back to reference Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry, 273, 5858–5868.PubMed Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry, 273, 5858–5868.PubMed
46.
go back to reference Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Lobrich, M., & Jeggo, P. A. (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Research, 64, 2390–2396.PubMed Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Lobrich, M., & Jeggo, P. A. (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Research, 64, 2390–2396.PubMed
47.
go back to reference Ward, I. M., & Chen, J. (2001). Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. Journal of Biological Chemistry, 276, 47759–47762.PubMed Ward, I. M., & Chen, J. (2001). Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. Journal of Biological Chemistry, 276, 47759–47762.PubMed
48.
go back to reference Kruhlak, M. J., Celeste, A., & Nussenzweig, A. (2006). Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle, 5, 1910–1912.PubMed Kruhlak, M. J., Celeste, A., & Nussenzweig, A. (2006). Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle, 5, 1910–1912.PubMed
49.
go back to reference Kinner, A., Wu, W., Staudt, C., & Iliakis, G. (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Research, 36, 5678–5694.PubMedCentralPubMed Kinner, A., Wu, W., Staudt, C., & Iliakis, G. (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Research, 36, 5678–5694.PubMedCentralPubMed
50.
go back to reference Soria, G., Polo, S. E., & Almouzni, G. (2012). Prime, repair, restore: the active role of chromatin in the DNA damage response. Molecular Cell, 46, 722–734.PubMed Soria, G., Polo, S. E., & Almouzni, G. (2012). Prime, repair, restore: the active role of chromatin in the DNA damage response. Molecular Cell, 46, 722–734.PubMed
51.
go back to reference Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., & Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current Biology, 10, 886–895.PubMed Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., & Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current Biology, 10, 886–895.PubMed
52.
go back to reference Morrison, A. J., Highland, J., Krogan, N. J., Arbel-Eden, A., Greenblatt, J. F., Haber, J. E., et al. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell, 119, 767–775.PubMed Morrison, A. J., Highland, J., Krogan, N. J., Arbel-Eden, A., Greenblatt, J. F., Haber, J. E., et al. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell, 119, 767–775.PubMed
53.
go back to reference van Attikum, H., Fritsch, O., Hohn, B., & Gasser, S. M. (2004). Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell, 119, 777–788.PubMed van Attikum, H., Fritsch, O., Hohn, B., & Gasser, S. M. (2004). Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell, 119, 777–788.PubMed
54.
go back to reference Zhang, R., Liu, S. T., Chen, W., Bonner, M., Pehrson, J., Yen, T. J., et al. (2007). HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Molecular Cell. Biology, 27, 949–962. Zhang, R., Liu, S. T., Chen, W., Bonner, M., Pehrson, J., Yen, T. J., et al. (2007). HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Molecular Cell. Biology, 27, 949–962.
55.
go back to reference Murga, M., Jaco, I., Fan, Y., Soria, R., Martinez-Pastor, B., Cuadrado, M., et al. (2007). Global chromatin compaction limits the strength of the DNA damage response. Journal of Cell Biology, 178, 1101–1108.PubMedCentralPubMed Murga, M., Jaco, I., Fan, Y., Soria, R., Martinez-Pastor, B., Cuadrado, M., et al. (2007). Global chromatin compaction limits the strength of the DNA damage response. Journal of Cell Biology, 178, 1101–1108.PubMedCentralPubMed
56.
go back to reference Xu, Y., Sun, Y., Jiang, X., Ayrapetov, M. K., Moskwa, P., Yang, S., et al. (2010). The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. Journal of Cell Biology, 191, 31–43.PubMedCentralPubMed Xu, Y., Sun, Y., Jiang, X., Ayrapetov, M. K., Moskwa, P., Yang, S., et al. (2010). The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. Journal of Cell Biology, 191, 31–43.PubMedCentralPubMed
57.
go back to reference Takahashi, K., & Kaneko, I. (1985). Changes in nuclease sensitivity of mammalian cells after irradiation with 60Co gamma-rays. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 48, 389–395.PubMed Takahashi, K., & Kaneko, I. (1985). Changes in nuclease sensitivity of mammalian cells after irradiation with 60Co gamma-rays. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 48, 389–395.PubMed
58.
go back to reference Ziv, Y., Bielopolski, D., Galanty, Y., Lukas, C., Taya, Y., Schultz, D. C., et al. (2006). Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biology, 8, 870–876.PubMed Ziv, Y., Bielopolski, D., Galanty, Y., Lukas, C., Taya, Y., Schultz, D. C., et al. (2006). Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biology, 8, 870–876.PubMed
59.
60.
go back to reference Altaf, M., Saksouk, N., & Cote, J. (2007). Histone modifications in response to DNA damage. Mutation Research, 618, 81–90.PubMed Altaf, M., Saksouk, N., & Cote, J. (2007). Histone modifications in response to DNA damage. Mutation Research, 618, 81–90.PubMed
61.
go back to reference Bao, Y. (2011). Chromatin response to DNA double-strand break damage. Epigenomics, 3, 307–321.PubMed Bao, Y. (2011). Chromatin response to DNA double-strand break damage. Epigenomics, 3, 307–321.PubMed
62.
go back to reference Huertas, D., Sendra, R., & Munoz, P. (2009). Chromatin dynamics coupled to DNA repair. Epigenetics, 4, 31–42.PubMed Huertas, D., Sendra, R., & Munoz, P. (2009). Chromatin dynamics coupled to DNA repair. Epigenetics, 4, 31–42.PubMed
63.
go back to reference Lai, W., Li, H., Liu, S., & Tao, Y. (2013). Connecting chromatin modifying factors to DNA damage response. International Journal of Molecular Sciences, 14, 2355–2369.PubMedCentralPubMed Lai, W., Li, H., Liu, S., & Tao, Y. (2013). Connecting chromatin modifying factors to DNA damage response. International Journal of Molecular Sciences, 14, 2355–2369.PubMedCentralPubMed
64.
go back to reference Lans, H., Marteijn, J. A., & Vermeulen, W. (2012). ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics & Chromatin, 5, 4. Lans, H., Marteijn, J. A., & Vermeulen, W. (2012). ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics & Chromatin, 5, 4.
65.
go back to reference Luijsterburg, M. S., & van Attikum, H. (2011). Chromatin and the DNA damage response: the cancer connection. Molecular Oncology, 5, 349–367.PubMed Luijsterburg, M. S., & van Attikum, H. (2011). Chromatin and the DNA damage response: the cancer connection. Molecular Oncology, 5, 349–367.PubMed
66.
go back to reference Mendez-Acuna, L., Di Tomaso, M. V., Palitti, F., & Martinez-Lopez, W. (2010). Histone post-translational modifications in DNA damage response. Cytogenetic and Genome Research, 128, 28–36.PubMed Mendez-Acuna, L., Di Tomaso, M. V., Palitti, F., & Martinez-Lopez, W. (2010). Histone post-translational modifications in DNA damage response. Cytogenetic and Genome Research, 128, 28–36.PubMed
67.
go back to reference Smeenk, G., & van Attikum, H. (2013). The chromatin response to DNA breaks: leaving a mark on genome integrity. Annual Review of Biochemistry, 82, 55–80.PubMed Smeenk, G., & van Attikum, H. (2013). The chromatin response to DNA breaks: leaving a mark on genome integrity. Annual Review of Biochemistry, 82, 55–80.PubMed
68.
go back to reference Park, J. H., Park, E. J., Lee, H. S., Kim, S. J., Hur, S. K., Imbalzano, A. N., et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO Journal, 25, 3986–3997.PubMedCentralPubMed Park, J. H., Park, E. J., Lee, H. S., Kim, S. J., Hur, S. K., Imbalzano, A. N., et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO Journal, 25, 3986–3997.PubMedCentralPubMed
69.
go back to reference Clapier, C. R., & Cairns, B. R. (2009). The biology of chromatin remodeling complexes. Annual Review of Biochemistry, 78, 273–304.PubMed Clapier, C. R., & Cairns, B. R. (2009). The biology of chromatin remodeling complexes. Annual Review of Biochemistry, 78, 273–304.PubMed
70.
go back to reference Vignali, M., Hassan, A. H., Neely, K. E., & Workman, J. L. (2000). ATP-dependent chromatin-remodeling complexes. Molecular Cell. Biology, 20, 1899–1910. Vignali, M., Hassan, A. H., Neely, K. E., & Workman, J. L. (2000). ATP-dependent chromatin-remodeling complexes. Molecular Cell. Biology, 20, 1899–1910.
71.
go back to reference Bao, Y., & Shen, X. (2007). SnapShot: chromatin remodeling complexes. Cell, 129, 632.PubMed Bao, Y., & Shen, X. (2007). SnapShot: chromatin remodeling complexes. Cell, 129, 632.PubMed
72.
go back to reference Papamichos-Chronakis, M., Krebs, J. E., & Peterson, C. L. (2006). Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes and Development, 20, 2437–2449.PubMedCentralPubMed Papamichos-Chronakis, M., Krebs, J. E., & Peterson, C. L. (2006). Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes and Development, 20, 2437–2449.PubMedCentralPubMed
73.
go back to reference Liang, B., Qiu, J., Ratnakumar, K., & Laurent, B. C. (2007). RSC functions as an early double-strand-break sensor in the cell’s response to DNA damage. Current Biology, 17, 1432–1437.PubMedCentralPubMed Liang, B., Qiu, J., Ratnakumar, K., & Laurent, B. C. (2007). RSC functions as an early double-strand-break sensor in the cell’s response to DNA damage. Current Biology, 17, 1432–1437.PubMedCentralPubMed
74.
go back to reference Seeber, A., Dion, V., & Gasser, S. M. (2013). Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes and Development, 27, 1999–2008.PubMedCentralPubMed Seeber, A., Dion, V., & Gasser, S. M. (2013). Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes and Development, 27, 1999–2008.PubMedCentralPubMed
75.
go back to reference Klochendler-Yeivin, A., Picarsky, E., & Yaniv, M. (2006). Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Molecular Cell. Biology, 26, 2661–2674. Klochendler-Yeivin, A., Picarsky, E., & Yaniv, M. (2006). Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Molecular Cell. Biology, 26, 2661–2674.
76.
go back to reference Park, J. H., Park, E. J., Hur, S. K., Kim, S., & Kwon, J. (2009). Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair (Amst), 8, 29–39. Park, J. H., Park, E. J., Hur, S. K., Kim, S., & Kwon, J. (2009). Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair (Amst), 8, 29–39.
77.
go back to reference van Attikum, H., Fritsch, O., & Gasser, S. M. (2007). Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO Journal, 26, 4113–4125.PubMedCentralPubMed van Attikum, H., Fritsch, O., & Gasser, S. M. (2007). Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO Journal, 26, 4113–4125.PubMedCentralPubMed
78.
go back to reference Chai, B., Huang, J., Cairns, B. R., & Laurent, B. C. (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes and Development, 19, 1656–1661.PubMedCentralPubMed Chai, B., Huang, J., Cairns, B. R., & Laurent, B. C. (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes and Development, 19, 1656–1661.PubMedCentralPubMed
79.
go back to reference Das, C., Lucia, M. S., Hansen, K. C., & Tyler, J. K. (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459, 113–117.PubMedCentralPubMed Das, C., Lucia, M. S., Hansen, K. C., & Tyler, J. K. (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459, 113–117.PubMedCentralPubMed
80.
go back to reference Masumoto, H., Hawke, D., Kobayashi, R., & Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature, 436, 294–298.PubMed Masumoto, H., Hawke, D., Kobayashi, R., & Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature, 436, 294–298.PubMed
81.
go back to reference Bhaskara, S., Knutson, S. K., Jiang, G., Chandrasekharan, M. B., Wilson, A. J., Zheng, S., et al. (2010). Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell, 18, 436–447.PubMedCentralPubMed Bhaskara, S., Knutson, S. K., Jiang, G., Chandrasekharan, M. B., Wilson, A. J., Zheng, S., et al. (2010). Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell, 18, 436–447.PubMedCentralPubMed
82.
go back to reference Dovey, O. M., Foster, C. T., Conte, N., Edwards, S. A., Edwards, J. M., Singh, R., et al. (2013). Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood, 121, 1335–1344.PubMed Dovey, O. M., Foster, C. T., Conte, N., Edwards, S. A., Edwards, J. M., Singh, R., et al. (2013). Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood, 121, 1335–1344.PubMed
83.
go back to reference Miller, K. M., Tjeertes, J. V., Coates, J., Legube, G., Polo, S. E., Britton, S., et al. (2010). Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Structural and Molecular Biology, 17, 1144–1151.PubMedCentralPubMed Miller, K. M., Tjeertes, J. V., Coates, J., Legube, G., Polo, S. E., Britton, S., et al. (2010). Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Structural and Molecular Biology, 17, 1144–1151.PubMedCentralPubMed
84.
go back to reference Wang, R. H., Sengupta, K., Li, C., Kim, H. S., Cao, L., Xiao, C., et al. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 14, 312–323.PubMedCentralPubMed Wang, R. H., Sengupta, K., Li, C., Kim, H. S., Cao, L., Xiao, C., et al. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 14, 312–323.PubMedCentralPubMed
85.
go back to reference Lee, H. S., Park, J. H., Kim, S. J., Kwon, S. J., & Kwon, J. (2010). A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO Journal, 29, 1434–1445.PubMedCentralPubMed Lee, H. S., Park, J. H., Kim, S. J., Kwon, S. J., & Kwon, J. (2010). A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO Journal, 29, 1434–1445.PubMedCentralPubMed
86.
go back to reference Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2, 851–861.PubMed Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2, 851–861.PubMed
87.
go back to reference Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S., & Reinberg, D. (1998). The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell, 95, 279–289.PubMed Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S., & Reinberg, D. (1998). The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell, 95, 279–289.PubMed
88.
go back to reference Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., & Schreiber, S. L. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature, 395, 917–921.PubMed Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., & Schreiber, S. L. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature, 395, 917–921.PubMed
89.
go back to reference Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113, 207–219.PubMed Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113, 207–219.PubMed
90.
go back to reference Polo, S. E., Kaidi, A., Baskcomb, L., Galanty, Y., & Jackson, S. P. (2010). Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. [Research Support, Non-U.S. Gov’t]. EMBO Journal, 29(18), 3130–3139. doi:10.1038/emboj.2010.188.PubMedCentralPubMed Polo, S. E., Kaidi, A., Baskcomb, L., Galanty, Y., & Jackson, S. P. (2010). Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. [Research Support, Non-U.S. Gov’t]. EMBO Journal, 29(18), 3130–3139. doi:10.​1038/​emboj.​2010.​188.PubMedCentralPubMed
91.
go back to reference Smeenk, G., & van Attikum, H. (2011). NuRD alert! NuRD regulates the DNA damage response. Epigenomics, 3, 133–135.PubMed Smeenk, G., & van Attikum, H. (2011). NuRD alert! NuRD regulates the DNA damage response. Epigenomics, 3, 133–135.PubMed
92.
go back to reference Larsen, D. H., Poinsignon, C., Gudjonsson, T., Dinant, C., Payne, M. R., Hari, F. J., et al. (2010). The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. Journal of Cell Biology, 190, 731–740.PubMedCentralPubMed Larsen, D. H., Poinsignon, C., Gudjonsson, T., Dinant, C., Payne, M. R., Hari, F. J., et al. (2010). The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. Journal of Cell Biology, 190, 731–740.PubMedCentralPubMed
93.
go back to reference Schmidt, D. R., & Schreiber, S. L. (1999). Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. Biochemistry, 38, 14711–14717.PubMed Schmidt, D. R., & Schreiber, S. L. (1999). Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. Biochemistry, 38, 14711–14717.PubMed
94.
go back to reference Dornan, D., Shimizu, H., Mah, A., Dudhela, T., Eby, M., O’Rourke, K., et al. (2006). ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science, 313, 1122–1126.PubMed Dornan, D., Shimizu, H., Mah, A., Dudhela, T., Eby, M., O’Rourke, K., et al. (2006). ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science, 313, 1122–1126.PubMed
95.
go back to reference Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., et al. (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404, 42–49.PubMed Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., et al. (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404, 42–49.PubMed
96.
go back to reference Ward, I. M., Minn, K., & Chen, J. (2004). UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. Journal of Biological Chemistry, 279, 9677–9680.PubMed Ward, I. M., Minn, K., & Chen, J. (2004). UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. Journal of Biological Chemistry, 279, 9677–9680.PubMed
97.
go back to reference Liu, Q., Guntuku, S., Cui, X. S., Matsuoka, S., Cortez, D., Tamai, K., et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes and Development, 14, 1448–1459.PubMedCentralPubMed Liu, Q., Guntuku, S., Cui, X. S., Matsuoka, S., Cortez, D., Tamai, K., et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes and Development, 14, 1448–1459.PubMedCentralPubMed
98.
go back to reference Guo, Z., Kumagai, A., Wang, S. X., & Dunphy, W. G. (2000). Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes and Development, 14, 2745–2756.PubMedCentralPubMed Guo, Z., Kumagai, A., Wang, S. X., & Dunphy, W. G. (2000). Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes and Development, 14, 2745–2756.PubMedCentralPubMed
99.
go back to reference Chini, C. C., & Chen, J. (2003). Human claspin is required for replication checkpoint control. Journal of Biological Chemistry, 278, 30057–30062.PubMed Chini, C. C., & Chen, J. (2003). Human claspin is required for replication checkpoint control. Journal of Biological Chemistry, 278, 30057–30062.PubMed
100.
go back to reference van Haaften, G., Romeijn, R., Pothof, J., Koole, W., Mullenders, L. H., Pastink, A., et al. (2006). Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Current Biology, 16, 1344–1350.PubMed van Haaften, G., Romeijn, R., Pothof, J., Koole, W., Mullenders, L. H., Pastink, A., et al. (2006). Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Current Biology, 16, 1344–1350.PubMed
101.
go back to reference Errico, A., Aze, A., & Costanzo, V. (2014). Mta2 promotes Tipin-dependent maintenance of replication fork integrity. Cell Cycle, 13, 2120–2128.PubMed Errico, A., Aze, A., & Costanzo, V. (2014). Mta2 promotes Tipin-dependent maintenance of replication fork integrity. Cell Cycle, 13, 2120–2128.PubMed
102.
go back to reference Ayrapetov, M. K., Xu, C., Sun, Y., Zhu, K., Parmar, K., D’Andrea, A. D., et al. (2011). Activation of Hif1alpha by the prolylhydroxylase inhibitor dimethyoxalyglycine decreases radiosensitivity. PLoS One, 6, e26064.PubMedCentralPubMed Ayrapetov, M. K., Xu, C., Sun, Y., Zhu, K., Parmar, K., D’Andrea, A. D., et al. (2011). Activation of Hif1alpha by the prolylhydroxylase inhibitor dimethyoxalyglycine decreases radiosensitivity. PLoS One, 6, e26064.PubMedCentralPubMed
103.
go back to reference Thurn, K. T., Thomas, S., Raha, P., Qureshi, I., & Munster, P. N. (2013). Histone deacetylase regulation of ATM-mediated DNA damage signaling. Molecular Cancer Therapeutics, 12, 2078–2087.PubMed Thurn, K. T., Thomas, S., Raha, P., Qureshi, I., & Munster, P. N. (2013). Histone deacetylase regulation of ATM-mediated DNA damage signaling. Molecular Cancer Therapeutics, 12, 2078–2087.PubMed
104.
go back to reference Bhaskara, S., Jacques, V., Rusche, J. R., Olson, E. N., Cairns, B. R., & Chandrasekharan, M. B. (2013). Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics & Chromatin, 6, 27. Bhaskara, S., Jacques, V., Rusche, J. R., Olson, E. N., Cairns, B. R., & Chandrasekharan, M. B. (2013). Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics & Chromatin, 6, 27.
105.
go back to reference O’Shaughnessy, A., & Hendrich, B. (2013). CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now. Biochemical Society Transactions, 41, 777–782.PubMedCentralPubMed O’Shaughnessy, A., & Hendrich, B. (2013). CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now. Biochemical Society Transactions, 41, 777–782.PubMedCentralPubMed
106.
go back to reference Pan, M. R., Hsieh, H. J., Dai, H., Hung, W. C., Li, K., Peng, G., et al. (2012). Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment. Journal of Biological Chemistry, 287, 6764–6772.PubMedCentralPubMed Pan, M. R., Hsieh, H. J., Dai, H., Hung, W. C., Li, K., Peng, G., et al. (2012). Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment. Journal of Biological Chemistry, 287, 6764–6772.PubMedCentralPubMed
107.
go back to reference Luijsterburg, M. S., Acs, K., Ackermann, L., Wiegant, W. W., Bekker-Jensen, S., Larsen, D. H., et al. (2012). A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO Journal, 31, 2511–2527.PubMedCentralPubMed Luijsterburg, M. S., Acs, K., Ackermann, L., Wiegant, W. W., Bekker-Jensen, S., Larsen, D. H., et al. (2012). A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO Journal, 31, 2511–2527.PubMedCentralPubMed
108.
go back to reference Sims, J. K., & Wade, P. A. (2011). Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin. Molecular Biology of the Cell, 22, 3094–3102.PubMedCentralPubMed Sims, J. K., & Wade, P. A. (2011). Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin. Molecular Biology of the Cell, 22, 3094–3102.PubMedCentralPubMed
109.
go back to reference Zhao, S., Choi, M., Overton, J. D., Bellone, S., Roque, D. M., Cocco, E., et al. (2013). Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110, 2916–2921.PubMedCentralPubMed Zhao, S., Choi, M., Overton, J. D., Bellone, S., Roque, D. M., Cocco, E., et al. (2013). Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110, 2916–2921.PubMedCentralPubMed
110.
go back to reference Wu, M., Wang, L., Li, Q., Li, J., Qin, J., & Wong, J. (2013). The MTA family proteins as novel histone H3 binding proteins. Cell Bioscience, 3, 1.PubMedCentralPubMed Wu, M., Wang, L., Li, Q., Li, J., Qin, J., & Wong, J. (2013). The MTA family proteins as novel histone H3 binding proteins. Cell Bioscience, 3, 1.PubMedCentralPubMed
111.
go back to reference Goodarzi, A. A., Noon, A. T., Deckbar, D., Ziv, Y., Shiloh, Y., Lobrich, M., et al. (2008). ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Molecular Cell, 31, 167–177.PubMed Goodarzi, A. A., Noon, A. T., Deckbar, D., Ziv, Y., Shiloh, Y., Lobrich, M., et al. (2008). ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Molecular Cell, 31, 167–177.PubMed
112.
go back to reference Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminar in Oncology, 30, 30–37. Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminar in Oncology, 30, 30–37.
113.
go back to reference Yu, L., Su, Y. S., Zhao, J., Wang, H., & Li, W. (2013). Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Letters, 587, 2542–2551.PubMed Yu, L., Su, Y. S., Zhao, J., Wang, H., & Li, W. (2013). Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Letters, 587, 2542–2551.PubMed
Metadata
Title
MTA family of proteins in DNA damage response: mechanistic insights and potential applications
Authors
Da-Qiang Li
Yinlong Yang
Rakesh Kumar
Publication date
01-12-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9524-2

Other articles of this Issue 4/2014

Cancer and Metastasis Reviews 4/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine