Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2013

Open Access 01-12-2013

The detection and implication of genome instability in cancer

Authors: Larissa Pikor, Kelsie Thu, Emily Vucic, Wan Lam

Published in: Cancer and Metastasis Reviews | Issue 3-4/2013

Login to get access

Abstract

Genomic instability is a hallmark of cancer that leads to an increase in genetic alterations, thus enabling the acquisition of additional capabilities required for tumorigenesis and progression. Substantial heterogeneity in the amount and type of instability (nucleotide, microsatellite, or chromosomal) exists both within and between cancer types, with epithelial tumors typically displaying a greater degree of instability than hematological cancers. While high-throughput sequencing studies offer a comprehensive record of the genetic alterations within a tumor, detecting the rate of instability or cell-to-cell viability using this and most other available methods remains a challenge. Here, we discuss the different levels of genomic instability occurring in human cancers and touch on the current methods and limitations of detecting instability. We have applied one such approach to the surveying of public tumor data to provide a cursory view of genome instability across numerous tumor types.
Literature
1.
go back to reference Sieber, O. M., Heinimann, K., & Tomlinson, I. P. (2003). Genomic instability—the engine of tumorigenesis? Nature Reviews. Cancer, 3(9), 701–708.PubMedCrossRef Sieber, O. M., Heinimann, K., & Tomlinson, I. P. (2003). Genomic instability—the engine of tumorigenesis? Nature Reviews. Cancer, 3(9), 701–708.PubMedCrossRef
2.
3.
go back to reference Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1997). Genetic instability in colorectal cancers. Nature, 386(6625), 623–627.PubMedCrossRef Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1997). Genetic instability in colorectal cancers. Nature, 386(6625), 623–627.PubMedCrossRef
4.
go back to reference Gorgoulis, V. G., Vassiliou, L. V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature, 434(7035), 907–913.PubMedCrossRef Gorgoulis, V. G., Vassiliou, L. V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature, 434(7035), 907–913.PubMedCrossRef
5.
go back to reference Loeb, L. A. (2001). A mutator phenotype in cancer. Cancer Research, 61(8), 3230–3239.PubMed Loeb, L. A. (2001). A mutator phenotype in cancer. Cancer Research, 61(8), 3230–3239.PubMed
6.
go back to reference Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 434(7035), 864–870.PubMedCrossRef Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 434(7035), 864–870.PubMedCrossRef
7.
go back to reference Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature, 444(7119), 633–637.PubMedCrossRef Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature, 444(7119), 633–637.PubMedCrossRef
8.
go back to reference Halazonetis, T. D., Gorgoulis, V. G., & Bartek, J. (2008). An oncogene-induced DNA damage model for cancer development. Science, 319(5868), 1352–1355.PubMedCrossRef Halazonetis, T. D., Gorgoulis, V. G., & Bartek, J. (2008). An oncogene-induced DNA damage model for cancer development. Science, 319(5868), 1352–1355.PubMedCrossRef
9.
go back to reference Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J., & Medema, R. H. (2011). Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 333(6051), 1895–1898.PubMedCrossRef Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J., & Medema, R. H. (2011). Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 333(6051), 1895–1898.PubMedCrossRef
10.
go back to reference Hackett, J. A., & Greider, C. W. (2002). Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene, 21(4), 619–626.PubMedCrossRef Hackett, J. A., & Greider, C. W. (2002). Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene, 21(4), 619–626.PubMedCrossRef
11.
go back to reference Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144(1), 27–40.PubMedCrossRef Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144(1), 27–40.PubMedCrossRef
12.
go back to reference Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396(6712), 643–649.PubMedCrossRef Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396(6712), 643–649.PubMedCrossRef
13.
go back to reference Boland, C. R., & Goel, A. (2010). Microsatellite instability in colorectal cancer. Gastroenterology, 138(6), 2073–2087. e2073.PubMedCrossRef Boland, C. R., & Goel, A. (2010). Microsatellite instability in colorectal cancer. Gastroenterology, 138(6), 2073–2087. e2073.PubMedCrossRef
14.
go back to reference Di Nicolantonio, F., Martini, M., Molinari, F., Sartore-Bianchi, A., Arena, S., Saletti, P., et al. (2008). Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 26(35), 5705–5712.CrossRef Di Nicolantonio, F., Martini, M., Molinari, F., Sartore-Bianchi, A., Arena, S., Saletti, P., et al. (2008). Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 26(35), 5705–5712.CrossRef
15.
go back to reference Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N., & Szallasi, Z. (2006). A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genetics, 38(9), 1043–1048.PubMedCrossRef Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N., & Szallasi, Z. (2006). A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genetics, 38(9), 1043–1048.PubMedCrossRef
16.
go back to reference Dworaczek, H., & Xiao, W. (2007). Xeroderma pigmentosum: a glimpse into nucleotide excision repair, genetic instability, and cancer. Critical Reviews in Oncogenesis, 13(2), 159–177.PubMedCrossRef Dworaczek, H., & Xiao, W. (2007). Xeroderma pigmentosum: a glimpse into nucleotide excision repair, genetic instability, and cancer. Critical Reviews in Oncogenesis, 13(2), 159–177.PubMedCrossRef
17.
go back to reference Al-Tassan, N., Chmiel, N. H., Maynard, J., Fleming, N., Livingston, A. L., Williams, G. T., et al. (2002). Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nature Genetics, 30(2), 227–232.PubMedCrossRef Al-Tassan, N., Chmiel, N. H., Maynard, J., Fleming, N., Livingston, A. L., Williams, G. T., et al. (2002). Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nature Genetics, 30(2), 227–232.PubMedCrossRef
18.
go back to reference Lee, H. C., Li, S. H., Lin, J. C., Wu, C. C., Yeh, D. C., & Wei, Y. H. (2004). Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutation Research, 547(1–2), 71–78.PubMedCrossRef Lee, H. C., Li, S. H., Lin, J. C., Wu, C. C., Yeh, D. C., & Wei, Y. H. (2004). Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutation Research, 547(1–2), 71–78.PubMedCrossRef
19.
go back to reference Lee, H. C., Yin, P. H., Lin, J. C., Wu, C. C., Chen, C. Y., Wu, C. W., et al. (2005). Mitochondrial genome instability and mtDNA depletion in human cancers. Annals of the New York Academy of Sciences, 1042, 109–122.PubMedCrossRef Lee, H. C., Yin, P. H., Lin, J. C., Wu, C. C., Chen, C. Y., Wu, C. W., et al. (2005). Mitochondrial genome instability and mtDNA depletion in human cancers. Annals of the New York Academy of Sciences, 1042, 109–122.PubMedCrossRef
20.
go back to reference Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., et al. (1992). A second-generation linkage map of the human genome. Nature, 359(6398), 794–801.PubMedCrossRef Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., et al. (1992). A second-generation linkage map of the human genome. Nature, 359(6398), 794–801.PubMedCrossRef
21.
go back to reference Thibodeau, S. N., Bren, G., & Schaid, D. (1993). Microsatellite instability in cancer of the proximal colon. Science, 260(5109), 816–819.PubMedCrossRef Thibodeau, S. N., Bren, G., & Schaid, D. (1993). Microsatellite instability in cancer of the proximal colon. Science, 260(5109), 816–819.PubMedCrossRef
22.
go back to reference Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D., & Perucho, M. (1993). Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature, 363(6429), 558–561.PubMedCrossRef Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D., & Perucho, M. (1993). Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature, 363(6429), 558–561.PubMedCrossRef
23.
go back to reference Risinger, J. I., Berchuck, A., Kohler, M. F., Watson, P., Lynch, H. T., & Boyd, J. (1993). Genetic instability of microsatellites in endometrial carcinoma. Cancer Research, 53(21), 5100–5103.PubMed Risinger, J. I., Berchuck, A., Kohler, M. F., Watson, P., Lynch, H. T., & Boyd, J. (1993). Genetic instability of microsatellites in endometrial carcinoma. Cancer Research, 53(21), 5100–5103.PubMed
24.
go back to reference Rhyu, M. G., Park, W. S., & Meltzer, S. J. (1994). Microsatellite instability occurs frequently in human gastric carcinoma. Oncogene, 9(1), 29–32.PubMed Rhyu, M. G., Park, W. S., & Meltzer, S. J. (1994). Microsatellite instability occurs frequently in human gastric carcinoma. Oncogene, 9(1), 29–32.PubMed
25.
go back to reference Halling, K. C., Harper, J., Moskaluk, C. A., Thibodeau, S. N., Petroni, G. R., Yustein, A. S., et al. (1999). Origin of microsatellite instability in gastric cancer. The American Journal of Pathology, 155(1), 205–211.PubMedCrossRef Halling, K. C., Harper, J., Moskaluk, C. A., Thibodeau, S. N., Petroni, G. R., Yustein, A. S., et al. (1999). Origin of microsatellite instability in gastric cancer. The American Journal of Pathology, 155(1), 205–211.PubMedCrossRef
26.
go back to reference Kim, W. S., Park, C., Hong, S. K., Park, B. K., Kim, H. S., & Park, K. (2000). Microsatellite instability (MSI) in non-small cell lung cancer (NSCLC) is highly associated with transforming growth factor-beta type II receptor (TGF-beta RII) frameshift mutation. Anticancer Research, 20(3A), 1499–1502.PubMed Kim, W. S., Park, C., Hong, S. K., Park, B. K., Kim, H. S., & Park, K. (2000). Microsatellite instability (MSI) in non-small cell lung cancer (NSCLC) is highly associated with transforming growth factor-beta type II receptor (TGF-beta RII) frameshift mutation. Anticancer Research, 20(3A), 1499–1502.PubMed
27.
go back to reference Fishel, R., Lescoe, M. K., Rao, M. R., Copeland, N. G., Jenkins, N. A., Garber, J., et al. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 75(5), 1027–1038.PubMedCrossRef Fishel, R., Lescoe, M. K., Rao, M. R., Copeland, N. G., Jenkins, N. A., Garber, J., et al. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 75(5), 1027–1038.PubMedCrossRef
28.
go back to reference Leach, F. S., Nicolaides, N. C., Papadopoulos, N., Liu, B., Jen, J., Parsons, R., et al. (1993). Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 75(6), 1215–1225.PubMedCrossRef Leach, F. S., Nicolaides, N. C., Papadopoulos, N., Liu, B., Jen, J., Parsons, R., et al. (1993). Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 75(6), 1215–1225.PubMedCrossRef
29.
go back to reference Bronner, C. E., Baker, S. M., Morrison, P. T., Warren, G., Smith, L. G., Lescoe, M. K., et al. (1994). Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 368(6468), 258–261.PubMedCrossRef Bronner, C. E., Baker, S. M., Morrison, P. T., Warren, G., Smith, L. G., Lescoe, M. K., et al. (1994). Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 368(6468), 258–261.PubMedCrossRef
30.
go back to reference Nicolaides, N. C., Papadopoulos, N., Liu, B., Wei, Y. F., Carter, K. C., Ruben, S. M., et al. (1994). Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature, 371(6492), 75–80.PubMedCrossRef Nicolaides, N. C., Papadopoulos, N., Liu, B., Wei, Y. F., Carter, K. C., Ruben, S. M., et al. (1994). Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature, 371(6492), 75–80.PubMedCrossRef
31.
go back to reference Palombo, F., Gallinari, P., Iaccarino, I., Lettieri, T., Hughes, M., D'Arrigo, A., et al. (1995). GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science, 268(5219), 1912–1914.PubMedCrossRef Palombo, F., Gallinari, P., Iaccarino, I., Lettieri, T., Hughes, M., D'Arrigo, A., et al. (1995). GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science, 268(5219), 1912–1914.PubMedCrossRef
32.
go back to reference Papadopoulos, N., Nicolaides, N. C., Wei, Y. F., Ruben, S. M., Carter, K. C., Rosen, C. A., et al. (1994). Mutation of a mutL homolog in hereditary colon cancer. Science, 263(5153), 1625–1629.PubMedCrossRef Papadopoulos, N., Nicolaides, N. C., Wei, Y. F., Ruben, S. M., Carter, K. C., Rosen, C. A., et al. (1994). Mutation of a mutL homolog in hereditary colon cancer. Science, 263(5153), 1625–1629.PubMedCrossRef
33.
go back to reference Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., & Issa, J. P. (1999). CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 96(15), 8681–8686.PubMedCrossRef Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., & Issa, J. P. (1999). CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 96(15), 8681–8686.PubMedCrossRef
34.
go back to reference Issa, J. P. (2004). CpG island methylator phenotype in cancer. Nature Reviews. Cancer, 4(12), 988–993.PubMedCrossRef Issa, J. P. (2004). CpG island methylator phenotype in cancer. Nature Reviews. Cancer, 4(12), 988–993.PubMedCrossRef
35.
go back to reference Goel, A., Nagasaka, T., Arnold, C. N., Inoue, T., Hamilton, C., Niedzwiecki, D., et al. (2007). The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology, 132(1), 127–138.PubMedCrossRef Goel, A., Nagasaka, T., Arnold, C. N., Inoue, T., Hamilton, C., Niedzwiecki, D., et al. (2007). The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology, 132(1), 127–138.PubMedCrossRef
36.
go back to reference Ogino, S., Nosho, K., Kirkner, G. J., Kawasaki, T., Meyerhardt, J. A., Loda, M., et al. (2009). CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut, 58(1), 90–96.PubMedCrossRef Ogino, S., Nosho, K., Kirkner, G. J., Kawasaki, T., Meyerhardt, J. A., Loda, M., et al. (2009). CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut, 58(1), 90–96.PubMedCrossRef
37.
go back to reference Vilar, E., & Gruber, S. B. (2010). Microsatellite instability in colorectal cancer—the stable evidence. Nature Reviews. Clinical Oncology, 7(3), 153–162.PubMedCrossRef Vilar, E., & Gruber, S. B. (2010). Microsatellite instability in colorectal cancer—the stable evidence. Nature Reviews. Clinical Oncology, 7(3), 153–162.PubMedCrossRef
38.
go back to reference Ward, R., Meagher, A., Tomlinson, I., O'Connor, T., Norrie, M., Wu, R., et al. (2001). Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut, 48(6), 821–829.PubMedCrossRef Ward, R., Meagher, A., Tomlinson, I., O'Connor, T., Norrie, M., Wu, R., et al. (2001). Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut, 48(6), 821–829.PubMedCrossRef
39.
go back to reference Gagos, S., & Irminger-Finger, I. (2005). Chromosome instability in neoplasia: chaotic roots to continuous growth. The International Journal of Biochemistry & Cell Biology, 37(5), 1014–1033.CrossRef Gagos, S., & Irminger-Finger, I. (2005). Chromosome instability in neoplasia: chaotic roots to continuous growth. The International Journal of Biochemistry & Cell Biology, 37(5), 1014–1033.CrossRef
40.
go back to reference Lee, A. J., Endesfelder, D., Rowan, A. J., Walther, A., Birkbak, N. J., Futreal, P. A., et al. (2011). Chromosomal instability confers intrinsic multidrug resistance. Cancer Research, 71(5), 1858–1870.PubMedCrossRef Lee, A. J., Endesfelder, D., Rowan, A. J., Walther, A., Birkbak, N. J., Futreal, P. A., et al. (2011). Chromosomal instability confers intrinsic multidrug resistance. Cancer Research, 71(5), 1858–1870.PubMedCrossRef
41.
go back to reference Walther, A., Houlston, R., & Tomlinson, I. (2008). Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut, 57(7), 941–950.PubMedCrossRef Walther, A., Houlston, R., & Tomlinson, I. (2008). Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut, 57(7), 941–950.PubMedCrossRef
42.
go back to reference Solomon, D. A., Kim, T., Diaz-Martinez, L. A., Fair, J., Elkahloun, A. G., Harris, B. T., et al. (2011). Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science, 333(6045), 1039–1043.PubMedCrossRef Solomon, D. A., Kim, T., Diaz-Martinez, L. A., Fair, J., Elkahloun, A. G., Harris, B. T., et al. (2011). Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science, 333(6045), 1039–1043.PubMedCrossRef
43.
go back to reference O'Sullivan, R. J., & Karlseder, J. (2010). Telomeres: protecting chromosomes against genome instability. Nature Reviews Molecular Cell Biology, 11(3), 171–181.PubMedCrossRef O'Sullivan, R. J., & Karlseder, J. (2010). Telomeres: protecting chromosomes against genome instability. Nature Reviews Molecular Cell Biology, 11(3), 171–181.PubMedCrossRef
44.
go back to reference Levitt, N. C., & Hickson, I. D. (2002). Caretaker tumour suppressor genes that defend genome integrity. Trends in Molecular Medicine, 8(4), 179–186.PubMedCrossRef Levitt, N. C., & Hickson, I. D. (2002). Caretaker tumour suppressor genes that defend genome integrity. Trends in Molecular Medicine, 8(4), 179–186.PubMedCrossRef
45.
go back to reference Rotman, G., & Shiloh, Y. (1998). ATM: from gene to function. Human Molecular Genetics, 7(10), 1555–1563.PubMedCrossRef Rotman, G., & Shiloh, Y. (1998). ATM: from gene to function. Human Molecular Genetics, 7(10), 1555–1563.PubMedCrossRef
46.
go back to reference Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., et al. (1998). Mutations of mitotic checkpoint genes in human cancers. Nature, 392(6673), 300–303.PubMedCrossRef Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., et al. (1998). Mutations of mitotic checkpoint genes in human cancers. Nature, 392(6673), 300–303.PubMedCrossRef
47.
go back to reference Hanks, S., Coleman, K., Reid, S., Plaja, A., Firth, H., Fitzpatrick, D., et al. (2004). Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genetics, 36(11), 1159–1161.PubMedCrossRef Hanks, S., Coleman, K., Reid, S., Plaja, A., Firth, H., Fitzpatrick, D., et al. (2004). Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genetics, 36(11), 1159–1161.PubMedCrossRef
48.
go back to reference Li, Y., & Benezra, R. (1996). Identification of a human mitotic checkpoint gene: hsMAD2. Science, 274(5285), 246–248.PubMedCrossRef Li, Y., & Benezra, R. (1996). Identification of a human mitotic checkpoint gene: hsMAD2. Science, 274(5285), 246–248.PubMedCrossRef
49.
go back to reference Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability—an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11(3), 220–228.PubMedCrossRef Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability—an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11(3), 220–228.PubMedCrossRef
50.
go back to reference Maher, C. A., & Wilson, R. K. (2012). Chromothripsis and human disease: piecing together the shattering process. Cell, 148(1–2), 29–32.PubMedCrossRef Maher, C. A., & Wilson, R. K. (2012). Chromothripsis and human disease: piecing together the shattering process. Cell, 148(1–2), 29–32.PubMedCrossRef
51.
go back to reference Forment, J. V., Kaidi, A., & Jackson, S. P. (2012). Chromothripsis and cancer: causes and consequences of chromosome shattering. Nature Reviews. Cancer, 12(10), 663–670.PubMedCrossRef Forment, J. V., Kaidi, A., & Jackson, S. P. (2012). Chromothripsis and cancer: causes and consequences of chromosome shattering. Nature Reviews. Cancer, 12(10), 663–670.PubMedCrossRef
52.
go back to reference Abdel-Rahman, W. M., Katsura, K., Rens, W., Gorman, P. A., Sheer, D., Bicknell, D., et al. (2001). Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2538–2543.PubMedCrossRef Abdel-Rahman, W. M., Katsura, K., Rens, W., Gorman, P. A., Sheer, D., Bicknell, D., et al. (2001). Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2538–2543.PubMedCrossRef
53.
go back to reference Muresu, R., Sini, M. C., Cossu, A., Tore, S., Baldinu, P., Manca, A., et al. (2002). Chromosomal abnormalities and microsatellite instability in sporadic endometrial cancer. European Journal of Cancer, 38(13), 1802–1809.PubMedCrossRef Muresu, R., Sini, M. C., Cossu, A., Tore, S., Baldinu, P., Manca, A., et al. (2002). Chromosomal abnormalities and microsatellite instability in sporadic endometrial cancer. European Journal of Cancer, 38(13), 1802–1809.PubMedCrossRef
54.
go back to reference Geigl, J. B., Obenauf, A. C., Schwarzbraun, T., & Speicher, M. R. (2008). Defining ‘chromosomal instability’. Trends in Genetics: TIG, 24(2), 64–69.PubMedCrossRef Geigl, J. B., Obenauf, A. C., Schwarzbraun, T., & Speicher, M. R. (2008). Defining ‘chromosomal instability’. Trends in Genetics: TIG, 24(2), 64–69.PubMedCrossRef
55.
go back to reference Wan, T. S., & Ma, E. S. (2012). Molecular cytogenetics: an indispensable tool for cancer diagnosis. Chang Gung Medical Journal, 35(2), 96–110.PubMed Wan, T. S., & Ma, E. S. (2012). Molecular cytogenetics: an indispensable tool for cancer diagnosis. Chang Gung Medical Journal, 35(2), 96–110.PubMed
56.
go back to reference Beheshti, B., Park, P. C., Sweet, J. M., Trachtenberg, J., Jewett, M. A., & Squire, J. A. (2001). Evidence of chromosomal instability in prostate cancer determined by spectral karyotyping (SKY) and interphase FISH analysis. Neoplasia, 3(1), 62–69.PubMedCrossRef Beheshti, B., Park, P. C., Sweet, J. M., Trachtenberg, J., Jewett, M. A., & Squire, J. A. (2001). Evidence of chromosomal instability in prostate cancer determined by spectral karyotyping (SKY) and interphase FISH analysis. Neoplasia, 3(1), 62–69.PubMedCrossRef
57.
go back to reference Bayani, J., & Squire, J. A. (2001). Advances in the detection of chromosomal aberrations using spectral karyotyping. Clinical Genetics, 59(2), 65–73.PubMedCrossRef Bayani, J., & Squire, J. A. (2001). Advances in the detection of chromosomal aberrations using spectral karyotyping. Clinical Genetics, 59(2), 65–73.PubMedCrossRef
58.
go back to reference Ye, C. J., Stevens, J. B., Liu, G., Bremer, S. W., Jaiswal, A. S., Ye, K. J., et al. (2009). Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. Journal of Cellular Physiology, 219(2), 288–300.PubMedCrossRef Ye, C. J., Stevens, J. B., Liu, G., Bremer, S. W., Jaiswal, A. S., Ye, K. J., et al. (2009). Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. Journal of Cellular Physiology, 219(2), 288–300.PubMedCrossRef
59.
go back to reference Zong, C., Lu, S., Chapman, A. R., & Xie, X. S. (2012). Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338(6114), 1622–1626.PubMedCrossRef Zong, C., Lu, S., Chapman, A. R., & Xie, X. S. (2012). Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338(6114), 1622–1626.PubMedCrossRef
60.
go back to reference Darzynkiewicz, Z., Halicka, H. D., & Zhao, H. (2010). Analysis of cellular DNA content by flow and laser scanning cytometry. Advances in Experimental Medicine and Biology, 676, 137–147.PubMedCrossRef Darzynkiewicz, Z., Halicka, H. D., & Zhao, H. (2010). Analysis of cellular DNA content by flow and laser scanning cytometry. Advances in Experimental Medicine and Biology, 676, 137–147.PubMedCrossRef
61.
go back to reference D'Urso, V., Collodoro, A., Mattioli, E., Giordano, A., & Bagella, L. (2010). Cytometry and DNA ploidy: clinical uses and molecular perspective in gastric and lung cancer. Journal of Cellular Physiology, 222(3), 532–539.PubMed D'Urso, V., Collodoro, A., Mattioli, E., Giordano, A., & Bagella, L. (2010). Cytometry and DNA ploidy: clinical uses and molecular perspective in gastric and lung cancer. Journal of Cellular Physiology, 222(3), 532–539.PubMed
62.
go back to reference Ishkanian, A. S., Malloff, C. A., Watson, S. K., DeLeeuw, R. J., Chi, B., Coe, B. P., et al. (2004). A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genetics, 36(3), 299–303.PubMedCrossRef Ishkanian, A. S., Malloff, C. A., Watson, S. K., DeLeeuw, R. J., Chi, B., Coe, B. P., et al. (2004). A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genetics, 36(3), 299–303.PubMedCrossRef
63.
go back to reference Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2), 207–211.PubMedCrossRef Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2), 207–211.PubMedCrossRef
64.
go back to reference Heinrichs, S., & Look, A. T. (2007). Identification of structural aberrations in cancer by SNP array analysis. Genome Biology, 8(7), 219.PubMedCrossRef Heinrichs, S., & Look, A. T. (2007). Identification of structural aberrations in cancer by SNP array analysis. Genome Biology, 8(7), 219.PubMedCrossRef
65.
go back to reference Zhao, X., Li, C., Paez, J. G., Chin, K., Janne, P. A., Chen, T. H., et al. (2004). An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Research, 64(9), 3060–3071.PubMedCrossRef Zhao, X., Li, C., Paez, J. G., Chin, K., Janne, P. A., Chen, T. H., et al. (2004). An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Research, 64(9), 3060–3071.PubMedCrossRef
66.
go back to reference Gondek, L. P., Tiu, R., Haddad, A. S., O'Keefe, C. L., Sekeres, M. A., Theil, K. S., et al. (2007). Single nucleotide polymorphism arrays complement metaphase cytogenetics in detection of new chromosomal lesions in MDS. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK, 21(9), 2058–2061.CrossRef Gondek, L. P., Tiu, R., Haddad, A. S., O'Keefe, C. L., Sekeres, M. A., Theil, K. S., et al. (2007). Single nucleotide polymorphism arrays complement metaphase cytogenetics in detection of new chromosomal lesions in MDS. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK, 21(9), 2058–2061.CrossRef
67.
go back to reference Goel, A., Nagasaka, T., Hamelin, R., & Boland, C. R. (2010). An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PloS One, 5(2), e9393.PubMedCrossRef Goel, A., Nagasaka, T., Hamelin, R., & Boland, C. R. (2010). An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PloS One, 5(2), e9393.PubMedCrossRef
68.
go back to reference Janavicius, R., Matiukaite, D., Jakubauskas, A., & Griskevicius, L. (2010). Microsatellite instability detection by high-resolution melting analysis. Clinical Chemistry, 56(11), 1750–1757.PubMedCrossRef Janavicius, R., Matiukaite, D., Jakubauskas, A., & Griskevicius, L. (2010). Microsatellite instability detection by high-resolution melting analysis. Clinical Chemistry, 56(11), 1750–1757.PubMedCrossRef
69.
go back to reference Meyerson, M., Gabriel, S., & Getz, G. (2010). Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews Genetics, 11(10), 685–696.PubMedCrossRef Meyerson, M., Gabriel, S., & Getz, G. (2010). Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews Genetics, 11(10), 685–696.PubMedCrossRef
70.
go back to reference Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., et al. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452(7189), 872–876.PubMedCrossRef Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., et al. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452(7189), 872–876.PubMedCrossRef
71.
go back to reference Ng, P. C., & Kirkness, E. F. (2010). Whole genome sequencing. Methods in Molecular Biology, 628, 215–226.PubMedCrossRef Ng, P. C., & Kirkness, E. F. (2010). Whole genome sequencing. Methods in Molecular Biology, 628, 215–226.PubMedCrossRef
72.
go back to reference Campbell, P. J., Stephens, P. J., Pleasance, E. D., O'Meara, S., Li, H., Santarius, T., et al. (2008). Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nature Genetics, 40(6), 722–729.PubMedCrossRef Campbell, P. J., Stephens, P. J., Pleasance, E. D., O'Meara, S., Li, H., Santarius, T., et al. (2008). Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nature Genetics, 40(6), 722–729.PubMedCrossRef
73.
go back to reference Chiang, D. Y., Getz, G., Jaffe, D. B., O'Kelly, M. J., Zhao, X., Carter, S. L., et al. (2009). High-resolution mapping of copy-number alterations with massively parallel sequencing. Nature Methods, 6(1), 99–103.PubMedCrossRef Chiang, D. Y., Getz, G., Jaffe, D. B., O'Kelly, M. J., Zhao, X., Carter, S. L., et al. (2009). High-resolution mapping of copy-number alterations with massively parallel sequencing. Nature Methods, 6(1), 99–103.PubMedCrossRef
74.
go back to reference Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.PubMedCrossRef Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.PubMedCrossRef
75.
go back to reference Bell, D. (2011). Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353), 609–615.CrossRef Bell, D. (2011). Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353), 609–615.CrossRef
76.
go back to reference McLendon, R. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.CrossRef McLendon, R. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.CrossRef
77.
go back to reference Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486(7403), 395–399.PubMed Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486(7403), 395–399.PubMed
78.
go back to reference Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Yu SB et al. (2012). The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Research, 22, 2109–2119. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Yu SB et al. (2012). The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Research, 22, 2109–2119.
79.
go back to reference Berger, M. F., Lawrence, M. S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A. Y., et al. (2011). The genomic complexity of primary human prostate cancer. Nature, 470(7333), 214–220.PubMedCrossRef Berger, M. F., Lawrence, M. S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A. Y., et al. (2011). The genomic complexity of primary human prostate cancer. Nature, 470(7333), 214–220.PubMedCrossRef
80.
go back to reference Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.PubMedCrossRef Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.PubMedCrossRef
81.
go back to reference Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318(5853), 1108–1113.PubMedCrossRef Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318(5853), 1108–1113.PubMedCrossRef
82.
go back to reference Mitelman, F., Johansson, B., & Mertens, F. (2004). Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genetics, 36(4), 331–334.PubMedCrossRef Mitelman, F., Johansson, B., & Mertens, F. (2004). Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genetics, 36(4), 331–334.PubMedCrossRef
83.
go back to reference Vollebergh, M. A., Jonkers, J., & Linn, S. C. (2012). Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cellular and Molecular Life Sciences: CMLS, 69(2), 223–245.PubMedCrossRef Vollebergh, M. A., Jonkers, J., & Linn, S. C. (2012). Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cellular and Molecular Life Sciences: CMLS, 69(2), 223–245.PubMedCrossRef
84.
go back to reference Huang, Y. T., Lin, X., Liu, Y., Chirieac, L. R., McGovern, R., Wain, J., et al. (2011). Cigarette smoking increases copy number alterations in nonsmall-cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16345–16350.PubMedCrossRef Huang, Y. T., Lin, X., Liu, Y., Chirieac, L. R., McGovern, R., Wain, J., et al. (2011). Cigarette smoking increases copy number alterations in nonsmall-cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16345–16350.PubMedCrossRef
85.
go back to reference Massion, P. P., Zou, Y., Chen, H., Jiang, A., Coulson, P., Amos, C. I., et al. (2008). Smoking-related genomic signatures in non-small cell lung cancer. American Journal of Respiratory and Critical Care Medicine, 178(11), 1164–1172.PubMedCrossRef Massion, P. P., Zou, Y., Chen, H., Jiang, A., Coulson, P., Amos, C. I., et al. (2008). Smoking-related genomic signatures in non-small cell lung cancer. American Journal of Respiratory and Critical Care Medicine, 178(11), 1164–1172.PubMedCrossRef
86.
go back to reference Thu, K. L., Vucic, E. A., Chari, R., Zhang, W., Lockwood, W. W., English, J. C., et al. (2012). Lung adenocarcinoma of never smokers and smokers harbor differential regions of genetic alteration and exhibit different levels of genomic instability. PloS One, 7(3), e33003.PubMedCrossRef Thu, K. L., Vucic, E. A., Chari, R., Zhang, W., Lockwood, W. W., English, J. C., et al. (2012). Lung adenocarcinoma of never smokers and smokers harbor differential regions of genetic alteration and exhibit different levels of genomic instability. PloS One, 7(3), e33003.PubMedCrossRef
87.
go back to reference Bowtell, D. D. (2010). The genesis and evolution of high-grade serous ovarian cancer. Nature Reviews. Cancer, 10(11), 803–808.PubMedCrossRef Bowtell, D. D. (2010). The genesis and evolution of high-grade serous ovarian cancer. Nature Reviews. Cancer, 10(11), 803–808.PubMedCrossRef
88.
go back to reference Fang, M., Toher, J., Morgan, M., Davison, J., Tannenbaum, S., & Claffey, K. (2011). Genomic differences between estrogen receptor (ER)-positive and ER-negative human breast carcinoma identified by single nucleotide polymorphism array comparative genome hybridization analysis. Cancer, 117(10), 2024–2034.PubMedCrossRef Fang, M., Toher, J., Morgan, M., Davison, J., Tannenbaum, S., & Claffey, K. (2011). Genomic differences between estrogen receptor (ER)-positive and ER-negative human breast carcinoma identified by single nucleotide polymorphism array comparative genome hybridization analysis. Cancer, 117(10), 2024–2034.PubMedCrossRef
89.
go back to reference Lockwood, W. W., Wilson, I. M., Coe, B. P., Chari, R., Pikor, L. A., Thu, K. L., et al. (2012). Divergent genomic and epigenomic landscapes of lung cancer subtypes underscore the selection of different oncogenic pathways during tumor development. PloS One, 7(5), e37775.PubMedCrossRef Lockwood, W. W., Wilson, I. M., Coe, B. P., Chari, R., Pikor, L. A., Thu, K. L., et al. (2012). Divergent genomic and epigenomic landscapes of lung cancer subtypes underscore the selection of different oncogenic pathways during tumor development. PloS One, 7(5), e37775.PubMedCrossRef
90.
go back to reference Wilkerson, M. D., Yin, X., Walter, V., Zhao, N., Cabanski, C. R., Hayward, M. C., et al. (2012). Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PloS One, 7(5), e36530.PubMedCrossRef Wilkerson, M. D., Yin, X., Walter, V., Zhao, N., Cabanski, C. R., Hayward, M. C., et al. (2012). Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PloS One, 7(5), e36530.PubMedCrossRef
91.
go back to reference Loeb, L. A. (2011). Human cancers express mutator phenotypes: origin, consequences and targeting. Nature Reviews. Cancer, 11(6), 450–457.PubMedCrossRef Loeb, L. A. (2011). Human cancers express mutator phenotypes: origin, consequences and targeting. Nature Reviews. Cancer, 11(6), 450–457.PubMedCrossRef
Metadata
Title
The detection and implication of genome instability in cancer
Authors
Larissa Pikor
Kelsie Thu
Emily Vucic
Wan Lam
Publication date
01-12-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9429-5

Other articles of this Issue 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine