Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2013

01-12-2013

Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells

Author: Sui Huang

Published in: Cancer and Metastasis Reviews | Issue 3-4/2013

Login to get access

Abstract

Genetic instability is invoked in explaining the cell phenotype changes that take place during cancer progression. However, the coexistence of a vast diversity of distinct clones, most prominently visible in the form of non-clonal chromosomal aberrations, suggests that Darwinian selection of mutant cells is not operating at maximal efficacy. Conversely, non-genetic instability of cancer cells must also be considered. Such mutation-independent instability of cell states is most prosaically manifest in the phenotypic heterogeneity within clonal cell populations or in the reversible switching between immature “cancer stem cell-like” and more differentiated states. How are genetic and non-genetic instability related to each other? Here, we review basic theoretical foundations and offer a dynamical systems perspective in which cancer is the inevitable pathological manifestation of modes of malfunction that are immanent to the complex gene regulatory network of the genome. We explain in an accessible, qualitative, and permissively simplified manner the mathematical basis for the “epigenetic landscape” and how the latter relates to the better known “fitness landscape.” We show that these two classical metaphors have a formal basis. By combining these two landscape concepts, we unite development and somatic evolution as the drivers of the relentless increase in malignancy. Herein, the cancer cells are pushed toward cancer attractors in the evolutionarily unused regions of the epigenetic landscape that encode more and more “dedifferentiated” states as a consequence of both genetic (mutagenic) and non-genetic (regulatory) perturbations—including therapy. This would explain why for the cancer cell, the principle of “What does not kill me makes me stronger” is as much a driving force in tumor progression and development of drug resistance as the simple principle of “survival of the fittest.”
Literature
1.
go back to reference Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396(6712), 643–649.PubMed Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396(6712), 643–649.PubMed
2.
go back to reference Cahill, D. P., Kinzler, K. W., Vogelstein, B., & Lengauer, C. (1999). Genetic instability and Darwinian selection in tumours. Trends in Cell Biology, 9(12), M57–M60.PubMed Cahill, D. P., Kinzler, K. W., Vogelstein, B., & Lengauer, C. (1999). Genetic instability and Darwinian selection in tumours. Trends in Cell Biology, 9(12), M57–M60.PubMed
5.
go back to reference Heng, H. H., Stevens, J. B., Bremer, S. W., Ye, K. J., Liu, G., & Ye, C. J. (2010). The evolutionary mechanism of cancer. Journal of Cellular Biochemistry, 109(6), 1072–1084. doi:10.1002/jcb.22497.PubMed Heng, H. H., Stevens, J. B., Bremer, S. W., Ye, K. J., Liu, G., & Ye, C. J. (2010). The evolutionary mechanism of cancer. Journal of Cellular Biochemistry, 109(6), 1072–1084. doi:10.​1002/​jcb.​22497.PubMed
6.
go back to reference McCullough, K. D., Coleman, W. B., Ricketts, S. L., Wilson, J. W., Smith, G. J., & Grisham, J. W. (1998). Plasticity of the neoplastic phenotype in vivo is regulated by epigenetic factors. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15333–15338.PubMed McCullough, K. D., Coleman, W. B., Ricketts, S. L., Wilson, J. W., Smith, G. J., & Grisham, J. W. (1998). Plasticity of the neoplastic phenotype in vivo is regulated by epigenetic factors. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15333–15338.PubMed
7.
go back to reference Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C., et al. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146(4), 633–644. doi:10.1016/j.cell.2011.07.026 (Research support, non-U.S. government).PubMed Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C., et al. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146(4), 633–644. doi:10.​1016/​j.​cell.​2011.​07.​026 (Research support, non-U.S. government).PubMed
8.
go back to reference Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7950–7955. doi:10.1073/pnas.1102454108.PubMed Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7950–7955. doi:10.​1073/​pnas.​1102454108.PubMed
9.
go back to reference Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594. doi:10.1016/j.cell.2010.04.020.PubMed Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594. doi:10.​1016/​j.​cell.​2010.​04.​020.PubMed
10.
go back to reference Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews. Cancer, 5(4), 275–284.PubMed Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews. Cancer, 5(4), 275–284.PubMed
12.
go back to reference Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141(1), 69–80. doi:10.1016/j.cell.2010.02.027.PubMed Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141(1), 69–80. doi:10.​1016/​j.​cell.​2010.​02.​027.PubMed
13.
go back to reference Huang, S. (2012). Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution. Progress in Biophysics and Molecular Biology, 110(1), 69–86.PubMed Huang, S. (2012). Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution. Progress in Biophysics and Molecular Biology, 110(1), 69–86.PubMed
14.
go back to reference Holmberg, J., & Perlmann, T. (2012). Maintaining differentiated cellular identity. Nature Reviews. Genetics, 13(6), 429–439. doi:10.1038/nrg3209 (Research support, non-U.S. government. Review).PubMed Holmberg, J., & Perlmann, T. (2012). Maintaining differentiated cellular identity. Nature Reviews. Genetics, 13(6), 429–439. doi:10.​1038/​nrg3209 (Research support, non-U.S. government. Review).PubMed
15.
go back to reference Sawyers, C. L., Denny, C. T., & Witte, O. N. (1991). Leukemia and the disruption of normal hematopoiesis. Cell, 64(2), 337–350 (Research support, non-U.S. government. Review).PubMed Sawyers, C. L., Denny, C. T., & Witte, O. N. (1991). Leukemia and the disruption of normal hematopoiesis. Cell, 64(2), 337–350 (Research support, non-U.S. government. Review).PubMed
16.
go back to reference Virchow, R. L. K. (1978). Cellular pathology (1859th ed., pp. 204–207). London: John Churchill. Virchow, R. L. K. (1978). Cellular pathology (1859th ed., pp. 204–207). London: John Churchill.
17.
go back to reference Deutscher, G. (2010). Through the language glass: why the world looks different in other languages (1st ed.). New York: Macmillan. Deutscher, G. (2010). Through the language glass: why the world looks different in other languages (1st ed.). New York: Macmillan.
18.
go back to reference Huang, S. (2012). The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology. BioEssays, 34(2), 149–155.PubMed Huang, S. (2012). The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology. BioEssays, 34(2), 149–155.PubMed
20.
go back to reference Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability—an evolving hallmark of cancer. Nature Reviews. Molecular Cell Biology, 11(3), 220–228. doi:10.1038/nrm2858.PubMed Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability—an evolving hallmark of cancer. Nature Reviews. Molecular Cell Biology, 11(3), 220–228. doi:10.​1038/​nrm2858.PubMed
22.
go back to reference Bielas, J. H., & Loeb, L. A. (2005). Mutator phenotype in cancer: timing and perspectives. Environmental and Molecular Mutagenesis, 45(2–3), 206–213.PubMed Bielas, J. H., & Loeb, L. A. (2005). Mutator phenotype in cancer: timing and perspectives. Environmental and Molecular Mutagenesis, 45(2–3), 206–213.PubMed
23.
go back to reference Huang, S., & Ingber, D. E. (2000). Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Experimental Cell Research, 261(1), 91–103.PubMed Huang, S., & Ingber, D. E. (2000). Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Experimental Cell Research, 261(1), 91–103.PubMed
26.
go back to reference Stewart, J. M., Shaw, P. A., Gedye, C., Bernardini, M. Q., Neel, B. G., & Ailles, L. E. (2011). Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6468–6473. doi:10.1073/pnas.1005529108.PubMed Stewart, J. M., Shaw, P. A., Gedye, C., Bernardini, M. Q., Neel, B. G., & Ailles, L. E. (2011). Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6468–6473. doi:10.​1073/​pnas.​1005529108.PubMed
28.
29.
go back to reference Bonifer, C. (2005). Epigenetic plasticity of hematopoietic cells. Cell Cycle, 4(2), 211–214.PubMed Bonifer, C. (2005). Epigenetic plasticity of hematopoietic cells. Cell Cycle, 4(2), 211–214.PubMed
30.
31.
go back to reference Joshi, C. V., & Enver, T. (2002). Plasticity revisited. Current Opinion in Cell Biology, 14(6), 749–755.PubMed Joshi, C. V., & Enver, T. (2002). Plasticity revisited. Current Opinion in Cell Biology, 14(6), 749–755.PubMed
32.
go back to reference Raff, M. (2003). Adult stem cell plasticity: fact or artifact? Annual Review of Cell and Developmental Biology, 19, 1–22.PubMed Raff, M. (2003). Adult stem cell plasticity: fact or artifact? Annual Review of Cell and Developmental Biology, 19, 1–22.PubMed
33.
go back to reference Gotzmann, J., Mikula, M., Eger, A., Schulte-Hermann, R., Foisner, R., Beug, H., et al. (2004). Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutation Research, 566(1), 9–20.PubMed Gotzmann, J., Mikula, M., Eger, A., Schulte-Hermann, R., Foisner, R., Beug, H., et al. (2004). Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutation Research, 566(1), 9–20.PubMed
34.
go back to reference Spencer, S. L., Gerety, R. A., Pienta, K. J., & Forrest, S. (2006). Modeling somatic evolution in tumorigenesis. PLoS Computational Biology, 2(8), e108.PubMed Spencer, S. L., Gerety, R. A., Pienta, K. J., & Forrest, S. (2006). Modeling somatic evolution in tumorigenesis. PLoS Computational Biology, 2(8), e108.PubMed
35.
go back to reference Vogelstein, B., & Kinzler, K. W. (1993). The multistep nature of cancer. Trends in Genetics, 9(4), 138–141.PubMed Vogelstein, B., & Kinzler, K. W. (1993). The multistep nature of cancer. Trends in Genetics, 9(4), 138–141.PubMed
37.
go back to reference Huang, S. (2011). Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1575), 2247–2259. doi:10.1098/rstb.2011.0008.PubMed Huang, S. (2011). Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1575), 2247–2259. doi:10.​1098/​rstb.​2011.​0008.PubMed
38.
go back to reference Huang, S., & Kauffman, S. (2009). Complex gene regulatory networks—from structure to biological observables: cell fate determination. In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science. Heidelberg: Springer, 1180–1213. Huang, S., & Kauffman, S. (2009). Complex gene regulatory networks—from structure to biological observables: cell fate determination. In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science. Heidelberg: Springer, 1180–1213.
41.
go back to reference Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nature Reviews. Genetics, 6(6), 451–464.PubMed Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nature Reviews. Genetics, 6(6), 451–464.PubMed
44.
go back to reference Zhou, J. X., Aliyu, M. D., Aurell, E., & Huang, S. (2012). Quasi-potential landscape in complex multi-stable systems. Journal of the Royal Society, Interface, 9(77), 3539–3553. doi:10.1098/rsif.2012.0434.PubMed Zhou, J. X., Aliyu, M. D., Aurell, E., & Huang, S. (2012). Quasi-potential landscape in complex multi-stable systems. Journal of the Royal Society, Interface, 9(77), 3539–3553. doi:10.​1098/​rsif.​2012.​0434.PubMed
45.
go back to reference Ferrell, J. E., & Xiong, W. (2001). Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos, 11(1), 227–236. doi:10.1063/1.1349894.PubMed Ferrell, J. E., & Xiong, W. (2001). Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos, 11(1), 227–236. doi:10.​1063/​1.​1349894.PubMed
46.
go back to reference Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221–231.PubMed Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221–231.PubMed
47.
go back to reference Huang, S. (2001). Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation. Pharmacogenomics, 2(3), 203–222.PubMed Huang, S. (2001). Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation. Pharmacogenomics, 2(3), 203–222.PubMed
48.
go back to reference Waddington, C. H. (1957). The strategy of the genes. London: Allen and Unwin. Waddington, C. H. (1957). The strategy of the genes. London: Allen and Unwin.
49.
go back to reference Kauffman, S. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 224(215), 177–178.PubMed Kauffman, S. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 224(215), 177–178.PubMed
50.
go back to reference Ptashne, M. (2007). On the use of the word ‘epigenetic’. Current Biology, 17(7), R233–R236.PubMed Ptashne, M. (2007). On the use of the word ‘epigenetic’. Current Biology, 17(7), R233–R236.PubMed
51.
go back to reference Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398.PubMed Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398.PubMed
52.
go back to reference Holliday, R. (2005). DNA methylation and epigenotypes. Biochemistry (Mosc), 70(5), 500–504. Holliday, R. (2005). DNA methylation and epigenotypes. Biochemistry (Mosc), 70(5), 500–504.
53.
go back to reference Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705.PubMed Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705.PubMed
54.
go back to reference Kubicek, S., & Jenuwein, T. (2004). A crack in histone lysine methylation. Cell, 119(7), 903–906.PubMed Kubicek, S., & Jenuwein, T. (2004). A crack in histone lysine methylation. Cell, 119(7), 903–906.PubMed
55.
go back to reference Trojer, P., & Reinberg, D. (2006). Histone lysine demethylases and their impact on epigenetics. Cell, 125(2), 213–217.PubMed Trojer, P., & Reinberg, D. (2006). Histone lysine demethylases and their impact on epigenetics. Cell, 125(2), 213–217.PubMed
56.
go back to reference Bonifer, C., Hoogenkamp, M., Krysinska, H., & Tagoh, H. (2008). How transcription factors program chromatin—lessons from studies of the regulation of myeloid-specific genes. Seminars in Immunology, 20(4), 257–263. doi:10.1016/j.smim.2008.05.001.PubMed Bonifer, C., Hoogenkamp, M., Krysinska, H., & Tagoh, H. (2008). How transcription factors program chromatin—lessons from studies of the regulation of myeloid-specific genes. Seminars in Immunology, 20(4), 257–263. doi:10.​1016/​j.​smim.​2008.​05.​001.PubMed
58.
go back to reference Lynch, M. (2007). Colloquium papers: the frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences of the United States of America, 104(Suppl 1), 8597–8604.PubMed Lynch, M. (2007). Colloquium papers: the frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences of the United States of America, 104(Suppl 1), 8597–8604.PubMed
59.
go back to reference Nowak, M. A. (2006). Evolutionary dynamics: exploring the equations of life (1st ed.). Cambridge, MA: Belknap. Nowak, M. A. (2006). Evolutionary dynamics: exploring the equations of life (1st ed.). Cambridge, MA: Belknap.
60.
go back to reference Wright, S. (1945). The differential equation of the distribution of gene frequencies. Proceedings of the National Academy of Sciences of the United States of America, 31(12), 382–389.PubMed Wright, S. (1945). The differential equation of the distribution of gene frequencies. Proceedings of the National Academy of Sciences of the United States of America, 31(12), 382–389.PubMed
61.
go back to reference Kauffman, S. A. (1993). The origins of order. New York: Oxford University Press. Kauffman, S. A. (1993). The origins of order. New York: Oxford University Press.
62.
go back to reference Galhardo, R. S., Hastings, P. J., & Rosenberg, S. M. (2007). Mutation as a stress response and the regulation of evolvability. Critical Reviews in Biochemistry and Molecular Biology, 42(5), 399–435. doi:10.1080/10409230701648502 (Research support, N.I.H. Extramural review).PubMed Galhardo, R. S., Hastings, P. J., & Rosenberg, S. M. (2007). Mutation as a stress response and the regulation of evolvability. Critical Reviews in Biochemistry and Molecular Biology, 42(5), 399–435. doi:10.​1080/​1040923070164850​2 (Research support, N.I.H. Extramural review).PubMed
64.
go back to reference Bielas, J. H., Loeb, K. R., Rubin, B. P., True, L. D., & Loeb, L. A. (2006). Human cancers express a mutator phenotype. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18238–18242.PubMed Bielas, J. H., Loeb, K. R., Rubin, B. P., True, L. D., & Loeb, L. A. (2006). Human cancers express a mutator phenotype. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18238–18242.PubMed
65.
go back to reference Cairns, J. (1975). Mutation selection and the natural history of cancer. Nature, 255(5505), 197–200.PubMed Cairns, J. (1975). Mutation selection and the natural history of cancer. Nature, 255(5505), 197–200.PubMed
67.
go back to reference Bernards, R., & Weinberg, R. A. (2002). A progression puzzle. Nature, 418(6900), 823.PubMed Bernards, R., & Weinberg, R. A. (2002). A progression puzzle. Nature, 418(6900), 823.PubMed
68.
go back to reference Brock, A., Chang, H., & Huang, S. (2009). Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nature Reviews. Genetics, 10(5), 336–342. doi:10.1038/nrg2556.PubMed Brock, A., Chang, H., & Huang, S. (2009). Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nature Reviews. Genetics, 10(5), 336–342. doi:10.​1038/​nrg2556.PubMed
69.
go back to reference Gould, S. J. (1997). Darwinian fundamentalism. New York Review of Books (June 12), pp. 34–37. Gould, S. J. (1997). Darwinian fundamentalism. New York Review of Books (June 12), pp. 34–37.
70.
go back to reference Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B: Biological Sciences, 205(1161), 581–598. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B: Biological Sciences, 205(1161), 581–598.
71.
go back to reference Lewontin, R. C. (2000). The triple helix: gene, organism, and environment (2001st ed.). Cambridge, MA: Harvard University Press. Lewontin, R. C. (2000). The triple helix: gene, organism, and environment (2001st ed.). Cambridge, MA: Harvard University Press.
72.
go back to reference Rose, S., Kamin, L. J., & Lewontin, R. C. (1985). Not in our genes: biology, ideology, and human nature. New York: Pantheon. Rose, S., Kamin, L. J., & Lewontin, R. C. (1985). Not in our genes: biology, ideology, and human nature. New York: Pantheon.
74.
go back to reference Noble, D. (2011). Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology? The Journal of Physiology, 589(Pt 5), 1007–1015. doi:10.1113/jphysiol.2010.201384 (Research support, non-U.S. government. Review).PubMed Noble, D. (2011). Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology? The Journal of Physiology, 589(Pt 5), 1007–1015. doi:10.​1113/​jphysiol.​2010.​201384 (Research support, non-U.S. government. Review).PubMed
75.
go back to reference Eldredge, N., & Gould, S. J. (1997). On punctuated equilibria. Science, 276(5311), 338–341 (Comment letter).PubMed Eldredge, N., & Gould, S. J. (1997). On punctuated equilibria. Science, 276(5311), 338–341 (Comment letter).PubMed
76.
go back to reference Caporale, L. H. (2009). Putting together the pieces: evolutionary mechanisms at work within genomes: can we suggest molecular underpinnings of punctuated equilibria and the Cambrian explosion? BioEssays, 31(7), 700–702. doi:10.1002/bies.200900067.PubMed Caporale, L. H. (2009). Putting together the pieces: evolutionary mechanisms at work within genomes: can we suggest molecular underpinnings of punctuated equilibria and the Cambrian explosion? BioEssays, 31(7), 700–702. doi:10.​1002/​bies.​200900067.PubMed
77.
go back to reference Gould, S. J. (1994). Tempo and mode in the macroevolutionary reconstruction of Darwinism. Proceedings of the National Academy of Sciences of the United States of America, 91(15), 6764–6771 (Review).PubMed Gould, S. J. (1994). Tempo and mode in the macroevolutionary reconstruction of Darwinism. Proceedings of the National Academy of Sciences of the United States of America, 91(15), 6764–6771 (Review).PubMed
78.
go back to reference Heng, H. H., Bremer, S. W., Stevens, J., Ye, K. J., Miller, F., Liu, G., et al. (2006). Cancer progression by non-clonal chromosome aberrations. Journal of Cellular Biochemistry, 98(6), 1424–1435. doi:10.1002/jcb.20964 (Comparative study. Research support, non-U.S. government. Review).PubMed Heng, H. H., Bremer, S. W., Stevens, J., Ye, K. J., Miller, F., Liu, G., et al. (2006). Cancer progression by non-clonal chromosome aberrations. Journal of Cellular Biochemistry, 98(6), 1424–1435. doi:10.​1002/​jcb.​20964 (Comparative study. Research support, non-U.S. government. Review).PubMed
79.
go back to reference Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., & Ye, C. J. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253. doi:10.1016/B978-0-12-387688-1.00008-9 (Research support, non-U.S. government, non-P.H.S. Review).PubMed Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., & Ye, C. J. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253. doi:10.​1016/​B978-0-12-387688-1.​00008-9 (Research support, non-U.S. government, non-P.H.S. Review).PubMed
80.
go back to reference Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144(1), 27–40. doi:10.1016/j.cell.2010.11.055.PubMed Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144(1), 27–40. doi:10.​1016/​j.​cell.​2010.​11.​055.PubMed
81.
go back to reference Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell & Developmental Biology, 20(7), 869–876. doi:10.1016/j.semcdb.2009.07.003. Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell & Developmental Biology, 20(7), 869–876. doi:10.​1016/​j.​semcdb.​2009.​07.​003.
82.
go back to reference Davies, P. C., & Lineweaver, C. H. (2011). Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Physical Biology, 8((1), 015001. doi:10.1088/1478-3975/8/1/015001 (Research support, N.I.H., Extramural). Davies, P. C., & Lineweaver, C. H. (2011). Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Physical Biology, 8((1), 015001. doi:10.​1088/​1478-3975/​8/​1/​015001 (Research support, N.I.H., Extramural).
84.
go back to reference Kauffman, S. (1971). Differentiation of malignant to benign cells. Journal of Theoretical Biology, 31(3), 429–451.PubMed Kauffman, S. (1971). Differentiation of malignant to benign cells. Journal of Theoretical Biology, 31(3), 429–451.PubMed
86.
go back to reference Aldana, M., Balleza, E., Kauffman, S., & Resendiz, O. (2007). Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology, 245(3), 433–448.PubMed Aldana, M., Balleza, E., Kauffman, S., & Resendiz, O. (2007). Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology, 245(3), 433–448.PubMed
87.
go back to reference Torres-Sosa, C., Huang, S., & Aldana, M. (2012). Criticality is an emergent property of genetic networks that exhibit evolvability. PLoS Computational Biology, 8(9), e1002669. doi:10.1371/journal.pcbi.1002669 (Research support, non-U.S. government).PubMed Torres-Sosa, C., Huang, S., & Aldana, M. (2012). Criticality is an emergent property of genetic networks that exhibit evolvability. PLoS Computational Biology, 8(9), e1002669. doi:10.​1371/​journal.​pcbi.​1002669 (Research support, non-U.S. government).PubMed
88.
go back to reference Sonnenschein, C., & Soto, A. M. (1998). The society of cells: cancer and control of cell proliferation. Philadelphia, PA: Garland Science. Sonnenschein, C., & Soto, A. M. (1998). The society of cells: cancer and control of cell proliferation. Philadelphia, PA: Garland Science.
89.
go back to reference Raff, M. C. (1992). Social controls on cell survival and cell death. Nature, 356(6368), 397–400.PubMed Raff, M. C. (1992). Social controls on cell survival and cell death. Nature, 356(6368), 397–400.PubMed
90.
go back to reference Paulovich, A. G., Toczyski, D. P., & Hartwell, L. H. (1997). When checkpoints fail. Cell, 88(3), 315–321.PubMed Paulovich, A. G., Toczyski, D. P., & Hartwell, L. H. (1997). When checkpoints fail. Cell, 88(3), 315–321.PubMed
91.
go back to reference Hernando, E., Nahle, Z., Juan, G., Diaz-Rodriguez, E., Alaminos, M., Hemann, M., et al. (2004). Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature, 430(7001), 797–802.PubMed Hernando, E., Nahle, Z., Juan, G., Diaz-Rodriguez, E., Alaminos, M., Hemann, M., et al. (2004). Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature, 430(7001), 797–802.PubMed
92.
go back to reference Mantel, C., Guo, Y., Lee, M. R., Kim, M. K., Han, M. K., Shibayama, H., et al. (2007). Checkpoint–apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood, 109(10), 4518–4527. doi:10.1182/blood-2006-10-054247 (Research support, N.I.H., non-U.S. government. Extramural).PubMed Mantel, C., Guo, Y., Lee, M. R., Kim, M. K., Han, M. K., Shibayama, H., et al. (2007). Checkpoint–apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood, 109(10), 4518–4527. doi:10.​1182/​blood-2006-10-054247 (Research support, N.I.H., non-U.S. government. Extramural).PubMed
94.
go back to reference Balleza, E., Alvarez-Buylla, E. R., Chaos, A., Kauffman, A., Shmulevich, I., & Aldana, M. (2008). Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS One, 3, e2456.PubMed Balleza, E., Alvarez-Buylla, E. R., Chaos, A., Kauffman, A., Shmulevich, I., & Aldana, M. (2008). Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS One, 3, e2456.PubMed
95.
go back to reference Shmulevich, I., Kauffman, S. A., & Aldana, M. (2005). Eukaryotic cells are dynamically ordered or critical but not chaotic. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13439–13444.PubMed Shmulevich, I., Kauffman, S. A., & Aldana, M. (2005). Eukaryotic cells are dynamically ordered or critical but not chaotic. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13439–13444.PubMed
96.
go back to reference Mitsiadis, T. A., Caton, J., & Cobourne, M. (2006). Waking-up the sleeping beauty: recovery of the ancestral bird odontogenic program. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 306(3), 227–233. doi:10.1002/jez.b.21094 (Research support, non-U.S. government. Comparative study).PubMed Mitsiadis, T. A., Caton, J., & Cobourne, M. (2006). Waking-up the sleeping beauty: recovery of the ancestral bird odontogenic program. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 306(3), 227–233. doi:10.​1002/​jez.​b.​21094 (Research support, non-U.S. government. Comparative study).PubMed
97.
98.
go back to reference Kitada, K., Taima, A., Ogasawara, K., Metsugi, S., & Aikawa, S. (2011). Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes. Genes, Chromosomes & Cancer, 50(4), 217–227. doi:10.1002/gcc.20847. Kitada, K., Taima, A., Ogasawara, K., Metsugi, S., & Aikawa, S. (2011). Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes. Genes, Chromosomes & Cancer, 50(4), 217–227. doi:10.​1002/​gcc.​20847.
99.
go back to reference Li, R., Yerganian, G., Duesberg, P., Kraemer, A., Willer, A., Rausch, C., et al. (1997). Aneuploidy correlated 100 % with chemical transformation of Chinese hamster cells. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14506–14511.PubMed Li, R., Yerganian, G., Duesberg, P., Kraemer, A., Willer, A., Rausch, C., et al. (1997). Aneuploidy correlated 100 % with chemical transformation of Chinese hamster cells. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14506–14511.PubMed
100.
go back to reference Clark, W. H. (1991). Tumour progression and the nature of cancer. British Journal of Cancer, 64(4), 631–644.PubMed Clark, W. H. (1991). Tumour progression and the nature of cancer. British Journal of Cancer, 64(4), 631–644.PubMed
101.
102.
go back to reference Persons, D. L., Yazlovitskaya, E. M., Cui, W., & Pelling, J. C. (1999). Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clinical Cancer Research, 5(5), 1007–1014 (Research support, U.S. government, P.H.S. Comparative study).PubMed Persons, D. L., Yazlovitskaya, E. M., Cui, W., & Pelling, J. C. (1999). Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clinical Cancer Research, 5(5), 1007–1014 (Research support, U.S. government, P.H.S. Comparative study).PubMed
103.
go back to reference Sims, A. H., Zweemer, A. J., Nagumo, Y., Faratian, D., Muir, M., Dodds, M., et al. (2012). Defining the molecular response to trastuzumab, pertuzumab and combination therapy in ovarian cancer. British Journal of Cancer, 106(11), 1779–1789. doi:10.1038/bjc.2012.176 (Research support, non-U.S. government).PubMed Sims, A. H., Zweemer, A. J., Nagumo, Y., Faratian, D., Muir, M., Dodds, M., et al. (2012). Defining the molecular response to trastuzumab, pertuzumab and combination therapy in ovarian cancer. British Journal of Cancer, 106(11), 1779–1789. doi:10.​1038/​bjc.​2012.​176 (Research support, non-U.S. government).PubMed
104.
go back to reference Levsky, J. M., & Singer, R. H. (2003). Gene expression and the myth of the average cell. Trends in Cell Biology, 13(1), 4–6.PubMed Levsky, J. M., & Singer, R. H. (2003). Gene expression and the myth of the average cell. Trends in Cell Biology, 13(1), 4–6.PubMed
105.
go back to reference Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453(7194), 544–547.PubMed Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453(7194), 544–547.PubMed
106.
go back to reference Cohen, A. A., Geva-Zatorsky, N., Eden, E., Frenkel-Morgenstern, M., Issaeva, I., Sigal, A., et al. (2008). Dynamic proteomics of individual cancer cells in response to a drug. Science, 322, 1511–1516. Cohen, A. A., Geva-Zatorsky, N., Eden, E., Frenkel-Morgenstern, M., Issaeva, I., Sigal, A., et al. (2008). Dynamic proteomics of individual cancer cells in response to a drug. Science, 322, 1511–1516.
107.
go back to reference Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., & Sorger, P. K. (2009). Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature, 459(7245), 428–432. doi:10.1038/nature08012.PubMed Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., & Sorger, P. K. (2009). Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature, 459(7245), 428–432. doi:10.​1038/​nature08012.PubMed
108.
go back to reference Darwin, C. (1869). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life (5th ed., pp. 91–92). London: John Murray. Darwin, C. (1869). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life (5th ed., pp. 91–92). London: John Murray.
109.
go back to reference Nietzsche, F. (1998). Twilight of the idols (D. Large, trans.). Oxford: Oxford University Press. Nietzsche, F. (1998). Twilight of the idols (D. Large, trans.). Oxford: Oxford University Press.
112.
go back to reference Hill, R. P., & Perris, R. (2007). “Destemming” cancer stem cells. Journal of the National Cancer Institute, 99(19), 1435–1440.PubMed Hill, R. P., & Perris, R. (2007). “Destemming” cancer stem cells. Journal of the National Cancer Institute, 99(19), 1435–1440.PubMed
114.
116.
go back to reference Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMed Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMed
117.
go back to reference Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M. E., Neve, R. M., et al. (2008). Epithelial mesenchymal transition traits in human breast cancer cell lines. Clinical & Experimental Metastasis, 25(6), 629–642. Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M. E., Neve, R. M., et al. (2008). Epithelial mesenchymal transition traits in human breast cancer cell lines. Clinical & Experimental Metastasis, 25(6), 629–642.
118.
go back to reference Deka, J., Wiedemann, N., Anderle, P., Murphy-Seiler, F., Bultinck, J., Eyckerman, S., et al. (2010). Bcl9/Bcl9l are critical for Wnt-mediated regulation of stem cell traits in colon epithelium and adenocarcinomas. Cancer Research, 70(16), 6619–6628. doi:10.1158/0008-5472.CAN-10-0148.PubMed Deka, J., Wiedemann, N., Anderle, P., Murphy-Seiler, F., Bultinck, J., Eyckerman, S., et al. (2010). Bcl9/Bcl9l are critical for Wnt-mediated regulation of stem cell traits in colon epithelium and adenocarcinomas. Cancer Research, 70(16), 6619–6628. doi:10.​1158/​0008-5472.​CAN-10-0148.PubMed
119.
go back to reference Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMed Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMed
120.
go back to reference Donnenberg, V. S., & Donnenberg, A. D. (2005). Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. The Journal of Clinical Pharmacology, 45(8), 872–877. Donnenberg, V. S., & Donnenberg, A. D. (2005). Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. The Journal of Clinical Pharmacology, 45(8), 872–877.
121.
go back to reference Elliot, A., Adams, J., & Al-Hajj, M. (2010). The ABCs of cancer stem cell drug resistance. IDrugs, 13(9), 632–635.PubMed Elliot, A., Adams, J., & Al-Hajj, M. (2010). The ABCs of cancer stem cell drug resistance. IDrugs, 13(9), 632–635.PubMed
122.
go back to reference Lee, G. Y., Shim, J. S., Cho, B., Jung, J. Y., Lee, D. S., & Oh, I. H. (2011). Stochastic acquisition of a stem cell-like state and drug tolerance in leukemia cells stressed by radiation. International Journal of Hematology, 93(1), 27–35. doi:10.1007/s12185-010-0734-2 (Research support, non-U.S. government).PubMed Lee, G. Y., Shim, J. S., Cho, B., Jung, J. Y., Lee, D. S., & Oh, I. H. (2011). Stochastic acquisition of a stem cell-like state and drug tolerance in leukemia cells stressed by radiation. International Journal of Hematology, 93(1), 27–35. doi:10.​1007/​s12185-010-0734-2 (Research support, non-U.S. government).PubMed
123.
124.
go back to reference Andarawewa, K. L., Erickson, A. C., Chou, W. S., Costes, S. V., Gascard, P., Mott, J. D., et al. (2007). Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Research, 67(18), 8662–8670. doi:10.1158/0008-5472.CAN-07-1294 (Research support, U.S. government, non-P.H.S.).PubMed Andarawewa, K. L., Erickson, A. C., Chou, W. S., Costes, S. V., Gascard, P., Mott, J. D., et al. (2007). Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Research, 67(18), 8662–8670. doi:10.​1158/​0008-5472.​CAN-07-1294 (Research support, U.S. government, non-P.H.S.).PubMed
125.
go back to reference Arumugam, T., Ramachandran, V., Fournier, K. F., Wang, H., Marquis, L., Abbruzzese, J. L., et al. (2009). Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Research, 69(14), 5820–5828. doi:10.1158/0008-5472.CAN-08-2819.PubMed Arumugam, T., Ramachandran, V., Fournier, K. F., Wang, H., Marquis, L., Abbruzzese, J. L., et al. (2009). Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Research, 69(14), 5820–5828. doi:10.​1158/​0008-5472.​CAN-08-2819.PubMed
126.
go back to reference Li, Q. Q., Xu, J. D., Wang, W. J., Cao, X. X., Chen, Q., Tang, F., et al. (2009). Twist1-mediated adriamycin-induced epithelial–mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clinical Cancer Research, 15(8), 2657–2665. doi:10.1158/1078-0432.CCR-08-2372 (Research support, non-U.S. government).PubMed Li, Q. Q., Xu, J. D., Wang, W. J., Cao, X. X., Chen, Q., Tang, F., et al. (2009). Twist1-mediated adriamycin-induced epithelial–mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clinical Cancer Research, 15(8), 2657–2665. doi:10.​1158/​1078-0432.​CCR-08-2372 (Research support, non-U.S. government).PubMed
127.
go back to reference Li, Q. Q., Chen, Z. Q., Cao, X. X., Xu, J. D., Xu, J. W., Chen, Y. Y., et al. (2011). Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial–mesenchymal transition of breast cancer cells. Cell Death and Differentiation, 18(1), 16–25. doi:10.1038/cdd.2010.103 (Research support, non-U.S. government).PubMed Li, Q. Q., Chen, Z. Q., Cao, X. X., Xu, J. D., Xu, J. W., Chen, Y. Y., et al. (2011). Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial–mesenchymal transition of breast cancer cells. Cell Death and Differentiation, 18(1), 16–25. doi:10.​1038/​cdd.​2010.​103 (Research support, non-U.S. government).PubMed
128.
go back to reference Wang, Z., Li, Y., Kong, D., Banerjee, S., Ahmad, A., Azmi, A. S., et al. (2009). Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Research, 69(6), 2400–2407. doi:10.1158/0008-5472.CAN-08-4312 (Research support, N.I.H., non-U.S. government. Extramural).PubMed Wang, Z., Li, Y., Kong, D., Banerjee, S., Ahmad, A., Azmi, A. S., et al. (2009). Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Research, 69(6), 2400–2407. doi:10.​1158/​0008-5472.​CAN-08-4312 (Research support, N.I.H., non-U.S. government. Extramural).PubMed
129.
go back to reference Chaudhary, P. M., & Roninson, I. B. (1993). Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. Journal of the National Cancer Institute, 85(8), 632–639.PubMed Chaudhary, P. M., & Roninson, I. B. (1993). Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. Journal of the National Cancer Institute, 85(8), 632–639.PubMed
130.
go back to reference Abolhoda, A., Wilson, A. E., Ross, H., Danenberg, P. V., Burt, M., & Scotto, K. W. (1999). Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clinical Cancer Research, 5(11), 3352–3356.PubMed Abolhoda, A., Wilson, A. E., Ross, H., Danenberg, P. V., Burt, M., & Scotto, K. W. (1999). Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clinical Cancer Research, 5(11), 3352–3356.PubMed
131.
go back to reference Stein, U., Jurchott, K., Walther, W., Bergmann, S., Schlag, P. M., & Royer, H. D. (2001). Hyperthermia-induced nuclear translocation of transcription factor YB-1 leads to enhanced expression of multidrug resistance-related ABC transporters. The Journal of Biological Chemistry, 276(30), 28562–28569. doi:10.1074/jbc.M100311200 (Research support, non-U.S. government).PubMed Stein, U., Jurchott, K., Walther, W., Bergmann, S., Schlag, P. M., & Royer, H. D. (2001). Hyperthermia-induced nuclear translocation of transcription factor YB-1 leads to enhanced expression of multidrug resistance-related ABC transporters. The Journal of Biological Chemistry, 276(30), 28562–28569. doi:10.​1074/​jbc.​M100311200 (Research support, non-U.S. government).PubMed
132.
go back to reference Chin, K. V., Tanaka, S., Darlington, G., Pastan, I., & Gottesman, M. M. (1990). Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. The Journal of Biological Chemistry, 265(1), 221–226.PubMed Chin, K. V., Tanaka, S., Darlington, G., Pastan, I., & Gottesman, M. M. (1990). Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. The Journal of Biological Chemistry, 265(1), 221–226.PubMed
133.
go back to reference Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi:10.1038/nature08658.PubMed Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi:10.​1038/​nature08658.PubMed
135.
go back to reference Kreso, A., O'Brien, C. A., van Galen, P., Gan, O. I., Notta, F., Brown, A. M., et al. (2013). Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 339(6119), 543–548. doi:10.1126/science.1227670.PubMed Kreso, A., O'Brien, C. A., van Galen, P., Gan, O. I., Notta, F., Brown, A. M., et al. (2013). Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 339(6119), 543–548. doi:10.​1126/​science.​1227670.PubMed
136.
go back to reference Nobili, S., Landini, I., Mazzei, T., & Mini, E. (2012). Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Medicinal Research Reviews, 32, 1220–1262. doi:10.1002/med.20239.PubMed Nobili, S., Landini, I., Mazzei, T., & Mini, E. (2012). Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Medicinal Research Reviews, 32, 1220–1262. doi:10.​1002/​med.​20239.PubMed
Metadata
Title
Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells
Author
Sui Huang
Publication date
01-12-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9435-7

Other articles of this Issue 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine