Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2013

01-06-2013 | NON-THEMATIC REVIEW

Targeting the Ras–ERK pathway in pancreatic adenocarcinoma

Authors: Cindy Neuzillet, Pascal Hammel, Annemilaï Tijeras-Raballand, Anne Couvelard, Eric Raymond

Published in: Cancer and Metastasis Reviews | Issue 1-2/2013

Login to get access

Abstract

Pancreatic ductal adenocarcinoma (PAC) stands as the poorest prognostic tumor of the digestive tract with limited therapeutic options. PAC carcinogenesis is associated with the loss of function of tumor suppressor genes such as INK4A, TP53, BRCA2, and DPC4, and only a few activated oncogenes among which K-RAS mutations are the most prevalent. The K-RAS mutation occurs early in PAC carcinogenesis, driving downstream activation of MEK and ERK1/2 which promote survival, invasion, and migration of cancer cells. In PAC models, inhibition of members of the Ras–ERK pathway blocks cellular proliferation and metastasis development. As oncogenic Ras does not appear to be a suitable drug target, inhibitors targeting downstream kinases including Raf and MEK have been developed and are currently under evaluation in clinical trials. In this review, we describe the role of the Ras–ERK pathway in pancreatic carcinogenesis and as a new therapeutic target for the treatment of PAC.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer. doi:10.1002/ijc.25516. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer. doi:10.​1002/​ijc.​25516.
5.
go back to reference Burris, H. A., 3rd, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15(6), 2403–2413.PubMed Burris, H. A., 3rd, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15(6), 2403–2413.PubMed
6.
go back to reference Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25(15), 1960–1966. doi:10.1200/JCO.2006.07.9525.PubMedCrossRef Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25(15), 1960–1966. doi:10.​1200/​JCO.​2006.​07.​9525.PubMedCrossRef
7.
go back to reference Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine, 364(19), 1817–1825. doi:10.1056/NEJMoa1011923.PubMedCrossRef Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine, 364(19), 1817–1825. doi:10.​1056/​NEJMoa1011923.PubMedCrossRef
8.
go back to reference McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773(8), 1263–1284. doi:10.1016/j.bbamcr.2006.10.001.PubMedCrossRef McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773(8), 1263–1284. doi:10.​1016/​j.​bbamcr.​2006.​10.​001.PubMedCrossRef
9.
go back to reference Preis, M., & Korc, M. (2010). Kinase signaling pathways as targets for intervention in pancreatic cancer. Cancer Biology & Therapy, 9(10), 754–763.CrossRef Preis, M., & Korc, M. (2010). Kinase signaling pathways as targets for intervention in pancreatic cancer. Cancer Biology & Therapy, 9(10), 754–763.CrossRef
11.
go back to reference Chappell, W. H., Steelman, L. S., Long, J. M., Kempf, R. C., Abrams, S. L., Franklin, R. A., et al. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2(3), 135–164.PubMed Chappell, W. H., Steelman, L. S., Long, J. M., Kempf, R. C., Abrams, S. L., Franklin, R. A., et al. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2(3), 135–164.PubMed
13.
go back to reference Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468(7326), 968–972. doi:10.1038/nature09627.PubMedCrossRef Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468(7326), 968–972. doi:10.​1038/​nature09627.PubMedCrossRef
23.
go back to reference Wang, S., Ghosh, R. N., & Chellappan, S. P. (1998). Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Molecular and Cellular Biology, 18(12), 7487–7498.PubMed Wang, S., Ghosh, R. N., & Chellappan, S. P. (1998). Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Molecular and Cellular Biology, 18(12), 7487–7498.PubMed
24.
go back to reference Ballif, B. A., & Blenis, J. (2001). Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth & Differentiation, 12(8), 397–408. Ballif, B. A., & Blenis, J. (2001). Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth & Differentiation, 12(8), 397–408.
26.
27.
go back to reference Sahu, R. P., Batra, S., Kandala, P. K., Brown, T. L., & Srivastava, S. K. (2011). The role of K-ras gene mutation in TRAIL-induced apoptosis in pancreatic and lung cancer cell lines. Cancer Chemotherapy and Pharmacology, 67(2), 481–487. doi:10.1007/s00280-010-1463-1.PubMedCrossRef Sahu, R. P., Batra, S., Kandala, P. K., Brown, T. L., & Srivastava, S. K. (2011). The role of K-ras gene mutation in TRAIL-induced apoptosis in pancreatic and lung cancer cell lines. Cancer Chemotherapy and Pharmacology, 67(2), 481–487. doi:10.​1007/​s00280-010-1463-1.PubMedCrossRef
28.
go back to reference Maida, Y., Kyo, S., Kanaya, T., Wang, Z., Yatabe, N., Tanaka, M., et al. (2002). Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene, 21(26), 4071–4079. doi:10.1038/sj.onc.1205509.PubMedCrossRef Maida, Y., Kyo, S., Kanaya, T., Wang, Z., Yatabe, N., Tanaka, M., et al. (2002). Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene, 21(26), 4071–4079. doi:10.​1038/​sj.​onc.​1205509.PubMedCrossRef
29.
go back to reference Ellenrieder, V., Hendler, S. F., Boeck, W., Seufferlein, T., Menke, A., Ruhland, C., et al. (2001). Transforming growth factor beta1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Research, 61(10), 4222–4228.PubMed Ellenrieder, V., Hendler, S. F., Boeck, W., Seufferlein, T., Menke, A., Ruhland, C., et al. (2001). Transforming growth factor beta1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Research, 61(10), 4222–4228.PubMed
30.
32.
go back to reference Lim, J. H., Lee, E. S., You, H. J., Lee, J. W., Park, J. W., & Chun, Y. S. (2004). Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene, 23(58), 9427–9431. doi:10.1038/sj.onc.1208003.PubMedCrossRef Lim, J. H., Lee, E. S., You, H. J., Lee, J. W., Park, J. W., & Chun, Y. S. (2004). Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene, 23(58), 9427–9431. doi:10.​1038/​sj.​onc.​1208003.PubMedCrossRef
35.
go back to reference Lee, J., Jang, K. T., Ki, C. S., Lim, T., Park, Y. S., Lim, H. Y., et al. (2007). Impact of epidermal growth factor receptor (EGFR) kinase mutations, EGFR gene amplifications, and KRAS mutations on survival of pancreatic adenocarcinoma. Cancer, 109(8), 1561–1569. doi:10.1002/cncr.22559.PubMedCrossRef Lee, J., Jang, K. T., Ki, C. S., Lim, T., Park, Y. S., Lim, H. Y., et al. (2007). Impact of epidermal growth factor receptor (EGFR) kinase mutations, EGFR gene amplifications, and KRAS mutations on survival of pancreatic adenocarcinoma. Cancer, 109(8), 1561–1569. doi:10.​1002/​cncr.​22559.PubMedCrossRef
36.
go back to reference Luo, G., Long, J., Qiu, L., Liu, C., Xu, J., & Yu, X. (2011). Role of epidermal growth factor receptor expression on patient survival in pancreatic cancer: a meta-analysis. Pancreatology, 11(6), 595–600. doi:10.1159/000334465.PubMedCrossRef Luo, G., Long, J., Qiu, L., Liu, C., Xu, J., & Yu, X. (2011). Role of epidermal growth factor receptor expression on patient survival in pancreatic cancer: a meta-analysis. Pancreatology, 11(6), 595–600. doi:10.​1159/​000334465.PubMedCrossRef
37.
go back to reference Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N., & Depinho, R. A. (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes & Development, 20(10), 1218–1249. doi:10.1101/gad.1415606.CrossRef Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N., & Depinho, R. A. (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes & Development, 20(10), 1218–1249. doi:10.​1101/​gad.​1415606.CrossRef
39.
go back to reference Morris, J. P. T., Wang, S. C., & Hebrok, M. (2010). KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nature Reviews. Cancer, 10(10), 683–695. doi:10.1038/nrc2899.PubMedCrossRef Morris, J. P. T., Wang, S. C., & Hebrok, M. (2010). KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nature Reviews. Cancer, 10(10), 683–695. doi:10.​1038/​nrc2899.PubMedCrossRef
42.
go back to reference Matthaios, D., Zarogoulidis, P., Balgouranidou, I., Chatzaki, E., & Kakolyris, S. (2011). Molecular pathogenesis of pancreatic cancer and clinical perspectives. Oncology, 81(3–4), 259–272. doi:10.1159/000334449.PubMedCrossRef Matthaios, D., Zarogoulidis, P., Balgouranidou, I., Chatzaki, E., & Kakolyris, S. (2011). Molecular pathogenesis of pancreatic cancer and clinical perspectives. Oncology, 81(3–4), 259–272. doi:10.​1159/​000334449.PubMedCrossRef
44.
go back to reference Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806. doi:10.1126/science.1164368.PubMedCrossRef Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806. doi:10.​1126/​science.​1164368.PubMedCrossRef
45.
go back to reference Mazur, P. K., & Siveke, J. T. (2011). Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology. Gut. doi:10.1136/gutjnl-2011-300756. Mazur, P. K., & Siveke, J. T. (2011). Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology. Gut. doi:10.​1136/​gutjnl-2011-300756.
46.
go back to reference Skoulidis, F., Cassidy, L. D., Pisupati, V., Jonasson, J. G., Bjarnason, H., Eyfjord, J. E., et al. (2010). Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell, 18(5), 499–509. doi:10.1016/j.ccr.2010.10.015.PubMedCrossRef Skoulidis, F., Cassidy, L. D., Pisupati, V., Jonasson, J. G., Bjarnason, H., Eyfjord, J. E., et al. (2010). Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell, 18(5), 499–509. doi:10.​1016/​j.​ccr.​2010.​10.​015.PubMedCrossRef
48.
go back to reference Zhao, S., Venkatasubbarao, K., Lazor, J. W., Sperry, J., Jin, C., Cao, L., et al. (2008). Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Research, 68(11), 4221–4228. doi:10.1158/0008-5472.CAN-07-5123.PubMedCrossRef Zhao, S., Venkatasubbarao, K., Lazor, J. W., Sperry, J., Jin, C., Cao, L., et al. (2008). Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Research, 68(11), 4221–4228. doi:10.​1158/​0008-5472.​CAN-07-5123.PubMedCrossRef
49.
go back to reference Bachet, J. B., Marechal, R., Demetter, P., Bonnetain, F., Couvelard, A., Svrcek, M., et al. (2012). Contribution of CXCR4 and SMAD4 in predicting disease progression pattern and benefit from adjuvant chemotherapy in resected pancreatic adenocarcinoma. Annals of Oncology. doi:10.1093/annonc/mdr617. Bachet, J. B., Marechal, R., Demetter, P., Bonnetain, F., Couvelard, A., Svrcek, M., et al. (2012). Contribution of CXCR4 and SMAD4 in predicting disease progression pattern and benefit from adjuvant chemotherapy in resected pancreatic adenocarcinoma. Annals of Oncology. doi:10.​1093/​annonc/​mdr617.
52.
54.
go back to reference Duner, S., Lopatko Lindman, J., Ansari, D., Gundewar, C., & Andersson, R. (2010). Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology, 10(6), 673–681. doi:10.1159/000320711.PubMedCrossRef Duner, S., Lopatko Lindman, J., Ansari, D., Gundewar, C., & Andersson, R. (2010). Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology, 10(6), 673–681. doi:10.​1159/​000320711.PubMedCrossRef
56.
go back to reference Vasseur, S. T. R., Tournaire, R., & Iovanna, J. L. (2010). Hypoxia induced tumor metabolic switch contributes to pancreatic cancer aggressiveness. Cancers, 2(4), 2138–2152. doi:10.3390/cancers2042138.CrossRef Vasseur, S. T. R., Tournaire, R., & Iovanna, J. L. (2010). Hypoxia induced tumor metabolic switch contributes to pancreatic cancer aggressiveness. Cancers, 2(4), 2138–2152. doi:10.​3390/​cancers2042138.CrossRef
58.
go back to reference Xiong, H. Q., Rosenberg, A., LoBuglio, A., Schmidt, W., Wolff, R. A., Deutsch, J., et al. (2004). Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. Journal of Clinical Oncology, 22(13), 2610–2616. doi:10.1200/JCO.2004.12.040 22/13/2610.PubMedCrossRef Xiong, H. Q., Rosenberg, A., LoBuglio, A., Schmidt, W., Wolff, R. A., Deutsch, J., et al. (2004). Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. Journal of Clinical Oncology, 22(13), 2610–2616. doi:10.​1200/​JCO.​2004.​12.​040 22/​13/​2610.PubMedCrossRef
59.
go back to reference Philip, P. A., Benedetti, J., Corless, C. L., Wong, R., O’Reilly, E. M., Flynn, P. J., et al. (2010). Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. Journal of Clinical Oncology, 28(22), 3605–3610. doi:10.1200/JCO.2009.25.7550.PubMedCrossRef Philip, P. A., Benedetti, J., Corless, C. L., Wong, R., O’Reilly, E. M., Flynn, P. J., et al. (2010). Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. Journal of Clinical Oncology, 28(22), 3605–3610. doi:10.​1200/​JCO.​2009.​25.​7550.PubMedCrossRef
60.
go back to reference Van Cutsem, E., Vervenne, W. L., Bennouna, J., Humblet, Y., Gill, S., Van Laethem, J. L., et al. (2009). Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. Journal of Clinical Oncology, 27(13), 2231–2237. doi:10.1200/JCO.2008.20.0238.PubMedCrossRef Van Cutsem, E., Vervenne, W. L., Bennouna, J., Humblet, Y., Gill, S., Van Laethem, J. L., et al. (2009). Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. Journal of Clinical Oncology, 27(13), 2231–2237. doi:10.​1200/​JCO.​2008.​20.​0238.PubMedCrossRef
61.
go back to reference Graeven, U., Kremer, B., Sudhoff, T., Killing, B., Rojo, F., Weber, D., et al. (2006). Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer. British Journal of Cancer, 94(9), 1293–1299. doi:10.1038/sj.bjc.6603083.PubMedCrossRef Graeven, U., Kremer, B., Sudhoff, T., Killing, B., Rojo, F., Weber, D., et al. (2006). Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer. British Journal of Cancer, 94(9), 1293–1299. doi:10.​1038/​sj.​bjc.​6603083.PubMedCrossRef
62.
go back to reference Safran, H., Iannitti, D., Ramanathan, R., Schwartz, J. D., Steinhoff, M., Nauman, C., et al. (2004). Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress HER-2/neu. Cancer Investigation, 22(5), 706–712.PubMedCrossRef Safran, H., Iannitti, D., Ramanathan, R., Schwartz, J. D., Steinhoff, M., Nauman, C., et al. (2004). Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress HER-2/neu. Cancer Investigation, 22(5), 706–712.PubMedCrossRef
63.
go back to reference Fountzilas, G., Bobos, M., Kalogera-Fountzila, A., Xiros, N., Murray, S., Linardou, H., et al. (2008). Gemcitabine combined with gefitinib in patients with inoperable or metastatic pancreatic cancer: a phase II Study of the Hellenic Cooperative Oncology Group with biomarker evaluation. Cancer Investigation, 26(8), 784–793. doi:10.1080/07357900801918611.PubMedCrossRef Fountzilas, G., Bobos, M., Kalogera-Fountzila, A., Xiros, N., Murray, S., Linardou, H., et al. (2008). Gemcitabine combined with gefitinib in patients with inoperable or metastatic pancreatic cancer: a phase II Study of the Hellenic Cooperative Oncology Group with biomarker evaluation. Cancer Investigation, 26(8), 784–793. doi:10.​1080/​0735790080191861​1.PubMedCrossRef
64.
go back to reference Ignatiadis, M., Polyzos, A., Stathopoulos, G. P., Tselepatiotis, E., Christophylakis, C., Kalbakis, K., et al. (2006). A multicenter phase II study of docetaxel in combination with gefitinib in gemcitabine-pretreated patients with advanced/metastatic pancreatic cancer. Oncology, 71(3–4), 159–163. doi:10.1159/000106064.PubMedCrossRef Ignatiadis, M., Polyzos, A., Stathopoulos, G. P., Tselepatiotis, E., Christophylakis, C., Kalbakis, K., et al. (2006). A multicenter phase II study of docetaxel in combination with gefitinib in gemcitabine-pretreated patients with advanced/metastatic pancreatic cancer. Oncology, 71(3–4), 159–163. doi:10.​1159/​000106064.PubMedCrossRef
65.
go back to reference Brell, J. M., Matin, K., Evans, T., Volkin, R. L., Kiefer, G. J., Schlesselman, J. J., et al. (2009). Phase II study of docetaxel and gefitinib as second-line therapy in gemcitabine pretreated patients with advanced pancreatic cancer. Oncology, 76(4), 270–274. doi:10.1159/000206141.PubMedCrossRef Brell, J. M., Matin, K., Evans, T., Volkin, R. L., Kiefer, G. J., Schlesselman, J. J., et al. (2009). Phase II study of docetaxel and gefitinib as second-line therapy in gemcitabine pretreated patients with advanced pancreatic cancer. Oncology, 76(4), 270–274. doi:10.​1159/​000206141.PubMedCrossRef
66.
go back to reference Safran, H. M. T., Bahary, N., Whiting, S., Lopez, C. D., Sun, W., Charpentier, K., Shipley, J., Anderson, E., McNulty, B., Schumacher, A., Clark, A., Vakharia, J., Kennedy, T., & Sio, T. (2011). Lapatinib and gemcitabine for metastatic pancreatic cancer: a phase II study. American Journal of Clinical Oncology, 34(1), 50–52. doi:10.1097/COC.0b013e3181d26b01.CrossRef Safran, H. M. T., Bahary, N., Whiting, S., Lopez, C. D., Sun, W., Charpentier, K., Shipley, J., Anderson, E., McNulty, B., Schumacher, A., Clark, A., Vakharia, J., Kennedy, T., & Sio, T. (2011). Lapatinib and gemcitabine for metastatic pancreatic cancer: a phase II study. American Journal of Clinical Oncology, 34(1), 50–52. doi:10.​1097/​COC.​0b013e3181d26b01​.CrossRef
68.
go back to reference Martin, N. E., Brunner, T. B., Kiel, K. D., DeLaney, T. F., Regine, W. F., Mohiuddin, M., et al. (2004). A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clinical Cancer Research, 10(16), 5447–5454. doi:10.1158/1078-0432.CCR-04-024810/16/5447.PubMedCrossRef Martin, N. E., Brunner, T. B., Kiel, K. D., DeLaney, T. F., Regine, W. F., Mohiuddin, M., et al. (2004). A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clinical Cancer Research, 10(16), 5447–5454. doi:10.​1158/​1078-0432.​CCR-04-024810/​16/​5447.PubMedCrossRef
69.
go back to reference Toubaji, A., Achtar, M., Provenzano, M., Herrin, V. E., Behrens, R., Hamilton, M., et al. (2008). Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunology, Immunotherapy, 57(9), 1413–1420. doi:10.1007/s00262-008-0477-6.PubMedCrossRef Toubaji, A., Achtar, M., Provenzano, M., Herrin, V. E., Behrens, R., Hamilton, M., et al. (2008). Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunology, Immunotherapy, 57(9), 1413–1420. doi:10.​1007/​s00262-008-0477-6.PubMedCrossRef
70.
go back to reference Alberts, S. R., Schroeder, M., Erlichman, C., Steen, P. D., Foster, N. R., Moore, D. F., Jr., et al. (2004). Gemcitabine and ISIS-2503 for patients with locally advanced or metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group phase II trial. Journal of Clinical Oncology, 22(24), 4944–4950. doi:10.1200/JCO.2004.05.034.PubMedCrossRef Alberts, S. R., Schroeder, M., Erlichman, C., Steen, P. D., Foster, N. R., Moore, D. F., Jr., et al. (2004). Gemcitabine and ISIS-2503 for patients with locally advanced or metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group phase II trial. Journal of Clinical Oncology, 22(24), 4944–4950. doi:10.​1200/​JCO.​2004.​05.​034.PubMedCrossRef
72.
go back to reference Kindler, H. L., Wroblewski, K., Wallace, J. A., Hall, M. J., Locker, G., Nattam, S., et al. (2012). Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: a phase II trial of the University of Chicago Phase II Consortium. Investigational New Drugs, 30(1), 382–386. doi:10.1007/s10637-010-9526-z.PubMedCrossRef Kindler, H. L., Wroblewski, K., Wallace, J. A., Hall, M. J., Locker, G., Nattam, S., et al. (2012). Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: a phase II trial of the University of Chicago Phase II Consortium. Investigational New Drugs, 30(1), 382–386. doi:10.​1007/​s10637-010-9526-z.PubMedCrossRef
73.
go back to reference El-Khoueiry, A. B., Ramanathan, R. K., Yang, D. Y., Zhang, W., Shibata, S., Wright, J. J., et al. (2012). A randomized phase II of gemcitabine and sorafenib versus sorafenib alone in patients with metastatic pancreatic cancer. Investigational New Drugs, 30(3), 1175–1183. doi:10.1007/s10637-011-9658-9.PubMedCrossRef El-Khoueiry, A. B., Ramanathan, R. K., Yang, D. Y., Zhang, W., Shibata, S., Wright, J. J., et al. (2012). A randomized phase II of gemcitabine and sorafenib versus sorafenib alone in patients with metastatic pancreatic cancer. Investigational New Drugs, 30(3), 1175–1183. doi:10.​1007/​s10637-011-9658-9.PubMedCrossRef
74.
go back to reference Lang, S. A., Schachtschneider, P., Moser, C., Mori, A., Hackl, C., Gaumann, A., et al. (2008). Dual targeting of Raf and VEGF receptor 2 reduces growth and metastasis of pancreatic cancer through direct effects on tumor cells, endothelial cells, and pericytes. Molecular Cancer Therapeutics, 7(11), 3509–3518. doi:10.1158/1535-7163.MCT-08-0373.PubMedCrossRef Lang, S. A., Schachtschneider, P., Moser, C., Mori, A., Hackl, C., Gaumann, A., et al. (2008). Dual targeting of Raf and VEGF receptor 2 reduces growth and metastasis of pancreatic cancer through direct effects on tumor cells, endothelial cells, and pericytes. Molecular Cancer Therapeutics, 7(11), 3509–3518. doi:10.​1158/​1535-7163.​MCT-08-0373.PubMedCrossRef
75.
78.
go back to reference Lorusso, P. M., Adjei, A. A., Varterasian, M., Gadgeel, S., Reid, J., Mitchell, D. Y., et al. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. Journal of Clinical Oncology, 23(23), 5281–5293. doi:10.1200/JCO.2005.14.415.PubMedCrossRef Lorusso, P. M., Adjei, A. A., Varterasian, M., Gadgeel, S., Reid, J., Mitchell, D. Y., et al. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. Journal of Clinical Oncology, 23(23), 5281–5293. doi:10.​1200/​JCO.​2005.​14.​415.PubMedCrossRef
79.
go back to reference Rinehart, J., Adjei, A. A., Lorusso, P. M., Waterhouse, D., Hecht, J. R., Natale, R. B., et al. (2004). Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. Journal of Clinical Oncology, 22(22), 4456–4462. doi:10.1200/JCO.2004.01.185.PubMedCrossRef Rinehart, J., Adjei, A. A., Lorusso, P. M., Waterhouse, D., Hecht, J. R., Natale, R. B., et al. (2004). Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. Journal of Clinical Oncology, 22(22), 4456–4462. doi:10.​1200/​JCO.​2004.​01.​185.PubMedCrossRef
80.
go back to reference LoRusso, P. M., Krishnamurthi, S. S., Rinehart, J. J., Nabell, L. M., Malburg, L., Chapman, P. B., et al. (2010). Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clinical Cancer Research, 16(6), 1924–1937. doi:10.1158/1078-0432.CCR-09-1883.PubMedCrossRef LoRusso, P. M., Krishnamurthi, S. S., Rinehart, J. J., Nabell, L. M., Malburg, L., Chapman, P. B., et al. (2010). Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clinical Cancer Research, 16(6), 1924–1937. doi:10.​1158/​1078-0432.​CCR-09-1883.PubMedCrossRef
82.
go back to reference Huang, W., Yang, A. H., Matsumoto, D., Collette, W., Marroquin, L., Ko, M., et al. (2009). PD0325901, a mitogen-activated protein kinase kinase inhibitor, produces ocular toxicity in a rabbit animal model of retinal vein occlusion. Journal of Ocular Pharmacology and Therapeutics, 25(6), 519–530. doi:10.1089/jop. 2009.0060.PubMedCrossRef Huang, W., Yang, A. H., Matsumoto, D., Collette, W., Marroquin, L., Ko, M., et al. (2009). PD0325901, a mitogen-activated protein kinase kinase inhibitor, produces ocular toxicity in a rabbit animal model of retinal vein occlusion. Journal of Ocular Pharmacology and Therapeutics, 25(6), 519–530. doi:10.​1089/​jop.​ 2009.​0060.PubMedCrossRef
83.
go back to reference Faivre, S., Ronot, M., Dreyer, C., Serrate, C., Hentic, O., Bouattour, M., et al. (2012). Imaging response in neuroendocrine tumors treated with targeted therapies: the experience of sunitinib. Targeted Oncology, 7(2), 127–133. doi:10.1007/s11523-012-0216-y.PubMedCrossRef Faivre, S., Ronot, M., Dreyer, C., Serrate, C., Hentic, O., Bouattour, M., et al. (2012). Imaging response in neuroendocrine tumors treated with targeted therapies: the experience of sunitinib. Targeted Oncology, 7(2), 127–133. doi:10.​1007/​s11523-012-0216-y.PubMedCrossRef
85.
go back to reference Diep, C. H., Munoz, R. M., Choudhary, A., Von Hoff, D. D., & Han, H. (2011). Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells. Clinical Cancer Research, 17(9), 2744–2756. doi:10.1158/1078-0432.CCR-10-2214.PubMedCrossRef Diep, C. H., Munoz, R. M., Choudhary, A., Von Hoff, D. D., & Han, H. (2011). Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells. Clinical Cancer Research, 17(9), 2744–2756. doi:10.​1158/​1078-0432.​CCR-10-2214.PubMedCrossRef
86.
go back to reference Wang, H., Daouti, S., Li, W. H., Wen, Y., Rizzo, C., Higgins, B., et al. (2011). Identification of the MEK1(F129L) activating mutation as a potential mechanism of acquired resistance to MEK inhibition in human cancers carrying the B-RafV600E mutation. Cancer Research, 71(16), 5535–5545. doi:10.1158/0008-5472.CAN-10-4351.PubMedCrossRef Wang, H., Daouti, S., Li, W. H., Wen, Y., Rizzo, C., Higgins, B., et al. (2011). Identification of the MEK1(F129L) activating mutation as a potential mechanism of acquired resistance to MEK inhibition in human cancers carrying the B-RafV600E mutation. Cancer Research, 71(16), 5535–5545. doi:10.​1158/​0008-5472.​CAN-10-4351.PubMedCrossRef
87.
go back to reference Little, A. S., Balmanno, K., Sale, M. J., Smith, P. D., & Cook, S. J. (2012). Tumour cell responses to MEK1/2 inhibitors: acquired resistance and pathway remodelling. Biochemical Society Transactions, 40(1), 73–78. doi:10.1042/BST20110647.PubMedCrossRef Little, A. S., Balmanno, K., Sale, M. J., Smith, P. D., & Cook, S. J. (2012). Tumour cell responses to MEK1/2 inhibitors: acquired resistance and pathway remodelling. Biochemical Society Transactions, 40(1), 73–78. doi:10.​1042/​BST20110647.PubMedCrossRef
88.
89.
91.
go back to reference Yeh, J. J., Routh, E. D., Rubinas, T., Peacock, J., Martin, T. D., Shen, X. J., et al. (2009). KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Molecular Cancer Therapeutics, 8(4), 834–843. doi:10.1158/1535-7163.MCT-08-0972.PubMedCrossRef Yeh, J. J., Routh, E. D., Rubinas, T., Peacock, J., Martin, T. D., Shen, X. J., et al. (2009). KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Molecular Cancer Therapeutics, 8(4), 834–843. doi:10.​1158/​1535-7163.​MCT-08-0972.PubMedCrossRef
92.
go back to reference Loboda, A., Nebozhyn, M., Klinghoffer, R., Frazier, J., Chastain, M., Arthur, W., et al. (2010). A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Medical Genomics, 3, 26. doi:10.1186/1755-8794-3-26.PubMedCrossRef Loboda, A., Nebozhyn, M., Klinghoffer, R., Frazier, J., Chastain, M., Arthur, W., et al. (2010). A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Medical Genomics, 3, 26. doi:10.​1186/​1755-8794-3-26.PubMedCrossRef
93.
go back to reference Holt, S. V., Logie, A., Odedra, R., Heier, A., Heaton, S. P., Alferez, D., et al. (2012). The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models. British Journal of Cancer, 106(5), 858–866. doi:10.1038/bjc.2012.8 bjc20128.PubMedCrossRef Holt, S. V., Logie, A., Odedra, R., Heier, A., Heaton, S. P., Alferez, D., et al. (2012). The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models. British Journal of Cancer, 106(5), 858–866. doi:10.​1038/​bjc.​2012.​8 bjc20128.PubMedCrossRef
94.
go back to reference Urick, M. E., Chung, E. J., Shield, W. P., 3rd, Gerber, N., White, A., Sowers, A., et al. (2011). Enhancement of 5-fluorouracil-induced in vitro and in vivo radiosensitization with MEK inhibition. Clinical Cancer Research, 17(15), 5038–5047. doi:10.1158/1078-0432.CCR-11-0358.PubMedCrossRef Urick, M. E., Chung, E. J., Shield, W. P., 3rd, Gerber, N., White, A., Sowers, A., et al. (2011). Enhancement of 5-fluorouracil-induced in vitro and in vivo radiosensitization with MEK inhibition. Clinical Cancer Research, 17(15), 5038–5047. doi:10.​1158/​1078-0432.​CCR-11-0358.PubMedCrossRef
97.
go back to reference Halilovic, E., She, Q. B., Ye, Q., Pagliarini, R., Sellers, W. R., Solit, D. B., et al. (2010). PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Research, 70(17), 6804–6814. doi:10.1158/0008-5472.CAN-10-0409.PubMedCrossRef Halilovic, E., She, Q. B., Ye, Q., Pagliarini, R., Sellers, W. R., Solit, D. B., et al. (2010). PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Research, 70(17), 6804–6814. doi:10.​1158/​0008-5472.​CAN-10-0409.PubMedCrossRef
98.
go back to reference Chang, Q., Chen, E., & Hedley, D. W. (2009). Effects of combined inhibition of MEK and mTOR on downstream signaling and tumor growth in pancreatic cancer xenograft models. Cancer Biology & Therapy, 8(20), 1893–1901.CrossRef Chang, Q., Chen, E., & Hedley, D. W. (2009). Effects of combined inhibition of MEK and mTOR on downstream signaling and tumor growth in pancreatic cancer xenograft models. Cancer Biology & Therapy, 8(20), 1893–1901.CrossRef
99.
go back to reference Chang, Q., Chapman, M. S., Miner, J. N., & Hedley, D. W. (2010). Antitumour activity of a potent MEK inhibitor RDEA119/BAY 869766 combined with rapamycin in human orthotopic primary pancreatic cancer xenografts. BMC Cancer, 10, 515. doi:10.1186/1471-2407-10-515.PubMedCrossRef Chang, Q., Chapman, M. S., Miner, J. N., & Hedley, D. W. (2010). Antitumour activity of a potent MEK inhibitor RDEA119/BAY 869766 combined with rapamycin in human orthotopic primary pancreatic cancer xenografts. BMC Cancer, 10, 515. doi:10.​1186/​1471-2407-10-515.PubMedCrossRef
100.
Metadata
Title
Targeting the Ras–ERK pathway in pancreatic adenocarcinoma
Authors
Cindy Neuzillet
Pascal Hammel
Annemilaï Tijeras-Raballand
Anne Couvelard
Eric Raymond
Publication date
01-06-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9396-2

Other articles of this Issue 1-2/2013

Cancer and Metastasis Reviews 1-2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine