Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Antitumour activity of a potent MEK inhibitor RDEA119/BAY 869766 combined with rapamycin in human orthotopic primary pancreatic cancer xenografts

Authors: Qing Chang, Mark S Chapman, Jeffrey N Miner, David W Hedley

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Combining MEK inhibitors with other signalling pathway inhibitors or conventional cytotoxic drugs represents a promising new strategy against cancer. RDEA119/BAY 869766 is a highly potent and selective MEK1/2 inhibitor undergoing phase I human clinical trials. The effects of RDEA119/BAY 869766 as a single agent and in combination with rapamycin were studied in 3 early passage primary pancreatic cancer xenografts, OCIP19, 21, and 23, grown orthotopically.

Methods

Anti-cancer effects were determined in separate groups following chronic drug exposure. Effects on cell cycle and downstream signalling were examined by flow cytometry and western blot, respectively. Plasma RDEA119 concentrations were measured to monitor the drug accumulation in vivo.

Results

RDEA119/BAY 869766 alone or in combination with rapamycin showed significant growth inhibition in all the 3 models, with a significant decrease in the percentage of cells in S-phase, accompanied by a large decrease in bromodeoxyuridine labelling and cell cycle arrest predominantly in G1. The S6 ribosomal protein was inhibited to a greater extent with combination treatment in all the three models. Blood plasma pharmacokinetic analyses indicated that RDEA119 levels achieved in vivo are similar to those that produce target inhibition and cell cycle arrest in vitro.

Conclusions

Agents targeting the ERK and mTOR pathway have anticancer activity in primary xenografts, and these results support testing this combination in pancreatic cancer patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007, 26: 3291-3310. 10.1038/sj.onc.1210422.CrossRefPubMed Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007, 26: 3291-3310. 10.1038/sj.onc.1210422.CrossRefPubMed
2.
go back to reference Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, et al: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003, 4: 437-450. 10.1016/S1535-6108(03)00309-X.CrossRefPubMed Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, et al: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003, 4: 437-450. 10.1016/S1535-6108(03)00309-X.CrossRefPubMed
3.
go back to reference Furukawa T, Sunamura M, Motoi F, Matsuno S, Horii A: Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am J Pathol. 2003, 162: 1807-1815.CrossRefPubMedPubMedCentral Furukawa T, Sunamura M, Motoi F, Matsuno S, Horii A: Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am J Pathol. 2003, 162: 1807-1815.CrossRefPubMedPubMedCentral
4.
go back to reference Legrier ME, Yang CP, Yan HG, Lopez-Barcons L, Keller SM, Perez-Soler R, Horwitz SB, McDaid HM: Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res. 2007, 67: 11300-11308. 10.1158/0008-5472.CAN-07-0702.CrossRefPubMed Legrier ME, Yang CP, Yan HG, Lopez-Barcons L, Keller SM, Perez-Soler R, Horwitz SB, McDaid HM: Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res. 2007, 67: 11300-11308. 10.1158/0008-5472.CAN-07-0702.CrossRefPubMed
5.
go back to reference Sebolt-Leopold JS, Herrera R: Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004, 4: 937-947. 10.1038/nrc1503.CrossRefPubMed Sebolt-Leopold JS, Herrera R: Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004, 4: 937-947. 10.1038/nrc1503.CrossRefPubMed
6.
go back to reference Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier JM, et al: RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 2009, 69: 6839-6847. 10.1158/0008-5472.CAN-09-0679.CrossRefPubMed Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier JM, et al: RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 2009, 69: 6839-6847. 10.1158/0008-5472.CAN-09-0679.CrossRefPubMed
7.
go back to reference Chang Q, Chen E, Hedley DW: Effects of combined inhibition of MEK and mTOR on downstream signaling and tumor growth in pancreatic cancer xenograft models. Cancer Biol Ther. 2009, 8: 1893-1901.CrossRefPubMed Chang Q, Chen E, Hedley DW: Effects of combined inhibition of MEK and mTOR on downstream signaling and tumor growth in pancreatic cancer xenograft models. Cancer Biol Ther. 2009, 8: 1893-1901.CrossRefPubMed
8.
go back to reference Ng SS, Tsao MS, Nicklee T, Hedley DW: Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin Cancer Res. 2001, 7: 3269-3275.PubMed Ng SS, Tsao MS, Nicklee T, Hedley DW: Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin Cancer Res. 2001, 7: 3269-3275.PubMed
9.
go back to reference Yau CY, Wheeler JJ, Sutton KL, Hedley DW: Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res. 2005, 65: 1497-1504. 10.1158/0008-5472.CAN-04-2940.CrossRefPubMed Yau CY, Wheeler JJ, Sutton KL, Hedley DW: Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res. 2005, 65: 1497-1504. 10.1158/0008-5472.CAN-04-2940.CrossRefPubMed
10.
go back to reference Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA: The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun. 2005, 331: 295-302. 10.1016/j.bbrc.2005.03.166.CrossRefPubMed Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA: The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun. 2005, 331: 295-302. 10.1016/j.bbrc.2005.03.166.CrossRefPubMed
11.
go back to reference Cao P, Maira SM, Garcia-Echeverria C, Hedley DW: Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Cancer. 2009, 100: 1267-1276. 10.1038/sj.bjc.6604995.CrossRefPubMedPubMedCentral Cao P, Maira SM, Garcia-Echeverria C, Hedley DW: Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Cancer. 2009, 100: 1267-1276. 10.1038/sj.bjc.6604995.CrossRefPubMedPubMedCentral
12.
go back to reference Gregoire V, Van NT, Stephens LC, Brock WA, Milas L, Plunkett W, Hittelman WN: The role of fludarabine-induced apoptosis and cell cycle synchronization in enhanced murine tumor radiation response in vivo. Cancer Res. 1994, 54: 6201-6209.PubMed Gregoire V, Van NT, Stephens LC, Brock WA, Milas L, Plunkett W, Hittelman WN: The role of fludarabine-induced apoptosis and cell cycle synchronization in enhanced murine tumor radiation response in vivo. Cancer Res. 1994, 54: 6201-6209.PubMed
13.
go back to reference Vukovic V, Haugland HK, Nicklee T, Morrison AJ, Hedley DW: Hypoxia-inducible factor-1alpha is an intrinsic marker for hypoxia in cervical cancer xenografts. Cancer Res. 2001, 61: 7394-7398.PubMed Vukovic V, Haugland HK, Nicklee T, Morrison AJ, Hedley DW: Hypoxia-inducible factor-1alpha is an intrinsic marker for hypoxia in cervical cancer xenografts. Cancer Res. 2001, 61: 7394-7398.PubMed
14.
go back to reference Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, Shi C, Danenberg K, Danenberg PV, Kuramochi H, et al: An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res. 2006, 12: 4652-4661. 10.1158/1078-0432.CCR-06-0113.CrossRefPubMed Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, Shi C, Danenberg K, Danenberg PV, Kuramochi H, et al: An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res. 2006, 12: 4652-4661. 10.1158/1078-0432.CCR-06-0113.CrossRefPubMed
15.
go back to reference Birle DC, Hedley DW: Signaling interactions of rapamycin combined with erlotinib in cervical carcinoma xenografts. Mol Cancer Ther. 2006, 5: 2494-2502. 10.1158/1535-7163.MCT-05-0504.CrossRefPubMed Birle DC, Hedley DW: Signaling interactions of rapamycin combined with erlotinib in cervical carcinoma xenografts. Mol Cancer Ther. 2006, 5: 2494-2502. 10.1158/1535-7163.MCT-05-0504.CrossRefPubMed
16.
go back to reference Hay N: The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005, 8: 179-183. 10.1016/j.ccr.2005.08.008.CrossRefPubMed Hay N: The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005, 8: 179-183. 10.1016/j.ccr.2005.08.008.CrossRefPubMed
17.
go back to reference Bhaskar PT, Hay N: The two TORCs and Akt. Dev Cell. 2007, 12: 487-502. 10.1016/j.devcel.2007.03.020.CrossRefPubMed Bhaskar PT, Hay N: The two TORCs and Akt. Dev Cell. 2007, 12: 487-502. 10.1016/j.devcel.2007.03.020.CrossRefPubMed
18.
go back to reference McDaid HM, Lopez-Barcons L, Grossman A, Lia M, Keller S, Perez-Soler R, Horwitz SB: Enhancement of the therapeutic efficacy of taxol by the mitogen-activated protein kinase kinase inhibitor CI-1040 in nude mice bearing human heterotransplants. Cancer Res. 2005, 65: 2854-2860. 10.1158/0008-5472.CAN-04-4391.CrossRefPubMed McDaid HM, Lopez-Barcons L, Grossman A, Lia M, Keller S, Perez-Soler R, Horwitz SB: Enhancement of the therapeutic efficacy of taxol by the mitogen-activated protein kinase kinase inhibitor CI-1040 in nude mice bearing human heterotransplants. Cancer Res. 2005, 65: 2854-2860. 10.1158/0008-5472.CAN-04-4391.CrossRefPubMed
19.
go back to reference Ou DL, Shen YC, Liang JD, Liou JY, Yu SL, Fan HH, Wang DS, Lu YS, Hsu C, Cheng AL: Induction of Bim expression contributes to the antitumor synergy between sorafenib and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin Cancer Res. 2009, 15: 5820-5828. 10.1158/1078-0432.CCR-08-3294.CrossRefPubMed Ou DL, Shen YC, Liang JD, Liou JY, Yu SL, Fan HH, Wang DS, Lu YS, Hsu C, Cheng AL: Induction of Bim expression contributes to the antitumor synergy between sorafenib and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin Cancer Res. 2009, 15: 5820-5828. 10.1158/1078-0432.CCR-08-3294.CrossRefPubMed
20.
go back to reference Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Toh HC, Thng CH, Chow P, Ong HS, Chung A, et al: AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J Hepatol. 2010, 52: 79-87. 10.1016/j.jhep.2009.10.008.CrossRefPubMed Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Toh HC, Thng CH, Chow P, Ong HS, Chung A, et al: AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J Hepatol. 2010, 52: 79-87. 10.1016/j.jhep.2009.10.008.CrossRefPubMed
Metadata
Title
Antitumour activity of a potent MEK inhibitor RDEA119/BAY 869766 combined with rapamycin in human orthotopic primary pancreatic cancer xenografts
Authors
Qing Chang
Mark S Chapman
Jeffrey N Miner
David W Hedley
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-515

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine