Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012

Genomics screens for metastasis genes

Authors: Jinchun Yan, Qihong Huang

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis.
Literature
1.
go back to reference Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews Cancer, 3, 1–6. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews Cancer, 3, 1–6.
2.
go back to reference Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.
3.
go back to reference Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60, 277–300. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60, 277–300.
4.
go back to reference Chambers, A. F., Naumov, G. N., Vantyghem, S. A., & Tuck, A. B. (2000). Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Research, 2, 400–407.PubMed Chambers, A. F., Naumov, G. N., Vantyghem, S. A., & Tuck, A. B. (2000). Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Research, 2, 400–407.PubMed
5.
go back to reference Parker, B. S., & Sukumar, S. (2003). Distant metastasis in breast cancer. Cancer Biology & Therapy, 2, 14–16. Parker, B. S., & Sukumar, S. (2003). Distant metastasis in breast cancer. Cancer Biology & Therapy, 2, 14–16.
6.
go back to reference Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 127, 679–695.PubMed Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 127, 679–695.PubMed
7.
go back to reference Steeg, P. S. (2006). Tumor metastasis: mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.PubMed Steeg, P. S. (2006). Tumor metastasis: mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.PubMed
8.
go back to reference Welch, D. R., Steeg, P. S., & Rinker-Schaeffer, C. W. (2000). Molecular biology of breast cancer metastasis: genetic regulation of human breast carcinoma metastasis. Breast Cancer Research, 2(6), 408–416.PubMed Welch, D. R., Steeg, P. S., & Rinker-Schaeffer, C. W. (2000). Molecular biology of breast cancer metastasis: genetic regulation of human breast carcinoma metastasis. Breast Cancer Research, 2(6), 408–416.PubMed
9.
go back to reference Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.PubMed Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.PubMed
10.
go back to reference Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis, 21, 497–503.PubMed Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis, 21, 497–503.PubMed
11.
go back to reference Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes: at the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180.PubMed Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes: at the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180.PubMed
12.
go back to reference Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147(2), 275–292.PubMed Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147(2), 275–292.PubMed
13.
go back to reference Weiss, L. (1990). Metastasis inefficiency. Advances in Cancer Research, 54, 159–211.PubMed Weiss, L. (1990). Metastasis inefficiency. Advances in Cancer Research, 54, 159–211.PubMed
14.
go back to reference Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verastegu, E., & Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMed Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verastegu, E., & Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMed
15.
go back to reference Leone, A., Flatow, U., King, C. R., Sandeen, M. A., Margulies, I. M. K., Liotta, L. A., & Steeg, P. S. (1991). Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell, 65, 25–35.PubMed Leone, A., Flatow, U., King, C. R., Sandeen, M. A., Margulies, I. M. K., Liotta, L. A., & Steeg, P. S. (1991). Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell, 65, 25–35.PubMed
16.
go back to reference Seraj, M. J., Samant, R. S., Verderame, M. F., & Welch, D. R. (2000). Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Research, 60, 2764–2769.PubMed Seraj, M. J., Samant, R. S., Verderame, M. F., & Welch, D. R. (2000). Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Research, 60, 2764–2769.PubMed
17.
go back to reference Lee, J., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., & Welch, D. R. (1996). Kiss-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 88, 1731–1737.PubMed Lee, J., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., & Welch, D. R. (1996). Kiss-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 88, 1731–1737.PubMed
18.
go back to reference Steeg, P. S. (2003). Metastasis suppressors alter the signal transduction of cancer cells. Nature Reviews Cancer, 3, 55–63.PubMed Steeg, P. S. (2003). Metastasis suppressors alter the signal transduction of cancer cells. Nature Reviews Cancer, 3, 55–63.PubMed
19.
go back to reference Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment. Lancet, 369, 1742–1757.PubMed Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment. Lancet, 369, 1742–1757.PubMed
20.
go back to reference Kendal, W. S., Wang, R. Y., Hsu, T. C., & Frost, P. (1987). Rate of generation of major karyotypic abnormalities in relationship to the metastatic potential of B16 murine melanoma. Cancer Research, 47(14), 3835–3841.PubMed Kendal, W. S., Wang, R. Y., Hsu, T. C., & Frost, P. (1987). Rate of generation of major karyotypic abnormalities in relationship to the metastatic potential of B16 murine melanoma. Cancer Research, 47(14), 3835–3841.PubMed
21.
go back to reference Kalebic, T., Williams, J. E., Talmadge, J. E., Kao-Shan, C. S., Kravitz, B., Locklear, K., Siegal, G. P., Liotta, L. A., Sobel, M. E., & Steeg, P. S. (1987). A novel method for selection of invasive tumor cells: derivation and characterization of highly metastatic K1735 melanoma cell lines based on in vitro and in vivo invasive capacity. Clinical & Experimental Metastasis, 6(4), 301–318. Kalebic, T., Williams, J. E., Talmadge, J. E., Kao-Shan, C. S., Kravitz, B., Locklear, K., Siegal, G. P., Liotta, L. A., Sobel, M. E., & Steeg, P. S. (1987). A novel method for selection of invasive tumor cells: derivation and characterization of highly metastatic K1735 melanoma cell lines based on in vitro and in vivo invasive capacity. Clinical & Experimental Metastasis, 6(4), 301–318.
22.
go back to reference Pettaway, C. A., Pathak, S., Greene, G., Ramirez, E., Wilson, M. R., Killion, J. J., & Fidler, I. J. (1996). Selection of highly metastatic variants of different human prostatic carcinoma using orthotopic implantation in nude mice. Clinical Cancer Research, 2(9), 1627–1636.PubMed Pettaway, C. A., Pathak, S., Greene, G., Ramirez, E., Wilson, M. R., Killion, J. J., & Fidler, I. J. (1996). Selection of highly metastatic variants of different human prostatic carcinoma using orthotopic implantation in nude mice. Clinical Cancer Research, 2(9), 1627–1636.PubMed
23.
go back to reference Emerson, J. C., Salmon, S. E., Dalton, W., McGee, D. L., Yang, J. M., Thompson, F. H., & Trent, J. M. (1993). Cytogenetics and clinical correlations in breast cancer. Advances in Experimental Medicine and Biology, 330, 107–118.PubMed Emerson, J. C., Salmon, S. E., Dalton, W., McGee, D. L., Yang, J. M., Thompson, F. H., & Trent, J. M. (1993). Cytogenetics and clinical correlations in breast cancer. Advances in Experimental Medicine and Biology, 330, 107–118.PubMed
24.
go back to reference Adeyinka, A., Pandis, N., Nilsson, J., Idvall, I., Mertens, F., Petersson, C., Heim, S., & Mitelman, F. (1996). Different cytogenetic patterns in skeletal breast cancer metastases. Genes, Chromosomes & Cancer, 16(1), 72–74. Adeyinka, A., Pandis, N., Nilsson, J., Idvall, I., Mertens, F., Petersson, C., Heim, S., & Mitelman, F. (1996). Different cytogenetic patterns in skeletal breast cancer metastases. Genes, Chromosomes & Cancer, 16(1), 72–74.
25.
go back to reference Adeyinka, A., Kytola, S., Mertens, F., Pandis, N., & Larsson, C. (2000). Spectral karyotyping and chromosome banding studies of primary breast carcinoma and their lymph node metastases. International Journal of Molecular Medicine, 5(3), 235–240.PubMed Adeyinka, A., Kytola, S., Mertens, F., Pandis, N., & Larsson, C. (2000). Spectral karyotyping and chromosome banding studies of primary breast carcinoma and their lymph node metastases. International Journal of Molecular Medicine, 5(3), 235–240.PubMed
26.
go back to reference Dracopoli, N. C., Alhadeff, B., Houghton, A. N., & Old, L. J. (1987). Loss of heterozygosity at autosomal and X-linked loci during tumor progression in a patient with melanoma. Cancer Research, 47(15), 3995–4000.PubMed Dracopoli, N. C., Alhadeff, B., Houghton, A. N., & Old, L. J. (1987). Loss of heterozygosity at autosomal and X-linked loci during tumor progression in a patient with melanoma. Cancer Research, 47(15), 3995–4000.PubMed
27.
go back to reference Winqvist, R., Hampton, G. M., Mannermaa, A., Blanco, G., Alavaikko, M., Kiviniemi, H., Taskinen, P. J., Evans, G. A., Wright, F. A., Newsham, I., & Cavenee, W. K. (1995). Loss of heterozygosity for chromosome 11 in primary human breast tumors is associated with poor survival after metastasis. Cancer Research, 55(12), 2660–2664.PubMed Winqvist, R., Hampton, G. M., Mannermaa, A., Blanco, G., Alavaikko, M., Kiviniemi, H., Taskinen, P. J., Evans, G. A., Wright, F. A., Newsham, I., & Cavenee, W. K. (1995). Loss of heterozygosity for chromosome 11 in primary human breast tumors is associated with poor survival after metastasis. Cancer Research, 55(12), 2660–2664.PubMed
28.
go back to reference Fournier, R. E., & Ruddle, F. H. (1977). Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 74, 319–323.PubMed Fournier, R. E., & Ruddle, F. H. (1977). Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 74, 319–323.PubMed
29.
go back to reference Yoshida, B. A., Sokoloff, M. M., Welch, D. R., & Rinker-Schaeffer, C. W. (2000). Metastasis-suppressor genes: a review and perspective on an emerging field. Journal of the National Cancer Institute, 92(21), 1717–1730.PubMed Yoshida, B. A., Sokoloff, M. M., Welch, D. R., & Rinker-Schaeffer, C. W. (2000). Metastasis-suppressor genes: a review and perspective on an emerging field. Journal of the National Cancer Institute, 92(21), 1717–1730.PubMed
30.
go back to reference Ichikawa, T., Ichikawa, Y., & Isaacs, J. T. (1991). Genetic factors and suppression of metastatic ability of prostate cancer. Cancer Research, 51, 3788–3792.PubMed Ichikawa, T., Ichikawa, Y., & Isaacs, J. T. (1991). Genetic factors and suppression of metastatic ability of prostate cancer. Cancer Research, 51, 3788–3792.PubMed
31.
go back to reference Chekmareva, M. A., Hollowell, C. M., Smith, R. C., Davis, E. M., LeBeau, M. M., & Rinker-Schaeffer, C. W. (1997). Localization of prostate cancer metastasis-suppressor activity on human chromosome 17. Prostate, 33, 271–280.PubMed Chekmareva, M. A., Hollowell, C. M., Smith, R. C., Davis, E. M., LeBeau, M. M., & Rinker-Schaeffer, C. W. (1997). Localization of prostate cancer metastasis-suppressor activity on human chromosome 17. Prostate, 33, 271–280.PubMed
32.
go back to reference Luu, H. H., Zagaja, G. P., Dubauskas, Z., Chen, S. L., Smith, R. C., Watabe, K., et al. (1998). Identification of a novel metastasis-suppressor region on human chromosome 12. Cancer Research, 58, 3561–3565.PubMed Luu, H. H., Zagaja, G. P., Dubauskas, Z., Chen, S. L., Smith, R. C., Watabe, K., et al. (1998). Identification of a novel metastasis-suppressor region on human chromosome 12. Cancer Research, 58, 3561–3565.PubMed
33.
go back to reference Matsuda, T., Sasaki, M., Kato, H., Yamada, H., Cohen, M., Barrett, J. C., et al. (1997). Human chromosome 7 carries a putative tumor suppressor gene(s) involved in choriocarcinoma. Oncogene, 15, 2773–2781.PubMed Matsuda, T., Sasaki, M., Kato, H., Yamada, H., Cohen, M., Barrett, J. C., et al. (1997). Human chromosome 7 carries a putative tumor suppressor gene(s) involved in choriocarcinoma. Oncogene, 15, 2773–2781.PubMed
34.
go back to reference Miele, M. E., Robertson, G., Lee, J. H., Coleman, A., McGary, C. T., Fisher, P. B., et al. (1996). Metastasis suppressed, but tumorigenicity and local invasiveness unaffected, in the human melanoma cell line MelJuSo after introduction of human chromosome 1 or 6. Molecular Carcinogenesis, 15, 284–299.PubMed Miele, M. E., Robertson, G., Lee, J. H., Coleman, A., McGary, C. T., Fisher, P. B., et al. (1996). Metastasis suppressed, but tumorigenicity and local invasiveness unaffected, in the human melanoma cell line MelJuSo after introduction of human chromosome 1 or 6. Molecular Carcinogenesis, 15, 284–299.PubMed
35.
go back to reference You, J., Miele, M. E., Dong, C., & Welch, D. R. (1995). Suppression of human melanoma metastasis by introduction of chromosome 6 may be partially due to inhibition of motility, but not to inhibition of invasion. Biochemical and Biophysical Research Communication, 208, 476–484. You, J., Miele, M. E., Dong, C., & Welch, D. R. (1995). Suppression of human melanoma metastasis by introduction of chromosome 6 may be partially due to inhibition of motility, but not to inhibition of invasion. Biochemical and Biophysical Research Communication, 208, 476–484.
36.
go back to reference Miele, M. E., De La Rosa, A., Lee, J. H., Hicks, D. J., Dennis, J. W., Steeg, P. S., et al. (1997). Suppression of human melanoma metastasis following introduction of chromosome 6 is independent of NME1 (Nm23). Clinical & Experimental Metastasis, 15, 259–265. Miele, M. E., De La Rosa, A., Lee, J. H., Hicks, D. J., Dennis, J. W., Steeg, P. S., et al. (1997). Suppression of human melanoma metastasis following introduction of chromosome 6 is independent of NME1 (Nm23). Clinical & Experimental Metastasis, 15, 259–265.
37.
go back to reference Phillips, K. K., Welch, D. R., Miele, M. E., Lee, J. H., Wei, L. L., & Weissman, B. E. (1996). Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Research, 56, 1222–1227.PubMed Phillips, K. K., Welch, D. R., Miele, M. E., Lee, J. H., Wei, L. L., & Weissman, B. E. (1996). Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Research, 56, 1222–1227.PubMed
38.
go back to reference Nihei, N., Ichikawa, T., Kawana, Y., Kuramochi, H., Kugoh, H., Oshimura, M., et al. (1996). Mapping of metastasis suppressor gene(s) for rat prostate cancer on the short arm of human chromosome 8 by irradiated microcell-mediated chromosome transfer. Genes, Chromosomes & Cancer, 17, 260–268. Nihei, N., Ichikawa, T., Kawana, Y., Kuramochi, H., Kugoh, H., Oshimura, M., et al. (1996). Mapping of metastasis suppressor gene(s) for rat prostate cancer on the short arm of human chromosome 8 by irradiated microcell-mediated chromosome transfer. Genes, Chromosomes & Cancer, 17, 260–268.
39.
go back to reference Kuramochi, H., Ichikawa, T., Nihei, N., Kawana, Y., Suzuki, H., Schalken, J. A., et al. (1997). Suppression of invasive ability of highly metastatic rat prostate cancer by Introduction of human chromosome 8. Prostate, 31, 14–20.PubMed Kuramochi, H., Ichikawa, T., Nihei, N., Kawana, Y., Suzuki, H., Schalken, J. A., et al. (1997). Suppression of invasive ability of highly metastatic rat prostate cancer by Introduction of human chromosome 8. Prostate, 31, 14–20.PubMed
40.
go back to reference Nihei, N., Ichikawa, T., Kawana, Y., Kuramochi, H., Kugo, Oshimura, M., et al. (1995). Localization of metastasis suppressor gene(s) for rat prostate cancer to the long arm of human chromosome 10. Genes, Chromosomes & Cancer, 14, 112–119. Nihei, N., Ichikawa, T., Kawana, Y., Kuramochi, H., Kugo, Oshimura, M., et al. (1995). Localization of metastasis suppressor gene(s) for rat prostate cancer to the long arm of human chromosome 10. Genes, Chromosomes & Cancer, 14, 112–119.
41.
go back to reference Rinker-Schaeffer, C. W., Hawkins, A. L., Ru, N., Dong, J., Stoica, G., Griffin, C. A., et al. (1994). Differential suppression of mammary and prostate cancer metastasis by human chromosomes 7 and 11. Cancer Research, 54, 6249–6256.PubMed Rinker-Schaeffer, C. W., Hawkins, A. L., Ru, N., Dong, J., Stoica, G., Griffin, C. A., et al. (1994). Differential suppression of mammary and prostate cancer metastasis by human chromosomes 7 and 11. Cancer Research, 54, 6249–6256.PubMed
42.
go back to reference Ichikawa, T., Ichikawa, Y., Dong, J., Hawkins, A. L., Griffin, C. A., Isaacs, W. B., et al. (1992). Localization of metastasis suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11. Cancer Research, 52, 3486–3490.PubMed Ichikawa, T., Ichikawa, Y., Dong, J., Hawkins, A. L., Griffin, C. A., Isaacs, W. B., et al. (1992). Localization of metastasis suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11. Cancer Research, 52, 3486–3490.PubMed
43.
go back to reference Mashimo, T., Watabe, M., Cuthbert, A. P., Newbold, R. F., Rinker-Schaeffer, C. W., Helfer, E., et al. (1998). Human chromosome 16 suppresses metastasis but not tumorigenesis in rat prostatic tumor cells. Cancer Research, 58, 4572–4576.PubMed Mashimo, T., Watabe, M., Cuthbert, A. P., Newbold, R. F., Rinker-Schaeffer, C. W., Helfer, E., et al. (1998). Human chromosome 16 suppresses metastasis but not tumorigenesis in rat prostatic tumor cells. Cancer Research, 58, 4572–4576.PubMed
44.
go back to reference Seraj, M. J., Harding, M. A., Gildea, J. J., Welch, D. R., & Theodorescu, D. (2001). The relationaship between BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human breast cancer cell lines. Clinical Experimental Metastasis, 18, 519–525. Seraj, M. J., Harding, M. A., Gildea, J. J., Welch, D. R., & Theodorescu, D. (2001). The relationaship between BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human breast cancer cell lines. Clinical Experimental Metastasis, 18, 519–525.
45.
go back to reference Shevde, L. A., Samant, R. S., Goldberg, S. F., Sikaneta, T., Alessandrini, A., Donahue, H. J., Mauger, D. T., & Welch, D. R. (2002). Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Experimental Cell Research, 273, 229–239.PubMed Shevde, L. A., Samant, R. S., Goldberg, S. F., Sikaneta, T., Alessandrini, A., Donahue, H. J., Mauger, D. T., & Welch, D. R. (2002). Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Experimental Cell Research, 273, 229–239.PubMed
46.
go back to reference Smith, P. W., Liu, Y., Siefert, S. A., Moskaluk, C. A., Petroni, G. R., & Jones, D. R. (2009). Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis and correlates with improved patient survival in non-small lung cancer. Cancer Letters, 276, 196–203.PubMed Smith, P. W., Liu, Y., Siefert, S. A., Moskaluk, C. A., Petroni, G. R., & Jones, D. R. (2009). Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis and correlates with improved patient survival in non-small lung cancer. Cancer Letters, 276, 196–203.PubMed
47.
go back to reference Zhang, S., Lin, Q. D., & Di, W. (2006). Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. International Journal of Gynecology and Cancer, 16, 522–531. Zhang, S., Lin, Q. D., & Di, W. (2006). Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. International Journal of Gynecology and Cancer, 16, 522–531.
48.
go back to reference Flolova, N., Edmonds, M. D., Bondenstine, T. M., Seitz, R., Johnson, M. R., Feng, R., Welch, D. R., & Frost, A. R. (2009). A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancer. Tumor Biology, 30, 148–159. Flolova, N., Edmonds, M. D., Bondenstine, T. M., Seitz, R., Johnson, M. R., Feng, R., Welch, D. R., & Frost, A. R. (2009). A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancer. Tumor Biology, 30, 148–159.
49.
go back to reference Hicks, D. G., Yoder, B. J., Short, S., Tarr, S., Prescott, N., Crowe, J. P., Dawson, A. E., et al. (2006). Loss of BRMS1 protein expression predicts reduced disease-free survival in hormone receptor negative and HER2 positive subsets of breast cancer. Clinical Cancer Research, 12, 6702–6708.PubMed Hicks, D. G., Yoder, B. J., Short, S., Tarr, S., Prescott, N., Crowe, J. P., Dawson, A. E., et al. (2006). Loss of BRMS1 protein expression predicts reduced disease-free survival in hormone receptor negative and HER2 positive subsets of breast cancer. Clinical Cancer Research, 12, 6702–6708.PubMed
50.
go back to reference Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., Vukanovic, J., Ichikawa, T., Isaacs, J. T., & Barrett, J. C. (1995). KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science, 268, 884–886.PubMed Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., Vukanovic, J., Ichikawa, T., Isaacs, J. T., & Barrett, J. C. (1995). KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science, 268, 884–886.PubMed
51.
go back to reference Yang, X. H., Welch, D. R., Phillips, K. K., Weissman, B. E., & Wei, L. L. (1997). KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Letters, 119, 149–155.PubMed Yang, X. H., Welch, D. R., Phillips, K. K., Weissman, B. E., & Wei, L. L. (1997). KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Letters, 119, 149–155.PubMed
52.
go back to reference Phillips, K. K., White, A. E., Hicks, D. J., Welch, D. R., Barrett, J. C., Wei, L. L., & Weissman, B. E. (1998). Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Molecular Carcinogenesis, 21, 111–120.PubMed Phillips, K. K., White, A. E., Hicks, D. J., Welch, D. R., Barrett, J. C., Wei, L. L., & Weissman, B. E. (1998). Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Molecular Carcinogenesis, 21, 111–120.PubMed
53.
go back to reference Yang, X., Wei, L., Tang, C., Slack, R., Montgomory, E., & Lippman, M. (2000). KAI1 protein is downregulated during the progression of human breast cancer. Clinical Cancer Research, 6, 3424–3429.PubMed Yang, X., Wei, L., Tang, C., Slack, R., Montgomory, E., & Lippman, M. (2000). KAI1 protein is downregulated during the progression of human breast cancer. Clinical Cancer Research, 6, 3424–3429.PubMed
54.
go back to reference Liu, F. S., Dong, J. T., Chen, J. T., Hsieh, Y. T., Ho, E. S., & Hung, M. J. (2000). Frequent downregulation and lack of mutation of the KAI1 metastasis suppressor gene in epithelial ovarian carcinoma. Gynecologic Oncology, 78, 10–15.PubMed Liu, F. S., Dong, J. T., Chen, J. T., Hsieh, Y. T., Ho, E. S., & Hung, M. J. (2000). Frequent downregulation and lack of mutation of the KAI1 metastasis suppressor gene in epithelial ovarian carcinoma. Gynecologic Oncology, 78, 10–15.PubMed
55.
go back to reference Lombardi, D. P., Geradts, J., Foley, J. F., Chiao, C., Lamb, P. W., & Barrett, J. C. (1999). Loss of KAI1 expression in the progression of colorectal cancer. Cancer Research, 59, 5724–5731.PubMed Lombardi, D. P., Geradts, J., Foley, J. F., Chiao, C., Lamb, P. W., & Barrett, J. C. (1999). Loss of KAI1 expression in the progression of colorectal cancer. Cancer Research, 59, 5724–5731.PubMed
56.
go back to reference Goucharuk, V. N., del-Rosario, A., Kren, L., Anwar, S., Sheehan, C. E., Carlson, J. A., & Ross, J. S. (2004). Co-downregulation of PTEN, KAI-1 and nm23-H1 tumor/metastasis suppressor proteins in non-small cell lung cancer. Annals of Diagnostic Pathology, 8, 6–16. Goucharuk, V. N., del-Rosario, A., Kren, L., Anwar, S., Sheehan, C. E., Carlson, J. A., & Ross, J. S. (2004). Co-downregulation of PTEN, KAI-1 and nm23-H1 tumor/metastasis suppressor proteins in non-small cell lung cancer. Annals of Diagnostic Pathology, 8, 6–16.
57.
go back to reference Kim, H. L., Van der Griend, D. J., Yang, X., Benson, B. A., Dubauskas, Z., Yoshida, B. A., et al. (2001). Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostate cancers. Cancer Research, 61, 2833–2837.PubMed Kim, H. L., Van der Griend, D. J., Yang, X., Benson, B. A., Dubauskas, Z., Yoshida, B. A., et al. (2001). Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostate cancers. Cancer Research, 61, 2833–2837.PubMed
58.
go back to reference Cunningham, S. C., Kamanager, F., Kim, M. P., Hammoud, S., Haque, R., Lacobuzio-Donahue, C., et al. (2006). MKK4 status predicts survival after resection of gastric adenocarcinoma. Archives of Surgery, 141, 1095–1099.PubMed Cunningham, S. C., Kamanager, F., Kim, M. P., Hammoud, S., Haque, R., Lacobuzio-Donahue, C., et al. (2006). MKK4 status predicts survival after resection of gastric adenocarcinoma. Archives of Surgery, 141, 1095–1099.PubMed
59.
go back to reference Stark, A. M., Tongers, K., Maass, N., Mehdorn, N. M., & Held-Feindt, J. (2004). Reduced metastasis-suppressor gene mRNA expression in breast cancer brain metastasis. Journal of Cancer Research and Clinical Oncology, 131, 191–198.PubMed Stark, A. M., Tongers, K., Maass, N., Mehdorn, N. M., & Held-Feindt, J. (2004). Reduced metastasis-suppressor gene mRNA expression in breast cancer brain metastasis. Journal of Cancer Research and Clinical Oncology, 131, 191–198.PubMed
60.
go back to reference Xin, W., Yun, K. J., Ricci, F., Zahurak, M., Qiu, W., Su, G. H., et al. (2004). MAP2K4/MKK4 expression in pancreatic cancer: genetic validation of immunochemistry and relationship to disease course. Clinical Cancer Research, 10, 8516–8520.PubMed Xin, W., Yun, K. J., Ricci, F., Zahurak, M., Qiu, W., Su, G. H., et al. (2004). MAP2K4/MKK4 expression in pancreatic cancer: genetic validation of immunochemistry and relationship to disease course. Clinical Cancer Research, 10, 8516–8520.PubMed
61.
go back to reference Yoshida, B. A., Dubauskas, Z., Chekmareva, M. A., Christiano, T. R., Stadler, W. M., & Rinker-Schaeffer, C. W. (1999). Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Research, 59(21), 5483–5487.PubMed Yoshida, B. A., Dubauskas, Z., Chekmareva, M. A., Christiano, T. R., Stadler, W. M., & Rinker-Schaeffer, C. W. (1999). Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Research, 59(21), 5483–5487.PubMed
62.
go back to reference Welch, D. R., Chen, P., Miele, M. E., McGary, C. T., Bower, J. M., Weissman, B. E., & Stanbridge, E. J. (1994). Microcell-mediated transfer to chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene, 9, 255–262.PubMed Welch, D. R., Chen, P., Miele, M. E., McGary, C. T., Bower, J. M., Weissman, B. E., & Stanbridge, E. J. (1994). Microcell-mediated transfer to chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene, 9, 255–262.PubMed
63.
go back to reference Lapatto, R., Pallais, J. C., Zhang, D., Chan, Y. M., Mahan, A., Cerrato, F., Le, W. W., Hoffman, G. E., & Seminara, S. B. (2007). Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology, 148, 4927–4936.PubMed Lapatto, R., Pallais, J. C., Zhang, D., Chan, Y. M., Mahan, A., Cerrato, F., Le, W. W., Hoffman, G. E., & Seminara, S. B. (2007). Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology, 148, 4927–4936.PubMed
64.
go back to reference Lee, J.-H., & Welch, D. R. (1997). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene KiSS-1. Cancer Research, 57, 2384–2387.PubMed Lee, J.-H., & Welch, D. R. (1997). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene KiSS-1. Cancer Research, 57, 2384–2387.PubMed
65.
go back to reference Jiang, Y., Berk, M., Singh, L. H., Tan, H. Y., Yin, L. H., Powell, C. T., & Xu, Y. (2005). KiSS-1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clinical & Experimental Metastasis, 22, 369–376. Jiang, Y., Berk, M., Singh, L. H., Tan, H. Y., Yin, L. H., Powell, C. T., & Xu, Y. (2005). KiSS-1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clinical & Experimental Metastasis, 22, 369–376.
66.
go back to reference McNally, L. R., Welch, D. R., Beck, B. H., Stafford, L. J., Long, J. W., Sellers, J. C., et al. (2010). KISS1 overexpression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical & Experimental Metastasis, 27(8), 591–600. McNally, L. R., Welch, D. R., Beck, B. H., Stafford, L. J., Long, J. W., Sellers, J. C., et al. (2010). KISS1 overexpression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical & Experimental Metastasis, 27(8), 591–600.
67.
go back to reference Beck, B. H., & Welch, D. R. (2010). The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. European Journal of Cancer, 46, 1283–1289.PubMed Beck, B. H., & Welch, D. R. (2010). The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. European Journal of Cancer, 46, 1283–1289.PubMed
68.
go back to reference Dhar, D. K., Naora, H., Kubota, H., Maruyama, R., Yoshimura, H., Tonomoto, Y., et al. (2004). Downregulation of KiSS1 expression is responsible for tumor invasion and worse prognosis in gastric carcinoma. International Journal of Cancer, 111, 868–872. Dhar, D. K., Naora, H., Kubota, H., Maruyama, R., Yoshimura, H., Tonomoto, Y., et al. (2004). Downregulation of KiSS1 expression is responsible for tumor invasion and worse prognosis in gastric carcinoma. International Journal of Cancer, 111, 868–872.
69.
go back to reference Hata, K., Dhar, D. K., Watanabe, Y., Nakai, H., & Hoshiai, H. (2007). Expression of metastatin and a G protein coupled receptor (AXOR12) in epithelial ovarian cancer. European Journal of Cancer, 43, 1452–1459.PubMed Hata, K., Dhar, D. K., Watanabe, Y., Nakai, H., & Hoshiai, H. (2007). Expression of metastatin and a G protein coupled receptor (AXOR12) in epithelial ovarian cancer. European Journal of Cancer, 43, 1452–1459.PubMed
70.
go back to reference Ikeguchi, M., Yamaguchi, K., & Kaibara, N. (2004). Clinical significance of the loss of KiSS1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in esophageal squamous cell carcinoma. Clinical Cancer Research, 10, 1379–1383.PubMed Ikeguchi, M., Yamaguchi, K., & Kaibara, N. (2004). Clinical significance of the loss of KiSS1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in esophageal squamous cell carcinoma. Clinical Cancer Research, 10, 1379–1383.PubMed
71.
go back to reference Katagiri, F., Nagai, K., Kida, A., Tomita, K., Oishi, S., Takeyama, M., et al. (2009). Clinical significance of plasma metastatin level in pancreatic cancer patients. Oncology Reports, 21, 815–819.PubMed Katagiri, F., Nagai, K., Kida, A., Tomita, K., Oishi, S., Takeyama, M., et al. (2009). Clinical significance of plasma metastatin level in pancreatic cancer patients. Oncology Reports, 21, 815–819.PubMed
72.
go back to reference Martin, T. A., Watkins, G., & Jiang, W. G. (2005). KISS1 expression in human breast cancer. Clinical & Experimental Metastasis, 22, 503–511. Martin, T. A., Watkins, G., & Jiang, W. G. (2005). KISS1 expression in human breast cancer. Clinical & Experimental Metastasis, 22, 503–511.
73.
go back to reference Prentice, L. M., Klausen, C., Kalloger, S., Kobel, M., McKinney, S., Santos, J. L., et al. (2007). Kisspeptin and GPR54 immunoreactivity in a cohort of 518 patients defines favourable prognosis of clear cell subtype in ovarian carcinoma. BMC Medicine, 5, 33.PubMed Prentice, L. M., Klausen, C., Kalloger, S., Kobel, M., McKinney, S., Santos, J. L., et al. (2007). Kisspeptin and GPR54 immunoreactivity in a cohort of 518 patients defines favourable prognosis of clear cell subtype in ovarian carcinoma. BMC Medicine, 5, 33.PubMed
74.
go back to reference Shirasaki, F., Takada, M., Hatta, N., & Takehara, K. (2001). Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3–q23. Cancer Research, 61, 7422–7425.PubMed Shirasaki, F., Takada, M., Hatta, N., & Takehara, K. (2001). Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3–q23. Cancer Research, 61, 7422–7425.PubMed
75.
go back to reference Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. P., Talmadge, J. E., Liotta, L. A., & Sobel, M. E. (1988). Evidence for a novel gene associated with low tumor metastatic potential. Journal of the National Cancer Institute, 80, 200–204.PubMed Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. P., Talmadge, J. E., Liotta, L. A., & Sobel, M. E. (1988). Evidence for a novel gene associated with low tumor metastatic potential. Journal of the National Cancer Institute, 80, 200–204.PubMed
76.
go back to reference Lacombe, M. L., Milon, L., Munier, A., Mehus, J. G., & Lambeth, D. O. (2000). The human Nm23/nucleoside diphosphate kinases. Journal of Bioenergetics and Biomembranes, 32, 247–258.PubMed Lacombe, M. L., Milon, L., Munier, A., Mehus, J. G., & Lambeth, D. O. (2000). The human Nm23/nucleoside diphosphate kinases. Journal of Bioenergetics and Biomembranes, 32, 247–258.PubMed
77.
go back to reference Marshall, J. C., Lee, J. H., & Steeg, P. S. (2009). Clinical-translational strategies for the elevation of Nm23-H1 metastasis suppressor gene expression. Molecular and Cellular Biochemistry, 329, 115–120.PubMed Marshall, J. C., Lee, J. H., & Steeg, P. S. (2009). Clinical-translational strategies for the elevation of Nm23-H1 metastasis suppressor gene expression. Molecular and Cellular Biochemistry, 329, 115–120.PubMed
78.
go back to reference Steeg, P. S., & Theodorescu, D. (2007). Metastasis: a therapeutic target for cancer. Nature Clinical Practice Oncology, 5, 206–219. Steeg, P. S., & Theodorescu, D. (2007). Metastasis: a therapeutic target for cancer. Nature Clinical Practice Oncology, 5, 206–219.
79.
go back to reference Marshall, J. C., Collins, J., Marino, N., & Steeg, P. S. (2009). The Nm23-H1 metastasis suppressor as a translational target. European Journal of Cancer, 46, 1278–1282. Marshall, J. C., Collins, J., Marino, N., & Steeg, P. S. (2009). The Nm23-H1 metastasis suppressor as a translational target. European Journal of Cancer, 46, 1278–1282.
80.
go back to reference Ouatas, T., Halverson, D., & Steeg, P. S. (2003). Dexamethasone and medroxyprogesterone acetate elevate Nm23-H1 metastasis suppressor expression in metastatic human breast cancer cells via glucocorticoid receptor-dependent, translational and post-transcriptional mechanisms: new use for old compounds. Clinical Cancer Research, 9, 3763–3772.PubMed Ouatas, T., Halverson, D., & Steeg, P. S. (2003). Dexamethasone and medroxyprogesterone acetate elevate Nm23-H1 metastasis suppressor expression in metastatic human breast cancer cells via glucocorticoid receptor-dependent, translational and post-transcriptional mechanisms: new use for old compounds. Clinical Cancer Research, 9, 3763–3772.PubMed
81.
go back to reference Palmieri, D., Halverson, D. O., Ouatas, T., Horak, C. E., Salerno, M., Johnson, J., et al. (2005). Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. Journal of the National Cancer Institute, 97, 632–642.PubMed Palmieri, D., Halverson, D. O., Ouatas, T., Horak, C. E., Salerno, M., Johnson, J., et al. (2005). Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. Journal of the National Cancer Institute, 97, 632–642.PubMed
82.
go back to reference Kang, Y., Seigel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., & Massague, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMed Kang, Y., Seigel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., & Massague, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMed
83.
go back to reference Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L., & Massague, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.PubMed Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L., & Massague, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.PubMed
84.
go back to reference Bos, P. D., Zhang, X. H.-F., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., Minn, A. J., van de Vijver, M. J., Gerald, W. L., Foekens, J. A., & Mssague, J. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 549, 1005–1009. Bos, P. D., Zhang, X. H.-F., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., Minn, A. J., van de Vijver, M. J., Gerald, W. L., Foekens, J. A., & Mssague, J. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 549, 1005–1009.
85.
go back to reference Aslakson, C. J., & Miller, F. R. (1992). Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Research, 52, 1399–1405.PubMed Aslakson, C. J., & Miller, F. R. (1992). Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Research, 52, 1399–1405.PubMed
86.
go back to reference Yang, J., Mani, S. A., Donaher, J. L., Ramaswarmy, S., Itzykson, R. A., Come, C., Savagner, P., Gitelman, I., Richardson, A., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMed Yang, J., Mani, S. A., Donaher, J. L., Ramaswarmy, S., Itzykson, R. A., Come, C., Savagner, P., Gitelman, I., Richardson, A., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMed
87.
go back to reference Timar, J., Gyorffy, B., & Raso, E. (2010). Gene signatures of the metastatic potential of cutaneous melanoma: too much for too little? Clinical & Experimental Metastasis, 27, 371–387. Timar, J., Gyorffy, B., & Raso, E. (2010). Gene signatures of the metastatic potential of cutaneous melanoma: too much for too little? Clinical & Experimental Metastasis, 27, 371–387.
88.
go back to reference Freeman, J. A., Tyler, D. S., Nevins, J. R., & Augustine, C. K. (2011). Use of gene expression and pathway signatures to characterize the complexity of human melanoma. The American Journal of Pathology, 178, 2513–2522. Freeman, J. A., Tyler, D. S., Nevins, J. R., & Augustine, C. K. (2011). Use of gene expression and pathway signatures to characterize the complexity of human melanoma. The American Journal of Pathology, 178, 2513–2522.
89.
go back to reference Ptitsyn, A. (2009). Computational analysis of gene expression space associated with Metastatic cancer. BMC Bioinformatics, 10, S6.PubMed Ptitsyn, A. (2009). Computational analysis of gene expression space associated with Metastatic cancer. BMC Bioinformatics, 10, S6.PubMed
90.
go back to reference Taylor, B. S., Varambally, S., & Chinnaiyan, A. (2006). A systems approach to model metastatic progression. Cancer Research, 66, 5537–5539.PubMed Taylor, B. S., Varambally, S., & Chinnaiyan, A. (2006). A systems approach to model metastatic progression. Cancer Research, 66, 5537–5539.PubMed
91.
go back to reference LaTulippe, E., Satagopan, J., Smith, A., Scher, H., Scardino, P., Reuter, V., & Gerald, W. L. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Research, 62, 4499–4506.PubMed LaTulippe, E., Satagopan, J., Smith, A., Scher, H., Scardino, P., Reuter, V., & Gerald, W. L. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Research, 62, 4499–4506.PubMed
92.
go back to reference Bignotti, E., Tassi, R. A., Calza, S., Ravaggi, A., Bandiera, E., Rossi, E., et al. (2007). Gene expression profile of ovarian serous papillary carcinomas: identification of metastasis-associated genes. American Journal of Obstetrics and Gynecology, 196, 245e1–245e11. Bignotti, E., Tassi, R. A., Calza, S., Ravaggi, A., Bandiera, E., Rossi, E., et al. (2007). Gene expression profile of ovarian serous papillary carcinomas: identification of metastasis-associated genes. American Journal of Obstetrics and Gynecology, 196, 245e1–245e11.
93.
go back to reference Watanabe, T., Kobunai, T., Tanaka, T., Ishihara, S., Matsuda, K., & Nagawa, H. (2009). Gene expression signature and prediction of lymph node metastasis in colorectal cancer by DNA microarray. Diseases of the Colon & Rectum, 52, 1941–1948. Watanabe, T., Kobunai, T., Tanaka, T., Ishihara, S., Matsuda, K., & Nagawa, H. (2009). Gene expression signature and prediction of lymph node metastasis in colorectal cancer by DNA microarray. Diseases of the Colon & Rectum, 52, 1941–1948.
94.
go back to reference Salazar, R., Roepman, P., Capella, G., Moreno, V., Simon, S., Dreezen, C., et al. (2011). Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. Journal of Clinical Oncology, 29, 17–24.PubMed Salazar, R., Roepman, P., Capella, G., Moreno, V., Simon, S., Dreezen, C., et al. (2011). Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. Journal of Clinical Oncology, 29, 17–24.PubMed
95.
go back to reference Inamura, K., & Ishikawa, Y. (2010). Lung cancer progression and metastasis from the prognostic point of view. Clinical & Experimental Metastasis, 27, 389–397. Inamura, K., & Ishikawa, Y. (2010). Lung cancer progression and metastasis from the prognostic point of view. Clinical & Experimental Metastasis, 27, 389–397.
96.
go back to reference Winter, S. F., & Hunter, K. W. (2008). Mouse modifier genes in mammary tumorigenesis and metastasis. Journal of Mammary Gland Biology and Neoplasia, 13, 337–342.PubMed Winter, S. F., & Hunter, K. W. (2008). Mouse modifier genes in mammary tumorigenesis and metastasis. Journal of Mammary Gland Biology and Neoplasia, 13, 337–342.PubMed
97.
go back to reference Hunter, K. W., & Alsarraj, J. (2009). Gene expression profiles and breast cancer metastasis: a genetic perspective. Clinical & Experimental Metastasis, 26, 497–503. Hunter, K. W., & Alsarraj, J. (2009). Gene expression profiles and breast cancer metastasis: a genetic perspective. Clinical & Experimental Metastasis, 26, 497–503.
98.
go back to reference Park, Y., Zhao, X., Lesueur, F., Lowy, D. R., Lancaster, M., Pharoah, P., Qian, X., & Hunter, K. W. (2005). Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nature Genetics, 37, 1055–1062.PubMed Park, Y., Zhao, X., Lesueur, F., Lowy, D. R., Lancaster, M., Pharoah, P., Qian, X., & Hunter, K. W. (2005). Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nature Genetics, 37, 1055–1062.PubMed
99.
go back to reference Crawford, N. P., Qian, X., Ziogas, A., Papageorge, A. G., Boersma, B. J., Walker, R. C., Lukes, L., Rowe, W. L., Zhang, J., Ambs, S., Lowy, D. R., Anton-Culver, H., & Hunter, K. W. (2007). Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genetics, 3, e214.PubMed Crawford, N. P., Qian, X., Ziogas, A., Papageorge, A. G., Boersma, B. J., Walker, R. C., Lukes, L., Rowe, W. L., Zhang, J., Ambs, S., Lowy, D. R., Anton-Culver, H., & Hunter, K. W. (2007). Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genetics, 3, e214.PubMed
100.
go back to reference Crawford, N. P., Alsarraj, J., Lukes, L., Walker, R. C., Officewala, J. S., Yang, H. H., et al. (2008). Bromodomain 4 activation predicts breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America, 105, 6380–6385.PubMed Crawford, N. P., Alsarraj, J., Lukes, L., Walker, R. C., Officewala, J. S., Yang, H. H., et al. (2008). Bromodomain 4 activation predicts breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America, 105, 6380–6385.PubMed
101.
go back to reference Gumireddy, K., Li, A., Gimotty, P. A., Klein-Szanto, A. J., Showe, L. C., Katsaros, D., Coukos, G., Zhang, L., & Huang, Q. (2009). KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nature Cell Biology, 11(11), 1297–1304.PubMed Gumireddy, K., Li, A., Gimotty, P. A., Klein-Szanto, A. J., Showe, L. C., Katsaros, D., Coukos, G., Zhang, L., & Huang, Q. (2009). KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nature Cell Biology, 11(11), 1297–1304.PubMed
102.
go back to reference Gobeil, S., Zhu, X., Doillon, C. J., & Green, M. R. (2008). A genome-wide shRNA screen identified GAS1 as a novel metastasis suppressor gene. Genes & Development, 22, 2932–2940. Gobeil, S., Zhu, X., Doillon, C. J., & Green, M. R. (2008). A genome-wide shRNA screen identified GAS1 as a novel metastasis suppressor gene. Genes & Development, 22, 2932–2940.
103.
go back to reference Gumireddy, K., Sun, F., Klein-Szanto, A. J., Gibbins, G. M., Gimotty, P. A., Saunders, A. J., Schultz, P. G., & Huang, Q. (2007). An in vivo selection for metastasis promoting genes in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6696–6701.PubMed Gumireddy, K., Sun, F., Klein-Szanto, A. J., Gibbins, G. M., Gimotty, P. A., Saunders, A. J., Schultz, P. G., & Huang, Q. (2007). An in vivo selection for metastasis promoting genes in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6696–6701.PubMed
104.
go back to reference Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., Egan, D. A., Li, A., Huang, G., Klein-Szanto, A. J., Gimotty, P. A., Katsaros, D., Coukos, G., Zhang, L., Puré, E., & Agami, R. (2008). The microRNAs miR-373 and miR-520c promote tumor invasion and metastasis. Nature Cell Biology, 10(2), 202–210.PubMed Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., Egan, D. A., Li, A., Huang, G., Klein-Szanto, A. J., Gimotty, P. A., Katsaros, D., Coukos, G., Zhang, L., Puré, E., & Agami, R. (2008). The microRNAs miR-373 and miR-520c promote tumor invasion and metastasis. Nature Cell Biology, 10(2), 202–210.PubMed
105.
go back to reference Gumireddy, K., & Huang, Q. (2010). Identification of metastasis genes by a functional genomics approach. Cell Cycle, 9(3), 423.PubMed Gumireddy, K., & Huang, Q. (2010). Identification of metastasis genes by a functional genomics approach. Cell Cycle, 9(3), 423.PubMed
106.
go back to reference Turajlic, S., Furney, S. J., Lambros, M. B., Mitsopoulos, C., Kozarewa, I., Geyer, F. C., et al. (2011). Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Research. doi:10.1101/gr.125529.111. Turajlic, S., Furney, S. J., Lambros, M. B., Mitsopoulos, C., Kozarewa, I., Geyer, F. C., et al. (2011). Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Research. doi:10.​1101/​gr.​125529.​111.
107.
go back to reference Kabbarah, O., Nogueira, C., Feng, B., Nazarian, R. M., Bosenberg, M., Wu, M., et al. (2010). Integrative genome comparison of primary and metastatic melanomas. PLoS One, 5, e10770.PubMed Kabbarah, O., Nogueira, C., Feng, B., Nazarian, R. M., Bosenberg, M., Wu, M., et al. (2010). Integrative genome comparison of primary and metastatic melanomas. PLoS One, 5, e10770.PubMed
108.
go back to reference Vermaat, J. S., Nijman, I. J., Koudijs, M. J., Gerritse, F. L., Scherer, S. J., Mokry, M., et al. (2011). Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-11-1965. Vermaat, J. S., Nijman, I. J., Koudijs, M. J., Gerritse, F. L., Scherer, S. J., Mokry, M., et al. (2011). Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clinical Cancer Research. doi:10.​1158/​1078-0432.​CCR-11-1965.
109.
go back to reference Sayagues, J. M., Fontanillo, C., del Mar Abad, M., Gonzales-Gonzales, M., Saraquete, M. E., del Carmon Chillon, M., et al. (2010). Mapping of genetic abnormalities of primary tumours from metastatic CRC by high-resolution SNP arrays. PLoS One, 5, e13752.PubMed Sayagues, J. M., Fontanillo, C., del Mar Abad, M., Gonzales-Gonzales, M., Saraquete, M. E., del Carmon Chillon, M., et al. (2010). Mapping of genetic abnormalities of primary tumours from metastatic CRC by high-resolution SNP arrays. PLoS One, 5, e13752.PubMed
110.
go back to reference Ghadimi, B. M., Grade, M., Monkemeyer, C., Kulle, B., Gaedcke, J., Gunawan, B., et al. (2006). Distinct chromosomal profiles in metastasizing and non-metastasizing colorectal carcinomas. Cellular Oncology, 28, 273–281.PubMed Ghadimi, B. M., Grade, M., Monkemeyer, C., Kulle, B., Gaedcke, J., Gunawan, B., et al. (2006). Distinct chromosomal profiles in metastasizing and non-metastasizing colorectal carcinomas. Cellular Oncology, 28, 273–281.PubMed
111.
go back to reference Al-Mulla, F., AlFadhili, S., Al-Hakim, A. H., Going, J. J., & Bitar, M. S. (2006). Metastatic recurrence of early stage colorectal cancer is linked to loss of heterozygosity on chromosomes 4 and 14q. Journal of Clinical Pathology, 59, 624–630.PubMed Al-Mulla, F., AlFadhili, S., Al-Hakim, A. H., Going, J. J., & Bitar, M. S. (2006). Metastatic recurrence of early stage colorectal cancer is linked to loss of heterozygosity on chromosomes 4 and 14q. Journal of Clinical Pathology, 59, 624–630.PubMed
112.
go back to reference Macintosh, C. A., Stower, M., Reid, N., & Maitland, N. J. (1998). Precise of microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Research, 58, 23–28.PubMed Macintosh, C. A., Stower, M., Reid, N., & Maitland, N. J. (1998). Precise of microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Research, 58, 23–28.PubMed
113.
go back to reference Liu, W., Laitinen, S., Khan, S., Vihinen, M., Kowalski, J., Yu, G., et al. (2009). Copy Number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 15, 559–565.PubMed Liu, W., Laitinen, S., Khan, S., Vihinen, M., Kowalski, J., Yu, G., et al. (2009). Copy Number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 15, 559–565.PubMed
114.
go back to reference Robbins, C. M., Tembe, W. A., Baker, A., Sinari, S., Moses, T. Y., Beckstrom-Sternberg, S., et al. (2011). Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Research, 21, 47–55.PubMed Robbins, C. M., Tembe, W. A., Baker, A., Sinari, S., Moses, T. Y., Beckstrom-Sternberg, S., et al. (2011). Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Research, 21, 47–55.PubMed
115.
go back to reference Holcomb, I. N., Young, J. M., Coleman, I. M., Sarali, K., Grove, D. I., Hsu, L., et al. (2009). Comparative analysis of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer. Cancer Research, 69, 7793–7802.PubMed Holcomb, I. N., Young, J. M., Coleman, I. M., Sarali, K., Grove, D. I., Hsu, L., et al. (2009). Comparative analysis of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer. Cancer Research, 69, 7793–7802.PubMed
116.
go back to reference Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., et al. (2009). Intergrative genomic profiling of human prostate cancer. Cancer Cell, 18, 11–22. Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., et al. (2009). Intergrative genomic profiling of human prostate cancer. Cancer Cell, 18, 11–22.
117.
go back to reference Kumar, A., White, T. A., MacKenzie, A. P., Clegg, N., Lee, C., Dumpit, R. F., et al. (2011). Exome sequencing identified a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proceedings of the National Academy of Sciences of the United States of America, 108, 17087–17092.PubMed Kumar, A., White, T. A., MacKenzie, A. P., Clegg, N., Lee, C., Dumpit, R. F., et al. (2011). Exome sequencing identified a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proceedings of the National Academy of Sciences of the United States of America, 108, 17087–17092.PubMed
118.
go back to reference Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., Stebbings, L. A., et al. (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467, 1109–1113.PubMed Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., Stebbings, L. A., et al. (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467, 1109–1113.PubMed
119.
go back to reference Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., et al. (2010). Distance metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117.PubMed Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., et al. (2010). Distance metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117.PubMed
120.
go back to reference Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., Wallis, J. W., et al. (2010). Genome remodeling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999–1005.PubMed Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., Wallis, J. W., et al. (2010). Genome remodeling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999–1005.PubMed
121.
go back to reference Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumor profiled at single nucleotide resolution. Nature, 461, 809–813.PubMed Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumor profiled at single nucleotide resolution. Nature, 461, 809–813.PubMed
Metadata
Title
Genomics screens for metastasis genes
Authors
Jinchun Yan
Qihong Huang
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9362-z

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine