Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2012

Open Access 01-06-2012 | NON-THEMATIC REVIEW

Cell–cell and cell–matrix dynamics in intraperitoneal cancer metastasis

Authors: Katharine L. Sodek, K. Joan Murphy, Theodore J. Brown, Maurice J. Ringuette

Published in: Cancer and Metastasis Reviews | Issue 1-2/2012

Login to get access

Abstract

The peritoneal metastatic route of cancer dissemination is shared by cancers of the ovary and gastrointestinal tract. Once initiated, peritoneal metastasis typically proceeds rapidly in a feed-forward manner. Several factors contribute to this efficient progression. In peritoneal metastasis, cancer cells exfoliate into the peritoneal fluid and spread locally, transported by peritoneal fluid. Inflammatory cytokines released by tumor and immune cells compromise the protective, anti-adhesive mesothelial cell layer that lines the peritoneal cavity, exposing the underlying extracellular matrix to which cancer cells readily attach. The peritoneum is further rendered receptive to metastatic implantation and growth by myofibroblastic cell behaviors also stimulated by inflammatory cytokines. Individual cancer cells suspended in peritoneal fluid can aggregate to form multicellular spheroids. This cellular arrangement imparts resistance to anoikis, apoptosis, and chemotherapeutics. Emerging evidence indicates that compact spheroid formation is preferentially accomplished by cancer cells with high invasive capacity and contractile behaviors. This review focuses on the pathological alterations to the peritoneum and the properties of cancer cells that in combination drive peritoneal metastasis.
Literature
1.
go back to reference Lu, Z., Wang, J., Wientjes, M. G., & Au, J. L. (2010). Intraperitoneal therapy for peritoneal cancer. Future Oncology, 6(10), 1625–1641.PubMed Lu, Z., Wang, J., Wientjes, M. G., & Au, J. L. (2010). Intraperitoneal therapy for peritoneal cancer. Future Oncology, 6(10), 1625–1641.PubMed
2.
go back to reference Sadeghi, B., Arvieux, C., Glehen, O., Beaujard, A. C., Rivoire, M., Baulieux, J., et al. (2000). Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer, 88(2), 358–363.PubMed Sadeghi, B., Arvieux, C., Glehen, O., Beaujard, A. C., Rivoire, M., Baulieux, J., et al. (2000). Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer, 88(2), 358–363.PubMed
3.
go back to reference Finger, E. C., & Giaccia, A. J. (2010). Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer and Metastasis Reviews, 29(2), 285–293. doi:10.1007/s10555-010-9224-5 (Research support, N.I.H., Extramural review).PubMed Finger, E. C., & Giaccia, A. J. (2010). Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer and Metastasis Reviews, 29(2), 285–293. doi:10.​1007/​s10555-010-9224-5 (Research support, N.I.H., Extramural review).PubMed
4.
go back to reference Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Research, 70(14), 5649–5669. doi:10.1158/0008-5472.CAN-10-1040 (Research support, N.I.H., Extramural review).PubMed Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Research, 70(14), 5649–5669. doi:10.​1158/​0008-5472.​CAN-10-1040 (Research support, N.I.H., Extramural review).PubMed
5.
go back to reference Karst, A. M., & Drapkin, R. (2010). Ovarian cancer pathogenesis: a model in evolution. Journal of Oncology, 2010, 932371.PubMed Karst, A. M., & Drapkin, R. (2010). Ovarian cancer pathogenesis: a model in evolution. Journal of Oncology, 2010, 932371.PubMed
6.
7.
go back to reference Agarwal, R., & Kaye, S. B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews. Cancer, 3(7), 502–516.PubMed Agarwal, R., & Kaye, S. B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews. Cancer, 3(7), 502–516.PubMed
8.
go back to reference Chien, J. R., Aletti, G., Bell, D. A., Keeney, G. L., Shridhar, V., & Hartmann, L. C. (2007). Molecular pathogenesis and therapeutic targets in epithelial ovarian cancer. Journal of Cellular Biochemistry, 102(5), 1117–1129.PubMed Chien, J. R., Aletti, G., Bell, D. A., Keeney, G. L., Shridhar, V., & Hartmann, L. C. (2007). Molecular pathogenesis and therapeutic targets in epithelial ovarian cancer. Journal of Cellular Biochemistry, 102(5), 1117–1129.PubMed
9.
go back to reference Kucukmetin, A., Naik, R., Galaal, K., Bryant, A., & Dickinson, H. O. (2010). Palliative surgery versus medical management for bowel obstruction in ovarian cancer. Cochrane Database of Systematic Reviews, 7, CD007792. Kucukmetin, A., Naik, R., Galaal, K., Bryant, A., & Dickinson, H. O. (2010). Palliative surgery versus medical management for bowel obstruction in ovarian cancer. Cochrane Database of Systematic Reviews, 7, CD007792.
10.
go back to reference Stratton, J. F., Tidy, J. A., & Paterson, M. E. (2001). The surgical management of ovarian cancer. Cancer Treatment Reviews, 27(2), 111–118.PubMed Stratton, J. F., Tidy, J. A., & Paterson, M. E. (2001). The surgical management of ovarian cancer. Cancer Treatment Reviews, 27(2), 111–118.PubMed
11.
go back to reference Tan, D. S., Agarwal, R., & Kaye, S. B. (2006). Mechanisms of transcoelomic metastasis in ovarian cancer. The Lancet Oncology, 7(11), 925–934.PubMed Tan, D. S., Agarwal, R., & Kaye, S. B. (2006). Mechanisms of transcoelomic metastasis in ovarian cancer. The Lancet Oncology, 7(11), 925–934.PubMed
12.
go back to reference Judson, P. L., Geller, M. A., Bliss, R. L., Boente, M. P., Downs, L. S., Jr., Argenta, P. A., et al. (2003). Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer. Gynecologic Oncology, 91(2), 389–394.PubMed Judson, P. L., Geller, M. A., Bliss, R. L., Boente, M. P., Downs, L. S., Jr., Argenta, P. A., et al. (2003). Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer. Gynecologic Oncology, 91(2), 389–394.PubMed
13.
go back to reference Koppe, M. J., Boerman, O. C., Oyen, W. J., & Bleichrodt, R. P. (2006). Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Annals of Surgery, 243(2), 212–222. doi:10.1097/01.sla.0000197702.46394.16 (Research support, non-U.S. government, Review).PubMed Koppe, M. J., Boerman, O. C., Oyen, W. J., & Bleichrodt, R. P. (2006). Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Annals of Surgery, 243(2), 212–222. doi:10.​1097/​01.​sla.​0000197702.​46394.​16 (Research support, non-U.S. government, Review).PubMed
14.
go back to reference Ludeman, L., & Shepherd, N. A. (2005). Serosal involvement in gastrointestinal cancer: its assessment and significance. Histopathology, 47(2), 123–131.PubMed Ludeman, L., & Shepherd, N. A. (2005). Serosal involvement in gastrointestinal cancer: its assessment and significance. Histopathology, 47(2), 123–131.PubMed
15.
go back to reference Deraco, M., Baratti, D., Laterza, B., Balestra, M. R., Mingrone, E., Macri, A., et al. (2011). Advanced cytoreduction as surgical standard of care and hyperthermic intraperitoneal chemotherapy as promising treatment in epithelial ovarian cancer. European Journal of Surgical Oncology, 37(1), 4–9. doi:10.1016/j.ejso.2010.11.004 (Review).PubMed Deraco, M., Baratti, D., Laterza, B., Balestra, M. R., Mingrone, E., Macri, A., et al. (2011). Advanced cytoreduction as surgical standard of care and hyperthermic intraperitoneal chemotherapy as promising treatment in epithelial ovarian cancer. European Journal of Surgical Oncology, 37(1), 4–9. doi:10.​1016/​j.​ejso.​2010.​11.​004 (Review).PubMed
16.
go back to reference Harmon, R. L., & Sugarbaker, P. H. (2005). Prognostic indicators in peritoneal carcinomatosis from gastrointestinal cancer. International Seminars in Surgical Oncology, 2(1), 3. doi:10.1186/1477-7800-2-3.PubMed Harmon, R. L., & Sugarbaker, P. H. (2005). Prognostic indicators in peritoneal carcinomatosis from gastrointestinal cancer. International Seminars in Surgical Oncology, 2(1), 3. doi:10.​1186/​1477-7800-2-3.PubMed
17.
go back to reference Tarin, D., Price, J. E., Kettlewell, M. G., Souter, R. G., Vass, A. C., & Crossley, B. (1984). Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Research, 44(8), 3584–3592.PubMed Tarin, D., Price, J. E., Kettlewell, M. G., Souter, R. G., Vass, A. C., & Crossley, B. (1984). Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Research, 44(8), 3584–3592.PubMed
18.
go back to reference Eriksen, M. T., Wibe, A., Syse, A., Haffner, J., & Wiig, J. N. (2004). Inadvertent perforation during rectal cancer resection in Norway. British Journal of Surgery, 91(2), 210–216.PubMed Eriksen, M. T., Wibe, A., Syse, A., Haffner, J., & Wiig, J. N. (2004). Inadvertent perforation during rectal cancer resection in Norway. British Journal of Surgery, 91(2), 210–216.PubMed
19.
go back to reference Slanetz, C. A., Jr. (1984). The effect of inadvertent intraoperative perforation on survival and recurrence in colorectal cancer. Diseases of the Colon and Rectum, 27(12), 792–797.PubMed Slanetz, C. A., Jr. (1984). The effect of inadvertent intraoperative perforation on survival and recurrence in colorectal cancer. Diseases of the Colon and Rectum, 27(12), 792–797.PubMed
20.
go back to reference Fujiwara, Y., Doki, Y., Taniguchi, H., Sohma, I., Takiguchi, S., Miyata, H., et al. (2007). Genetic detection of free cancer cells in the peritoneal cavity of the patient with gastric cancer: present status and future perspectives. Gastric Cancer, 10(4), 197–204.PubMed Fujiwara, Y., Doki, Y., Taniguchi, H., Sohma, I., Takiguchi, S., Miyata, H., et al. (2007). Genetic detection of free cancer cells in the peritoneal cavity of the patient with gastric cancer: present status and future perspectives. Gastric Cancer, 10(4), 197–204.PubMed
21.
go back to reference Polyzos, N. P., Mauri, D., Tsioras, S., Messini, C. I., Valachis, A., & Messinis, I. E. (2010). Intraperitoneal dissemination of endometrial cancer cells after hysteroscopy: a systematic review and meta-analysis. International Journal of Gynecological Cancer, 20(2), 261–267.PubMed Polyzos, N. P., Mauri, D., Tsioras, S., Messini, C. I., Valachis, A., & Messinis, I. E. (2010). Intraperitoneal dissemination of endometrial cancer cells after hysteroscopy: a systematic review and meta-analysis. International Journal of Gynecological Cancer, 20(2), 261–267.PubMed
22.
go back to reference Ceelen, W. P., & Bracke, M. E. (2009). Peritoneal minimal residual disease in colorectal cancer: mechanisms, prevention, and treatment. The Lancet Oncology, 10(1), 72–79.PubMed Ceelen, W. P., & Bracke, M. E. (2009). Peritoneal minimal residual disease in colorectal cancer: mechanisms, prevention, and treatment. The Lancet Oncology, 10(1), 72–79.PubMed
23.
go back to reference Mutsaers, S. E. (2004). The mesothelial cell. The International Journal of Biochemistry & Cell Biology, 36(1), 9–16. Mutsaers, S. E. (2004). The mesothelial cell. The International Journal of Biochemistry & Cell Biology, 36(1), 9–16.
24.
go back to reference Tingstedt, B., Isaksson, K., Andersson, E., & Andersson, R. (2007). Prevention of abdominal adhesions—present state and what's beyond the horizon? European Surgical Research, 39(5), 259–268.PubMed Tingstedt, B., Isaksson, K., Andersson, E., & Andersson, R. (2007). Prevention of abdominal adhesions—present state and what's beyond the horizon? European Surgical Research, 39(5), 259–268.PubMed
25.
go back to reference Mutsaers, S. E. (2002). Mesothelial cells: their structure, function and role in serosal repair. Respirology, 7(3), 171–191.PubMed Mutsaers, S. E. (2002). Mesothelial cells: their structure, function and role in serosal repair. Respirology, 7(3), 171–191.PubMed
26.
go back to reference Witz, C. A., Montoya-Rodriguez, I. A., Cho, S., Centonze, V. E., Bonewald, L. F., & Schenken, R. S. (2001). Composition of the extracellular matrix of the peritoneum. Journal of the Society for Gynecologic Investigation, 8(5), 299–304.PubMed Witz, C. A., Montoya-Rodriguez, I. A., Cho, S., Centonze, V. E., Bonewald, L. F., & Schenken, R. S. (2001). Composition of the extracellular matrix of the peritoneum. Journal of the Society for Gynecologic Investigation, 8(5), 299–304.PubMed
27.
go back to reference Cui, L., Johkura, K., Liang, Y., Teng, R., Ogiwara, N., Okouchi, Y., et al. (2002). Biodefense function of omental milky spots through cell adhesion molecules and leukocyte proliferation. Cell and Tissue Research, 310(3), 321–330.PubMed Cui, L., Johkura, K., Liang, Y., Teng, R., Ogiwara, N., Okouchi, Y., et al. (2002). Biodefense function of omental milky spots through cell adhesion molecules and leukocyte proliferation. Cell and Tissue Research, 310(3), 321–330.PubMed
28.
go back to reference Alkhamesi, N. A., Ziprin, P., Pfistermuller, K., Peck, D. H., & Darzi, A. W. (2005). ICAM-1 mediated peritoneal carcinomatosis, a target for therapeutic intervention. Clinical & Experimental Metastasis, 22(6), 449–459. Alkhamesi, N. A., Ziprin, P., Pfistermuller, K., Peck, D. H., & Darzi, A. W. (2005). ICAM-1 mediated peritoneal carcinomatosis, a target for therapeutic intervention. Clinical & Experimental Metastasis, 22(6), 449–459.
29.
go back to reference Ksiazek, K., Mikula-Pietrasik, J., Catar, R., Dworacki, G., Winckiewicz, M., Frydrychowicz, M., et al. (2009). Oxidative stress-dependent increase in ICAM-1 expression promotes adhesion of colorectal and pancreatic cancers to the senescent peritoneal mesothelium. International Journal of Cancer, 127(2), 293–303. Ksiazek, K., Mikula-Pietrasik, J., Catar, R., Dworacki, G., Winckiewicz, M., Frydrychowicz, M., et al. (2009). Oxidative stress-dependent increase in ICAM-1 expression promotes adhesion of colorectal and pancreatic cancers to the senescent peritoneal mesothelium. International Journal of Cancer, 127(2), 293–303.
30.
go back to reference Slack-Davis, J. K., Atkins, K. A., Harrer, C., Hershey, E. D., & Conaway, M. (2009). Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Research, 69(4), 1469–1476.PubMed Slack-Davis, J. K., Atkins, K. A., Harrer, C., Hershey, E. D., & Conaway, M. (2009). Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Research, 69(4), 1469–1476.PubMed
31.
go back to reference Cannistra, S. A., Kansas, G. S., Niloff, J., DeFranzo, B., Kim, Y., & Ottensmeier, C. (1993). Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Research, 53(16), 3830–3838.PubMed Cannistra, S. A., Kansas, G. S., Niloff, J., DeFranzo, B., Kim, Y., & Ottensmeier, C. (1993). Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Research, 53(16), 3830–3838.PubMed
32.
go back to reference Casey, R. C., & Skubitz, A. P. (2000). CD44 and beta1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clinical & Experimental Metastasis, 18(1), 67–75. Casey, R. C., & Skubitz, A. P. (2000). CD44 and beta1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clinical & Experimental Metastasis, 18(1), 67–75.
33.
go back to reference Lessan, K., Aguiar, D. J., Oegema, T., Siebenson, L., & Skubitz, A. P. (1999). CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. American Journal of Pathology, 154(5), 1525–1537.PubMed Lessan, K., Aguiar, D. J., Oegema, T., Siebenson, L., & Skubitz, A. P. (1999). CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. American Journal of Pathology, 154(5), 1525–1537.PubMed
34.
go back to reference Nakashio, T., Narita, T., Akiyama, S., Kasai, Y., Fujiwara, M., Ito, K., et al. (1997). Adhesion of human gastric and pancreatic cancer cells to peritoneal mesothelial cells is mediated by CD44 and beta(1) integrin. International Journal of Oncology, 10(1), 183–188.PubMed Nakashio, T., Narita, T., Akiyama, S., Kasai, Y., Fujiwara, M., Ito, K., et al. (1997). Adhesion of human gastric and pancreatic cancer cells to peritoneal mesothelial cells is mediated by CD44 and beta(1) integrin. International Journal of Oncology, 10(1), 183–188.PubMed
35.
go back to reference Rump, A., Morikawa, Y., Tanaka, M., Minami, S., Umesaki, N., Takeuchi, M., et al. (2004). Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. Journal of Biological Chemistry, 279(10), 9190–9198.PubMed Rump, A., Morikawa, Y., Tanaka, M., Minami, S., Umesaki, N., Takeuchi, M., et al. (2004). Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. Journal of Biological Chemistry, 279(10), 9190–9198.PubMed
36.
go back to reference Burleson, K. M., Casey, R. C., Skubitz, K. M., Pambuccian, S. E., Oegema, T. R., Jr., & Skubitz, A. P. (2004). Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecologic Oncology, 93(1), 170–181.PubMed Burleson, K. M., Casey, R. C., Skubitz, K. M., Pambuccian, S. E., Oegema, T. R., Jr., & Skubitz, A. P. (2004). Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecologic Oncology, 93(1), 170–181.PubMed
37.
go back to reference Burleson, K. M., Hansen, L. K., & Skubitz, A. P. (2004). Ovarian carcinoma spheroids disaggregate on type I collagen and invade live human mesothelial cell monolayers. Clinical & Experimental Metastasis, 21(8), 685–697. Burleson, K. M., Hansen, L. K., & Skubitz, A. P. (2004). Ovarian carcinoma spheroids disaggregate on type I collagen and invade live human mesothelial cell monolayers. Clinical & Experimental Metastasis, 21(8), 685–697.
38.
go back to reference Casey, R. C., Burleson, K. M., Skubitz, K. M., Pambuccian, S. E., Oegema, T. R., Jr., Ruff, L. E., et al. (2001). Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. American Journal of Pathology, 159(6), 2071–2080.PubMed Casey, R. C., Burleson, K. M., Skubitz, K. M., Pambuccian, S. E., Oegema, T. R., Jr., Ruff, L. E., et al. (2001). Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. American Journal of Pathology, 159(6), 2071–2080.PubMed
39.
go back to reference Strobel, T., & Cannistra, S. A. (1999). Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecologic Oncology, 73(3), 362–367.PubMed Strobel, T., & Cannistra, S. A. (1999). Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecologic Oncology, 73(3), 362–367.PubMed
40.
go back to reference Moser, T. L., Pizzo, S. V., Bafetti, L. M., Fishman, D. A., & Stack, M. S. (1996). Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the alpha2beta1 integrin. International Journal of Cancer, 67(5), 695–701. doi:10.1002/(SICI)1097-0215(19960904)67:5<695::AID-IJC18>3.0.CO;2–4 (Research support, non-U.S. government research support, U.S. government, P.H.S.). Moser, T. L., Pizzo, S. V., Bafetti, L. M., Fishman, D. A., & Stack, M. S. (1996). Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the alpha2beta1 integrin. International Journal of Cancer, 67(5), 695–701. doi:10.​1002/​(SICI)1097-0215(19960904)67:​5<695:​:​AID-IJC18>3.​0.​CO;2–4 (Research support, non-U.S. government research support, U.S. government, P.H.S.).
41.
go back to reference Fishman, D. A., Kearns, A., Chilukuri, K., Bafetti, L. M., O'Toole, E. A., Georgacopoulos, J., et al. (1998). Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with type I collagen. Invasion & Metastasis, 18(1), 15–26 (Research support, non-U.S. government research support, U.S. government, P.H.S.). Fishman, D. A., Kearns, A., Chilukuri, K., Bafetti, L. M., O'Toole, E. A., Georgacopoulos, J., et al. (1998). Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with type I collagen. Invasion & Metastasis, 18(1), 15–26 (Research support, non-U.S. government research support, U.S. government, P.H.S.).
42.
go back to reference Ellerbroek, S. M., Wu, Y. I., Overall, C. M., & Stack, M. S. (2001). Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. Journal of Biological Chemistry, 276(27), 24833–24842. doi:10.1074/jbc.M005631200 (Research support, U.S. government, non-P.H.S. research support, U.S. government, P.H.S.).PubMed Ellerbroek, S. M., Wu, Y. I., Overall, C. M., & Stack, M. S. (2001). Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. Journal of Biological Chemistry, 276(27), 24833–24842. doi:10.​1074/​jbc.​M005631200 (Research support, U.S. government, non-P.H.S. research support, U.S. government, P.H.S.).PubMed
43.
go back to reference Sodek, K. L., Evangelou, A. I., Ignatchenko, A., Agochiya, M., Brown, T. J., Ringuette, M. J., et al. (2008). Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT). Molecular BioSystems, 4(7), 762–773. doi:10.1039/b717542f (Research support, non-U.S. government research support, U.S. government, non-P.H.S.).PubMed Sodek, K. L., Evangelou, A. I., Ignatchenko, A., Agochiya, M., Brown, T. J., Ringuette, M. J., et al. (2008). Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT). Molecular BioSystems, 4(7), 762–773. doi:10.​1039/​b717542f (Research support, non-U.S. government research support, U.S. government, non-P.H.S.).PubMed
44.
go back to reference Kawamura, T., Endo, Y., Yonemura, Y., Nojima, N., Fujita, H., Fujimura, T., et al. (2001). Significance of integrin alpha2/beta1 in peritoneal dissemination of a human gastric cancer xenograft model. International Journal of Oncology, 18(4), 809–815.PubMed Kawamura, T., Endo, Y., Yonemura, Y., Nojima, N., Fujita, H., Fujimura, T., et al. (2001). Significance of integrin alpha2/beta1 in peritoneal dissemination of a human gastric cancer xenograft model. International Journal of Oncology, 18(4), 809–815.PubMed
45.
go back to reference Bergstrom, M., Ivarsson, M. L., & Holmdahl, L. (2002). Peritoneal response to pneumoperitoneum and laparoscopic surgery. British Journal of Surgery, 89(11), 1465–1469 (Research support, non-U.S. government).PubMed Bergstrom, M., Ivarsson, M. L., & Holmdahl, L. (2002). Peritoneal response to pneumoperitoneum and laparoscopic surgery. British Journal of Surgery, 89(11), 1465–1469 (Research support, non-U.S. government).PubMed
46.
go back to reference Oosterling, S. J., van der Bij, G. J., van Egmond, M., & van der Sijp, J. R. (2005). Surgical trauma and peritoneal recurrence of colorectal carcinoma. European Journal of Surgical Oncology, 31(1), 29–37. doi:10.1016/j.ejso.2004.10.005 (Review).PubMed Oosterling, S. J., van der Bij, G. J., van Egmond, M., & van der Sijp, J. R. (2005). Surgical trauma and peritoneal recurrence of colorectal carcinoma. European Journal of Surgical Oncology, 31(1), 29–37. doi:10.​1016/​j.​ejso.​2004.​10.​005 (Review).PubMed
47.
go back to reference Mutsaers, S. E., & Wilkosz, S. (2007). Structure and function of mesothelial cells. Cancer Treatment and Research, 134, 1–19 (Review).PubMed Mutsaers, S. E., & Wilkosz, S. (2007). Structure and function of mesothelial cells. Cancer Treatment and Research, 134, 1–19 (Review).PubMed
48.
go back to reference Oosterling, S. J., van der Bij, G. J., Bogels, M., ten Raa, S., Post, J. A., Meijer, G. A., et al. (2008). Anti-beta1 integrin antibody reduces surgery-induced adhesion of colon carcinoma cells to traumatized peritoneal surfaces. Annals of Surgery, 247(1), 85–94. doi:10.1097/SLA.0b013e3181588583.PubMed Oosterling, S. J., van der Bij, G. J., Bogels, M., ten Raa, S., Post, J. A., Meijer, G. A., et al. (2008). Anti-beta1 integrin antibody reduces surgery-induced adhesion of colon carcinoma cells to traumatized peritoneal surfaces. Annals of Surgery, 247(1), 85–94. doi:10.​1097/​SLA.​0b013e3181588583​.PubMed
49.
go back to reference Kenny, H. A., Krausz, T., Yamada, S. D., & Lengyel, E. (2007). Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. International Journal of Cancer, 121(7), 1463–1472. doi:10.1002/ijc.22874 (Research support, N.I.H., extramural research support, non-U.S. government). Kenny, H. A., Krausz, T., Yamada, S. D., & Lengyel, E. (2007). Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. International Journal of Cancer, 121(7), 1463–1472. doi:10.​1002/​ijc.​22874 (Research support, N.I.H., extramural research support, non-U.S. government).
50.
go back to reference Krist, L. F., Kerremans, M., Broekhuis-Fluitsma, D. M., Eestermans, I. L., Meyer, S., & Beelen, R. H. (1998). Milky spots in the greater omentum are predominant sites of local tumour cell proliferation and accumulation in the peritoneal cavity. Cancer Immunology, Immunotherapy, 47(4), 205–212.PubMed Krist, L. F., Kerremans, M., Broekhuis-Fluitsma, D. M., Eestermans, I. L., Meyer, S., & Beelen, R. H. (1998). Milky spots in the greater omentum are predominant sites of local tumour cell proliferation and accumulation in the peritoneal cavity. Cancer Immunology, Immunotherapy, 47(4), 205–212.PubMed
51.
go back to reference Mochizuki, Y., Nakanishi, H., Kodera, Y., Ito, S., Yamamura, Y., Kato, T., et al. (2004). TNF-alpha promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clinical & Experimental Metastasis, 21(1), 39–47 (Research support, non-U.S. government). Mochizuki, Y., Nakanishi, H., Kodera, Y., Ito, S., Yamamura, Y., Kato, T., et al. (2004). TNF-alpha promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clinical & Experimental Metastasis, 21(1), 39–47 (Research support, non-U.S. government).
52.
go back to reference Sorensen, E. W., Gerber, S. A., Sedlacek, A. L., Rybalko, V. Y., Chan, W. M., & Lord, E. M. (2012). Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunologic Research, 45(2–3), 185–194. Sorensen, E. W., Gerber, S. A., Sedlacek, A. L., Rybalko, V. Y., Chan, W. M., & Lord, E. M. (2012). Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunologic Research, 45(2–3), 185–194.
53.
go back to reference Tsujimoto, H., Takhashi, T., Hagiwara, A., Shimotsuma, M., Sakakura, C., Osaki, K., et al. (1995). Site-specific implantation in the milky spots of malignant cells in peritoneal dissemination: immunohistochemical observation in mice inoculated intraperitoneally with bromodeoxyuridine-labelled cells. British Journal of Cancer, 71(3), 468–472.PubMed Tsujimoto, H., Takhashi, T., Hagiwara, A., Shimotsuma, M., Sakakura, C., Osaki, K., et al. (1995). Site-specific implantation in the milky spots of malignant cells in peritoneal dissemination: immunohistochemical observation in mice inoculated intraperitoneally with bromodeoxyuridine-labelled cells. British Journal of Cancer, 71(3), 468–472.PubMed
54.
go back to reference Oosterling, S. J., van der Bij, G. J., Bogels, M., van der Sijp, J. R., Beelen, R. H., Meijer, S., et al. (2006). Insufficient ability of omental milky spots to prevent peritoneal tumor outgrowth supports omentectomy in minimal residual disease. Cancer Immunology, Immunotherapy, 55(9), 1043–1051. doi:10.1007/s00262-005-0101-y.PubMed Oosterling, S. J., van der Bij, G. J., Bogels, M., van der Sijp, J. R., Beelen, R. H., Meijer, S., et al. (2006). Insufficient ability of omental milky spots to prevent peritoneal tumor outgrowth supports omentectomy in minimal residual disease. Cancer Immunology, Immunotherapy, 55(9), 1043–1051. doi:10.​1007/​s00262-005-0101-y.PubMed
55.
go back to reference Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. doi:10.1038/nm.2492.PubMed Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. doi:10.​1038/​nm.​2492.PubMed
56.
go back to reference Kassis, J., Klominek, J., & Kohn, E. C. (2005). Tumor microenvironment: what can effusions teach us? Diagnostic Cytopathology, 33(5), 316–319. doi:10.1002/dc.20280 (Review).PubMed Kassis, J., Klominek, J., & Kohn, E. C. (2005). Tumor microenvironment: what can effusions teach us? Diagnostic Cytopathology, 33(5), 316–319. doi:10.​1002/​dc.​20280 (Review).PubMed
57.
go back to reference Kulbe, H., Chakravarty, P., Leinster, D. A., Charles, K. A., Kwong, J., Thompson, R. G., et al. (2012). A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Research, 72, 66–75. doi:10.1158/0008-5472.CAN-11-2178.PubMed Kulbe, H., Chakravarty, P., Leinster, D. A., Charles, K. A., Kwong, J., Thompson, R. G., et al. (2012). A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Research, 72, 66–75. doi:10.​1158/​0008-5472.​CAN-11-2178.PubMed
58.
go back to reference Robinson-Smith, T. M., Isaacsohn, I., Mercer, C. A., Zhou, M., Van Rooijen, N., Husseinzadeh, N., et al. (2007). Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Research, 67(12), 5708–5716. doi:10.1158/0008-5472.CAN-06-4375 (Research support, non-U.S. government).PubMed Robinson-Smith, T. M., Isaacsohn, I., Mercer, C. A., Zhou, M., Van Rooijen, N., Husseinzadeh, N., et al. (2007). Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Research, 67(12), 5708–5716. doi:10.​1158/​0008-5472.​CAN-06-4375 (Research support, non-U.S. government).PubMed
59.
go back to reference Freedman, R. S., Deavers, M., Liu, J., & Wang, E. (2004). Peritoneal inflammation—a microenvironment for epithelial ovarian cancer (EOC). Journal of Translational Medicine, 2(1), 23. doi:10.1186/1479-5876-2-23.PubMed Freedman, R. S., Deavers, M., Liu, J., & Wang, E. (2004). Peritoneal inflammation—a microenvironment for epithelial ovarian cancer (EOC). Journal of Translational Medicine, 2(1), 23. doi:10.​1186/​1479-5876-2-23.PubMed
60.
go back to reference Wang, E., Ngalame, Y., Panelli, M. C., Nguyen-Jackson, H., Deavers, M., Mueller, P., et al. (2005). Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clinical Cancer Research, 11(1), 113–122.PubMed Wang, E., Ngalame, Y., Panelli, M. C., Nguyen-Jackson, H., Deavers, M., Mueller, P., et al. (2005). Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clinical Cancer Research, 11(1), 113–122.PubMed
61.
go back to reference Stadlmann, S., Raffeiner, R., Amberger, A., Margreiter, R., Zeimet, A. G., Abendstein, B., et al. (2003). Disruption of the integrity of human peritoneal mesothelium by interleukin-1beta and tumor necrosis factor-alpha. Virchows Archiv, 443(5), 678–685. doi:10.1007/s00428-003-0867-2.PubMed Stadlmann, S., Raffeiner, R., Amberger, A., Margreiter, R., Zeimet, A. G., Abendstein, B., et al. (2003). Disruption of the integrity of human peritoneal mesothelium by interleukin-1beta and tumor necrosis factor-alpha. Virchows Archiv, 443(5), 678–685. doi:10.​1007/​s00428-003-0867-2.PubMed
64.
go back to reference Moradi, M. M., Carson, L. F., Weinberg, B., Haney, A. F., Twiggs, L. B., & Ramakrishnan, S. (1993). Serum and ascitic fluid levels of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in patients with ovarian epithelial cancer. Cancer, 72(8), 2433–2440 (Research support, non-U.S. government research support, U.S. government, P.H.S.).PubMed Moradi, M. M., Carson, L. F., Weinberg, B., Haney, A. F., Twiggs, L. B., & Ramakrishnan, S. (1993). Serum and ascitic fluid levels of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in patients with ovarian epithelial cancer. Cancer, 72(8), 2433–2440 (Research support, non-U.S. government research support, U.S. government, P.H.S.).PubMed
65.
go back to reference Zhang, X. Y., Pettengell, R., Nasiri, N., Kalia, V., Dalgleish, A. G., & Barton, D. P. (1999). Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources. Journal of the Society for Gynecologic Investigation, 6(6), 333–340.PubMed Zhang, X. Y., Pettengell, R., Nasiri, N., Kalia, V., Dalgleish, A. G., & Barton, D. P. (1999). Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources. Journal of the Society for Gynecologic Investigation, 6(6), 333–340.PubMed
66.
go back to reference Strobel, T., Swanson, L., & Cannistra, S. A. (1997). In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Research, 57(7), 1228–1232.PubMed Strobel, T., Swanson, L., & Cannistra, S. A. (1997). In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Research, 57(7), 1228–1232.PubMed
67.
go back to reference Barni, S., Cabiddu, M., Ghilardi, M., & Petrelli, F. (2011). A novel perspective for an orphan problem: old and new drugs for the medical management of malignant ascites. Critical Reviews in Oncology/Hematology, 79(2), 144–153. doi:10.1016/j.critrevonc.2010.07.016 (Review).PubMed Barni, S., Cabiddu, M., Ghilardi, M., & Petrelli, F. (2011). A novel perspective for an orphan problem: old and new drugs for the medical management of malignant ascites. Critical Reviews in Oncology/Hematology, 79(2), 144–153. doi:10.​1016/​j.​critrevonc.​2010.​07.​016 (Review).PubMed
68.
go back to reference Carmignani, C. P., Sugarbaker, T. A., Bromley, C. M., & Sugarbaker, P. H. (2003). Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer and Metastasis Reviews, 22(4), 465–472.PubMed Carmignani, C. P., Sugarbaker, T. A., Bromley, C. M., & Sugarbaker, P. H. (2003). Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer and Metastasis Reviews, 22(4), 465–472.PubMed
69.
go back to reference Puls, L. E., Duniho, T., Hunter, J. E., Kryscio, R., Blackhurst, D., & Gallion, H. (1996). The prognostic implication of ascites in advanced-stage ovarian cancer. Gynecologic Oncology, 61(1), 109–112.PubMed Puls, L. E., Duniho, T., Hunter, J. E., Kryscio, R., Blackhurst, D., & Gallion, H. (1996). The prognostic implication of ascites in advanced-stage ovarian cancer. Gynecologic Oncology, 61(1), 109–112.PubMed
70.
go back to reference Ayantunde, A. A., & Parsons, S. L. (2007). Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Annals of Oncology, 18(5), 945–949. doi:10.1093/annonc/mdl499 (Comparative study).PubMed Ayantunde, A. A., & Parsons, S. L. (2007). Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Annals of Oncology, 18(5), 945–949. doi:10.​1093/​annonc/​mdl499 (Comparative study).PubMed
74.
go back to reference Stanovevik, Z., Rancic, G., Radic, S., Potic-Zecevic, N., Dordevic, B., & Todorvska, I. (2004). Pathogenesis of malignant ascites in ovarian cancer patients. Archive of Oncology, 12(2), 115–118. Stanovevik, Z., Rancic, G., Radic, S., Potic-Zecevic, N., Dordevic, B., & Todorvska, I. (2004). Pathogenesis of malignant ascites in ovarian cancer patients. Archive of Oncology, 12(2), 115–118.
75.
go back to reference Nagy, J. A., Masse, E. M., Herzberg, K. T., Meyers, M. S., Yeo, K. T., Yeo, T. K., et al. (1995). Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Research, 55(2), 360–368 (Research support, non-U.S. government research support, U.S. government, P.H.S.).PubMed Nagy, J. A., Masse, E. M., Herzberg, K. T., Meyers, M. S., Yeo, K. T., Yeo, T. K., et al. (1995). Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Research, 55(2), 360–368 (Research support, non-U.S. government research support, U.S. government, P.H.S.).PubMed
76.
go back to reference Melichar, B., & Freedman, R. S. (2002). Immunology of the peritoneal cavity: relevance for host–tumor relation. International Journal of Gynecological Cancer, 12(1), 3–17 (Research support, non-U.S. government, Review).PubMed Melichar, B., & Freedman, R. S. (2002). Immunology of the peritoneal cavity: relevance for host–tumor relation. International Journal of Gynecological Cancer, 12(1), 3–17 (Research support, non-U.S. government, Review).PubMed
77.
go back to reference Olson, T. A., Mohanraj, D., Carson, L. F., & Ramakrishnan, S. (1994). Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Research, 54(1), 276–280 (Research support, non-U.S. government research support, U.S. government, P.H.S.).PubMed Olson, T. A., Mohanraj, D., Carson, L. F., & Ramakrishnan, S. (1994). Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Research, 54(1), 276–280 (Research support, non-U.S. government research support, U.S. government, P.H.S.).PubMed
78.
go back to reference Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985 (Research support, non-U.S. government).PubMed Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985 (Research support, non-U.S. government).PubMed
79.
go back to reference Kobold, S., Hegewisch-Becker, S., Oechsle, K., Jordan, K., Bokemeyer, C., & Atanackovic, D. (2009). Intraperitoneal VEGF inhibition using bevacizumab: a potential approach for the symptomatic treatment of malignant ascites? The Oncologist, 14(12), 1242–1251. doi:10.1634/theoncologist.2009-0109 (Research support, non-U.S. government, Review).PubMed Kobold, S., Hegewisch-Becker, S., Oechsle, K., Jordan, K., Bokemeyer, C., & Atanackovic, D. (2009). Intraperitoneal VEGF inhibition using bevacizumab: a potential approach for the symptomatic treatment of malignant ascites? The Oncologist, 14(12), 1242–1251. doi:10.​1634/​theoncologist.​2009-0109 (Research support, non-U.S. government, Review).PubMed
80.
go back to reference Colombo, N., Mangili, G., Mammoliti, S., Kalling, M., Tholander, B., Sternas, L., et al. (2012). A phase II study of aflibercept in patients with advanced epithelial ovarian cancer and symptomatic malignant ascites. Gynecologic Oncology, 125, 42–47. doi:10.1016/j.ygyno.2011.11.021.PubMed Colombo, N., Mangili, G., Mammoliti, S., Kalling, M., Tholander, B., Sternas, L., et al. (2012). A phase II study of aflibercept in patients with advanced epithelial ovarian cancer and symptomatic malignant ascites. Gynecologic Oncology, 125, 42–47. doi:10.​1016/​j.​ygyno.​2011.​11.​021.PubMed
81.
go back to reference Gotlieb, W. H., Amant, F., Advani, S., Goswami, C., Hirte, H., Provencher, D., et al. (2012). Intravenous aflibercept for treatment of recurrent symptomatic malignant ascites in patients with advanced ovarian cancer: a phase 2, randomised, double-blind, placebo-controlled study. The Lancet Oncology, 13(2), 154–162. doi:10.1016/S1470-2045(11)70338-2 (Research support, non-U.S. government).PubMed Gotlieb, W. H., Amant, F., Advani, S., Goswami, C., Hirte, H., Provencher, D., et al. (2012). Intravenous aflibercept for treatment of recurrent symptomatic malignant ascites in patients with advanced ovarian cancer: a phase 2, randomised, double-blind, placebo-controlled study. The Lancet Oncology, 13(2), 154–162. doi:10.​1016/​S1470-2045(11)70338-2 (Research support, non-U.S. government).PubMed
82.
go back to reference Chen, X. L., Nam, J. O., Jean, C., Lawson, C., Walsh, C. T., Goka, E., et al. (2012). VEGF-induced vascular permeability is mediated by FAK. Developmental Cell, 22(1), 146–157. doi:10.1016/j.devcel.2011.11.002 (Research support, N.I.H., extramural research support, non-U.S. government).PubMed Chen, X. L., Nam, J. O., Jean, C., Lawson, C., Walsh, C. T., Goka, E., et al. (2012). VEGF-induced vascular permeability is mediated by FAK. Developmental Cell, 22(1), 146–157. doi:10.​1016/​j.​devcel.​2011.​11.​002 (Research support, N.I.H., extramural research support, non-U.S. government).PubMed
83.
go back to reference Wang, Y., Qu, Y., Niu, X. L., Sun, W. J., Zhang, X. L., & Li, L. Z. (2011). Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine, 56(2), 365–375. doi:10.1016/j.cyto.2011.06.005 (Research support, non-U.S. government).PubMed Wang, Y., Qu, Y., Niu, X. L., Sun, W. J., Zhang, X. L., & Li, L. Z. (2011). Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine, 56(2), 365–375. doi:10.​1016/​j.​cyto.​2011.​06.​005 (Research support, non-U.S. government).PubMed
84.
go back to reference Lane, D., Matte, I., Rancourt, C., & Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11, 210. doi:10.1186/1471-2407-11-210 (Research support, non-U.S. government).PubMed Lane, D., Matte, I., Rancourt, C., & Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11, 210. doi:10.​1186/​1471-2407-11-210 (Research support, non-U.S. government).PubMed
85.
go back to reference Baykal, C., Demirtas, E., Al, A., Ayhan, A., Yuce, K., Tulunay, G., et al. (2003). Comparison of HGF (hepatocyte growth factor) levels of epithelial ovarian cancer cyst fluids with benign ovarian cysts. International Journal of Gynecological Cancer, 13(6), 771–775 (Comparative study duplicate publication, research support, non-U.S. government).PubMed Baykal, C., Demirtas, E., Al, A., Ayhan, A., Yuce, K., Tulunay, G., et al. (2003). Comparison of HGF (hepatocyte growth factor) levels of epithelial ovarian cancer cyst fluids with benign ovarian cysts. International Journal of Gynecological Cancer, 13(6), 771–775 (Comparative study duplicate publication, research support, non-U.S. government).PubMed
86.
go back to reference Miyamoto, S., Hirata, M., Yamazaki, A., Kageyama, T., Hasuwa, H., Mizushima, H., et al. (2004). Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Research, 64(16), 5720–5727. doi:10.1158/0008-5472.CAN-04-0811 (Research support, non-U.S. government).PubMed Miyamoto, S., Hirata, M., Yamazaki, A., Kageyama, T., Hasuwa, H., Mizushima, H., et al. (2004). Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Research, 64(16), 5720–5727. doi:10.​1158/​0008-5472.​CAN-04-0811 (Research support, non-U.S. government).PubMed
87.
go back to reference Xu, Y., Gaudette, D. C., Boynton, J. D., Frankel, A., Fang, X. J., Sharma, A., et al. (1995). Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clinical Cancer Research, 1(10), 1223–1232 (Research support, non-U.S. government).PubMed Xu, Y., Gaudette, D. C., Boynton, J. D., Frankel, A., Fang, X. J., Sharma, A., et al. (1995). Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clinical Cancer Research, 1(10), 1223–1232 (Research support, non-U.S. government).PubMed
88.
go back to reference Connor, J. P., & Felder, M. (2008). Ascites from epithelial ovarian cancer contain high levels of functional decoy receptor 3 (DcR3) and is associated with platinum resistance. Gynecologic Oncology, 111(2), 330–335. doi:10.1016/j.ygyno.2008.07.012.PubMed Connor, J. P., & Felder, M. (2008). Ascites from epithelial ovarian cancer contain high levels of functional decoy receptor 3 (DcR3) and is associated with platinum resistance. Gynecologic Oncology, 111(2), 330–335. doi:10.​1016/​j.​ygyno.​2008.​07.​012.PubMed
89.
go back to reference Lane, D., Goncharenko-Khaider, N., Rancourt, C., & Piche, A. (2010). Ovarian cancer ascites protects from TRAIL-induced cell death through alphavbeta5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene, 29(24), 3519–3531. doi:10.1038/onc.2010.107 (Research support, non-U.S. government).PubMed Lane, D., Goncharenko-Khaider, N., Rancourt, C., & Piche, A. (2010). Ovarian cancer ascites protects from TRAIL-induced cell death through alphavbeta5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene, 29(24), 3519–3531. doi:10.​1038/​onc.​2010.​107 (Research support, non-U.S. government).PubMed
90.
go back to reference Puiffe, M. L., Le Page, C., Filali-Mouhim, A., Zietarska, M., Ouellet, V., Tonin, P. N., et al. (2007). Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia, 9(10), 820–829 (Research support, non-U.S. government).PubMed Puiffe, M. L., Le Page, C., Filali-Mouhim, A., Zietarska, M., Ouellet, V., Tonin, P. N., et al. (2007). Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia, 9(10), 820–829 (Research support, non-U.S. government).PubMed
91.
go back to reference Nagy, J. A., Meyers, M. S., Masse, E. M., Herzberg, K. T., & Dvorak, H. F. (1995). Pathogenesis of ascites tumor growth: fibrinogen influx and fibrin accumulation in tissues lining the peritoneal cavity. Cancer Research, 55(2), 369–375 (Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed Nagy, J. A., Meyers, M. S., Masse, E. M., Herzberg, K. T., & Dvorak, H. F. (1995). Pathogenesis of ascites tumor growth: fibrinogen influx and fibrin accumulation in tissues lining the peritoneal cavity. Cancer Research, 55(2), 369–375 (Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed
92.
go back to reference Ghosh, S., Wu, Y., & Stack, M. S. (2002). Ovarian cancer-associated proteinases. Cancer Treatment and Research, 107, 331–351 (Research support, non-U.S. government Research support, U.S. government, non-P.H.S. Research support, U.S. government, P.H.S. review).PubMed Ghosh, S., Wu, Y., & Stack, M. S. (2002). Ovarian cancer-associated proteinases. Cancer Treatment and Research, 107, 331–351 (Research support, non-U.S. government Research support, U.S. government, non-P.H.S. Research support, U.S. government, P.H.S. review).PubMed
93.
go back to reference Stack, M. S., Ellerbroek, S. M., & Fishman, D. A. (1998). The role of proteolytic enzymes in the pathology of epithelial ovarian carcinoma. International Journal of Oncology, 12(3), 569–576 (Review).PubMed Stack, M. S., Ellerbroek, S. M., & Fishman, D. A. (1998). The role of proteolytic enzymes in the pathology of epithelial ovarian carcinoma. International Journal of Oncology, 12(3), 569–576 (Review).PubMed
94.
go back to reference Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 295(5564), 2387–2392. doi:10.1126/science.1067100 (Research support, non-U.S. government Research support, U.S. government, P.H.S. review).PubMed Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 295(5564), 2387–2392. doi:10.​1126/​science.​1067100 (Research support, non-U.S. government Research support, U.S. government, P.H.S. review).PubMed
95.
go back to reference Dorman, G., Cseh, S., Hajdu, I., Barna, L., Konya, D., Kupai, K., et al. (2010). Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs, 70(8), 949–964. doi:10.2165/11318390-000000000-00000 (Research support, non-U.S. government, Review).PubMed Dorman, G., Cseh, S., Hajdu, I., Barna, L., Konya, D., Kupai, K., et al. (2010). Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs, 70(8), 949–964. doi:10.​2165/​11318390-000000000-00000 (Research support, non-U.S. government, Review).PubMed
96.
go back to reference Hirte, H., Vergote, I. B., Jeffrey, J. R., Grimshaw, R. N., Coppieters, S., Schwartz, B., et al. (2006). A phase III randomized trial of BAY 12-9566 (tanomastat) as maintenance therapy in patients with advanced ovarian cancer responsive to primary surgery and paclitaxel/platinum containing chemotherapy: a National Cancer Institute of Canada Clinical Trials Group Study. Gynecologic Oncology, 102(2), 300–308. doi:10.1016/j.ygyno.2005.12.020 (Clinical trial, phase III multicenter study randomized controlled trial).PubMed Hirte, H., Vergote, I. B., Jeffrey, J. R., Grimshaw, R. N., Coppieters, S., Schwartz, B., et al. (2006). A phase III randomized trial of BAY 12-9566 (tanomastat) as maintenance therapy in patients with advanced ovarian cancer responsive to primary surgery and paclitaxel/platinum containing chemotherapy: a National Cancer Institute of Canada Clinical Trials Group Study. Gynecologic Oncology, 102(2), 300–308. doi:10.​1016/​j.​ygyno.​2005.​12.​020 (Clinical trial, phase III multicenter study randomized controlled trial).PubMed
97.
go back to reference Hotary, K., Li, X. Y., Allen, E., Stevens, S. L., & Weiss, S. J. (2006). A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes & Development, 20(19), 2673–2686. doi:10.1101/gad.1451806 (Research support, N.I.H., extramural). Hotary, K., Li, X. Y., Allen, E., Stevens, S. L., & Weiss, S. J. (2006). A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes & Development, 20(19), 2673–2686. doi:10.​1101/​gad.​1451806 (Research support, N.I.H., extramural).
98.
go back to reference Sabeh, F., Shimizu-Hirota, R., & Weiss, S. J. (2009). Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited]. The Journal of Cell Biology, 185(1), 11–19. doi:10.1083/jcb.200807195 (Research support, N.I.H., extramural research support, non-U.S. governmen).PubMed Sabeh, F., Shimizu-Hirota, R., & Weiss, S. J. (2009). Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited]. The Journal of Cell Biology, 185(1), 11–19. doi:10.​1083/​jcb.​200807195 (Research support, N.I.H., extramural research support, non-U.S. governmen).PubMed
99.
go back to reference Overall, C. M., & Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews. Cancer, 2(9), 657–672. doi:10.1038/nrc884 (Research support, non-U.S. government, Review).PubMed Overall, C. M., & Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews. Cancer, 2(9), 657–672. doi:10.​1038/​nrc884 (Research support, non-U.S. government, Review).PubMed
100.
go back to reference Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2(3), 161–174. doi:10.1038/nrc745 (Research support, non-U.S. government Research support, U.S. government, P.H.S. review).PubMed Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2(3), 161–174. doi:10.​1038/​nrc745 (Research support, non-U.S. government Research support, U.S. government, P.H.S. review).PubMed
102.
go back to reference Sodek, K. L., Ringuette, M. J., & Brown, T. J. (2007). MT1-MMP is the critical determinant of matrix degradation and invasion by ovarian cancer cells. British Journal of Cancer, 97(3), 358–367. doi:10.1038/sj.bjc.6603863 (Research support, non-U.S. government).PubMed Sodek, K. L., Ringuette, M. J., & Brown, T. J. (2007). MT1-MMP is the critical determinant of matrix degradation and invasion by ovarian cancer cells. British Journal of Cancer, 97(3), 358–367. doi:10.​1038/​sj.​bjc.​6603863 (Research support, non-U.S. government).PubMed
103.
go back to reference Shaw, T. J., Senterman, M. K., Dawson, K., Crane, C. A., & Vanderhyden, B. C. (2004). Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Molecular Therapy, 10(6), 1032–1042. doi:10.1016/j.ymthe.2004.08.013 (Research support, non-U.S. government).PubMed Shaw, T. J., Senterman, M. K., Dawson, K., Crane, C. A., & Vanderhyden, B. C. (2004). Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Molecular Therapy, 10(6), 1032–1042. doi:10.​1016/​j.​ymthe.​2004.​08.​013 (Research support, non-U.S. government).PubMed
104.
go back to reference Nonaka, T., Nishibashi, K., Itoh, Y., Yana, I., & Seiki, M. (2005). Competitive disruption of the tumor-promoting function of membrane type 1 matrix metalloproteinase/matrix metalloproteinase-14 in vivo. Molecular Cancer Therapeutics, 4(8), 1157–1166. doi:10.1158/1535-7163.MCT-05-0127 (Research support, non-U.S. government).PubMed Nonaka, T., Nishibashi, K., Itoh, Y., Yana, I., & Seiki, M. (2005). Competitive disruption of the tumor-promoting function of membrane type 1 matrix metalloproteinase/matrix metalloproteinase-14 in vivo. Molecular Cancer Therapeutics, 4(8), 1157–1166. doi:10.​1158/​1535-7163.​MCT-05-0127 (Research support, non-U.S. government).PubMed
105.
go back to reference Kenny, H. A., Kaur, S., Coussens, L. M., & Lengyel, E. (2008). The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. The Journal of Clinical Investigation, 118(4), 1367–1379. doi:10.1172/JCI33775 (Research support, N.I.H., extramural research support, non-U.S. government Research support, U.S. government, non-P.H.S.).PubMed Kenny, H. A., Kaur, S., Coussens, L. M., & Lengyel, E. (2008). The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. The Journal of Clinical Investigation, 118(4), 1367–1379. doi:10.​1172/​JCI33775 (Research support, N.I.H., extramural research support, non-U.S. government Research support, U.S. government, non-P.H.S.).PubMed
106.
go back to reference Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., & Goldberg, G. I. (1995). Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. Journal of Biological Chemistry, 270(10), 5331–5338 (Comparative study, Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., & Goldberg, G. I. (1995). Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. Journal of Biological Chemistry, 270(10), 5331–5338 (Comparative study, Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed
107.
go back to reference Tanaka, Y., Miyamoto, S., Suzuki, S. O., Oki, E., Yagi, H., Sonoda, K., et al. (2005). Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clinical Cancer Research, 11(13), 4783–4792 (Comparative study Research support, non-U.S. government).PubMed Tanaka, Y., Miyamoto, S., Suzuki, S. O., Oki, E., Yagi, H., Sonoda, K., et al. (2005). Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clinical Cancer Research, 11(13), 4783–4792 (Comparative study Research support, non-U.S. government).PubMed
108.
go back to reference Yagi, H., Yotsumoto, F., & Miyamoto, S. (2008). Heparin-binding epidermal growth factor-like growth factor promotes transcoelomic metastasis in ovarian cancer through epithelial–mesenchymal transition. Molecular Cancer Therapeutics, 7(10), 3441–3451. doi:10.1158/1535-7163.MCT-08-0417 (Research support, non-U.S. government).PubMed Yagi, H., Yotsumoto, F., & Miyamoto, S. (2008). Heparin-binding epidermal growth factor-like growth factor promotes transcoelomic metastasis in ovarian cancer through epithelial–mesenchymal transition. Molecular Cancer Therapeutics, 7(10), 3441–3451. doi:10.​1158/​1535-7163.​MCT-08-0417 (Research support, non-U.S. government).PubMed
109.
go back to reference Tsujioka, H., Yotsumoto, F., Hikita, S., Ueda, T., Kuroki, M., & Miyamoto, S. (2011). Targeting the heparin-binding epidermal growth factor-like growth factor in ovarian cancer therapy. Current Opinion in Obstetrics and Gynecology, 23(1), 24–30. doi:10.1097/GCO.0b013e3283409c91 (Research support, non-U.S. government, Review).PubMed Tsujioka, H., Yotsumoto, F., Hikita, S., Ueda, T., Kuroki, M., & Miyamoto, S. (2011). Targeting the heparin-binding epidermal growth factor-like growth factor in ovarian cancer therapy. Current Opinion in Obstetrics and Gynecology, 23(1), 24–30. doi:10.​1097/​GCO.​0b013e3283409c91​ (Research support, non-U.S. government, Review).PubMed
110.
go back to reference Koshikawa, N., Mizushima, H., Minegishi, T., Iwamoto, R., Mekada, E., & Seiki, M. (2010). Membrane type 1-matrix metalloproteinase cleaves off the NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor. Cancer Research, 70(14), 6093–6103. doi:10.1158/0008-5472.CAN-10-0346 (Research support, non-U.S. government).PubMed Koshikawa, N., Mizushima, H., Minegishi, T., Iwamoto, R., Mekada, E., & Seiki, M. (2010). Membrane type 1-matrix metalloproteinase cleaves off the NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor. Cancer Research, 70(14), 6093–6103. doi:10.​1158/​0008-5472.​CAN-10-0346 (Research support, non-U.S. government).PubMed
111.
go back to reference Koshikawa, N., Mizushima, H., Minegishi, T., Eguchi, F., Yotsumoto, F., Nabeshima, K., et al. (2011). Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells. Cancer Science, 102(1), 111–116. doi:10.1111/j.1349-7006.2010.01748.x (Research support, non-U.S. government).PubMed Koshikawa, N., Mizushima, H., Minegishi, T., Eguchi, F., Yotsumoto, F., Nabeshima, K., et al. (2011). Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells. Cancer Science, 102(1), 111–116. doi:10.​1111/​j.​1349-7006.​2010.​01748.​x (Research support, non-U.S. government).PubMed
112.
go back to reference Remacle, A. G., Shiryaev, S. A., Radichev, I. A., Rozanov, D. V., Stec, B., & Strongin, A. Y. (2011). Dynamic interdomain interactions contribute to the inhibition of matrix metalloproteinases by tissue inhibitors of metalloproteinases. Journal of Biological Chemistry, 286(23), 21002–21012. doi:10.1074/jbc.M110.200139 (Research support, N.I.H., extramural).PubMed Remacle, A. G., Shiryaev, S. A., Radichev, I. A., Rozanov, D. V., Stec, B., & Strongin, A. Y. (2011). Dynamic interdomain interactions contribute to the inhibition of matrix metalloproteinases by tissue inhibitors of metalloproteinases. Journal of Biological Chemistry, 286(23), 21002–21012. doi:10.​1074/​jbc.​M110.​200139 (Research support, N.I.H., extramural).PubMed
113.
go back to reference Clark, K., Langeslag, M., Figdor, C. G., & van Leeuwen, F. N. (2007). Myosin II and mechanotransduction: a balancing act. Trends in Cell Biology, 17(4), 178–186. doi:10.1016/j.tcb.2007.02.002 (Research support, non-U.S. government, review).PubMed Clark, K., Langeslag, M., Figdor, C. G., & van Leeuwen, F. N. (2007). Myosin II and mechanotransduction: a balancing act. Trends in Cell Biology, 17(4), 178–186. doi:10.​1016/​j.​tcb.​2007.​02.​002 (Research support, non-U.S. government, review).PubMed
114.
go back to reference Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906. doi:10.1016/j.cell.2009.10.027 (Research support, N.I.H., Extramural, Research support, U.S. government, non-P.H.S.).PubMed Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906. doi:10.​1016/​j.​cell.​2009.​10.​027 (Research support, N.I.H., Extramural, Research support, U.S. government, non-P.H.S.).PubMed
116.
go back to reference Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254. doi:10.1016/j.ccr.2005.08.010 (Research support, N.I.H., Extramural Research support, U.S. government, non-P.H.S., Research support, U.S. government, P.H.S.).PubMed Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254. doi:10.​1016/​j.​ccr.​2005.​08.​010 (Research support, N.I.H., Extramural Research support, U.S. government, non-P.H.S., Research support, U.S. government, P.H.S.).PubMed
117.
go back to reference Samuel, M. S., Lopez, J. I., McGhee, E. J., Croft, D. R., Strachan, D., Timpson, P., et al. (2011). Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell, 19(6), 776–791. doi:10.1016/j.ccr.2011.05.008 (Research support, non-U.S. government).PubMed Samuel, M. S., Lopez, J. I., McGhee, E. J., Croft, D. R., Strachan, D., Timpson, P., et al. (2011). Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell, 19(6), 776–791. doi:10.​1016/​j.​ccr.​2011.​05.​008 (Research support, non-U.S. government).PubMed
118.
go back to reference de Rooij, J., Kerstens, A., Danuser, G., Schwartz, M. A., & Waterman-Storer, C. M. (2005). Integrin-dependent actomyosin contraction regulates epithelial cell scattering. The Journal of Cell Biology, 171(1), 153–164. doi:10.1083/jcb.200506152 (Research support, N.I.H., Extramural Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed de Rooij, J., Kerstens, A., Danuser, G., Schwartz, M. A., & Waterman-Storer, C. M. (2005). Integrin-dependent actomyosin contraction regulates epithelial cell scattering. The Journal of Cell Biology, 171(1), 153–164. doi:10.​1083/​jcb.​200506152 (Research support, N.I.H., Extramural Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed
119.
go back to reference Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S., & Sahai, E. (2006). ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Current Biology, 16(15), 1515–1523. doi:10.1016/j.cub.2006.05.065 (Comparative study, Research support, N.I.H., Extramural Research support, non-U.S. government).PubMed Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S., & Sahai, E. (2006). ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Current Biology, 16(15), 1515–1523. doi:10.​1016/​j.​cub.​2006.​05.​065 (Comparative study, Research support, N.I.H., Extramural Research support, non-U.S. government).PubMed
120.
go back to reference Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current Opinion in Cell Biology, 17(5), 559–564. doi:10.1016/j.ceb.2005.08.002 (Research support, N.I.H., Extramural, Research support, U.S. government, P.H.S. review).PubMed Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current Opinion in Cell Biology, 17(5), 559–564. doi:10.​1016/​j.​ceb.​2005.​08.​002 (Research support, N.I.H., Extramural, Research support, U.S. government, P.H.S. review).PubMed
121.
go back to reference Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G., & Keely, P. J. (2006). Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Medicine, 4(1), 38. doi:10.1186/1741-7015-4-38 (Research support, N.I.H., Extramural Research support, U.S. government, non-P.H.S.).PubMed Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G., & Keely, P. J. (2006). Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Medicine, 4(1), 38. doi:10.​1186/​1741-7015-4-38 (Research support, N.I.H., Extramural Research support, U.S. government, non-P.H.S.).PubMed
122.
go back to reference Sodek, K. L., Ringuette, M. J., & Brown, T. J. (2009). Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. International Journal of Cancer, 124(9), 2060–2070. doi:10.1002/ijc.24188 (Research support, non-U.S. government). Sodek, K. L., Ringuette, M. J., & Brown, T. J. (2009). Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. International Journal of Cancer, 124(9), 2060–2070. doi:10.​1002/​ijc.​24188 (Research support, non-U.S. government).
123.
go back to reference Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., et al. (2007). Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 9(12), 1392–1400. doi:10.1038/ncb1658 (Research support, non-U.S. government).PubMed Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., et al. (2007). Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 9(12), 1392–1400. doi:10.​1038/​ncb1658 (Research support, non-U.S. government).PubMed
124.
go back to reference Nash, M. A., Deavers, M. T., & Freedman, R. S. (2002). The expression of decorin in human ovarian tumors. Clinical Cancer Research, 8(6), 1754–1760.PubMed Nash, M. A., Deavers, M. T., & Freedman, R. S. (2002). The expression of decorin in human ovarian tumors. Clinical Cancer Research, 8(6), 1754–1760.PubMed
125.
go back to reference Yao, Q., Qu, X., Yang, Q., Wei, M., & Kong, B. (2009). CLIC4 mediates TGF-beta1-induced fibroblast-to-myofibroblast transdifferentiation in ovarian cancer. Oncology Reports, 22(3), 541–548 (Research support, non-U.S. government).PubMed Yao, Q., Qu, X., Yang, Q., Wei, M., & Kong, B. (2009). CLIC4 mediates TGF-beta1-induced fibroblast-to-myofibroblast transdifferentiation in ovarian cancer. Oncology Reports, 22(3), 541–548 (Research support, non-U.S. government).PubMed
126.
go back to reference De Wever, O., Demetter, P., Mareel, M., & Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer, 123(10), 2229–2238. doi:10.1002/ijc.23925 (Research support, non-U.S. government, Review). De Wever, O., Demetter, P., Mareel, M., & Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer, 123(10), 2229–2238. doi:10.​1002/​ijc.​23925 (Research support, non-U.S. government, Review).
127.
go back to reference Desmouliere, A., Guyot, C., & Gabbiani, G. (2004). The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. International Journal of Developmental Biology, 48(5–6), 509–517. doi:10.1387/ijdb.041802ad (Review).PubMed Desmouliere, A., Guyot, C., & Gabbiani, G. (2004). The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. International Journal of Developmental Biology, 48(5–6), 509–517. doi:10.​1387/​ijdb.​041802ad (Review).PubMed
128.
go back to reference Suh, K. S., Crutchley, J. M., Koochek, A., Ryscavage, A., Bhat, K., Tanaka, T., et al. (2007). Reciprocal modifications of CLIC4 in tumor epithelium and stroma mark malignant progression of multiple human cancers. Clinical Cancer Research, 13(1), 121–131. doi:10.1158/1078-0432.CCR-06-1562 (Research support, N.I.H., Intramural).PubMed Suh, K. S., Crutchley, J. M., Koochek, A., Ryscavage, A., Bhat, K., Tanaka, T., et al. (2007). Reciprocal modifications of CLIC4 in tumor epithelium and stroma mark malignant progression of multiple human cancers. Clinical Cancer Research, 13(1), 121–131. doi:10.​1158/​1078-0432.​CCR-06-1562 (Research support, N.I.H., Intramural).PubMed
129.
go back to reference Yao, Q., Cao, S., Li, C., Mengesha, A., Kong, B., & Wei, M. (2011). Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor–stroma interaction. International Journal of Cancer, 128(1792), 1783. doi:10.1002/ijc.25506 (Research support, non-U.S. government). Yao, Q., Cao, S., Li, C., Mengesha, A., Kong, B., & Wei, M. (2011). Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor–stroma interaction. International Journal of Cancer, 128(1792), 1783. doi:10.​1002/​ijc.​25506 (Research support, non-U.S. government).
130.
go back to reference Aroeira, L. S., Aguilera, A., Sanchez-Tomero, J. A., Bajo, M. A., del Peso, G., Jimenez-Heffernan, J. A., et al. (2007). Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. Journal of the American Society of Nephrology, 18(7), 2004–2013. doi:10.1681/ASN.2006111292 (Research support, non-U.S. government, Review).PubMed Aroeira, L. S., Aguilera, A., Sanchez-Tomero, J. A., Bajo, M. A., del Peso, G., Jimenez-Heffernan, J. A., et al. (2007). Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. Journal of the American Society of Nephrology, 18(7), 2004–2013. doi:10.​1681/​ASN.​2006111292 (Research support, non-U.S. government, Review).PubMed
131.
go back to reference Loureiro, J., Aguilera, A., Selgas, R., Sandoval, P., Albar-Vizcaino, P., Perez-Lozano, M. L., et al. (2011). Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. Journal of the American Society of Nephrology, 22(9), 1682–1695. doi:10.1681/ASN.2010111197 (Research support, non-U.S. government).PubMed Loureiro, J., Aguilera, A., Selgas, R., Sandoval, P., Albar-Vizcaino, P., Perez-Lozano, M. L., et al. (2011). Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. Journal of the American Society of Nephrology, 22(9), 1682–1695. doi:10.​1681/​ASN.​2010111197 (Research support, non-U.S. government).PubMed
132.
go back to reference Lee, E. S., Leong, A. S., Kim, Y. S., Lee, J. H., Kim, I., Ahn, G. H., et al. (2006). Calretinin, CD34, and alpha-smooth muscle actin in the identification of peritoneal invasive implants of serous borderline tumors of the ovary. Modern Pathology, 19(3), 364–372. doi:10.1038/modpathol.3800539.PubMed Lee, E. S., Leong, A. S., Kim, Y. S., Lee, J. H., Kim, I., Ahn, G. H., et al. (2006). Calretinin, CD34, and alpha-smooth muscle actin in the identification of peritoneal invasive implants of serous borderline tumors of the ovary. Modern Pathology, 19(3), 364–372. doi:10.​1038/​modpathol.​3800539.PubMed
133.
go back to reference Radisky, D. C., Kenny, P. A., & Bissell, M. J. (2007). Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? Journal of Cellular Biochemistry, 101(4), 830–839. doi:10.1002/jcb.21186 (Research support, N.I.H., Extramural, Research support, non-U.S. government, Research support, U.S. government, non-P.H.S., Review).PubMed Radisky, D. C., Kenny, P. A., & Bissell, M. J. (2007). Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? Journal of Cellular Biochemistry, 101(4), 830–839. doi:10.​1002/​jcb.​21186 (Research support, N.I.H., Extramural, Research support, non-U.S. government, Research support, U.S. government, non-P.H.S., Review).PubMed
134.
go back to reference Desoize, B., & Jardillier, J. (2000). Multicellular resistance: a paradigm for clinical resistance? Critical Reviews in Oncology/Hematology, 36(2–3), 193–207 (Research support, non-U.S. government, Review).PubMed Desoize, B., & Jardillier, J. (2000). Multicellular resistance: a paradigm for clinical resistance? Critical Reviews in Oncology/Hematology, 36(2–3), 193–207 (Research support, non-U.S. government, Review).PubMed
135.
go back to reference Santini, M. T., Rainaldi, G., & Indovina, P. L. (2000). Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Critical Reviews in Oncology/Hematology, 36(2–3), 75–87 (Review).PubMed Santini, M. T., Rainaldi, G., & Indovina, P. L. (2000). Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Critical Reviews in Oncology/Hematology, 36(2–3), 75–87 (Review).PubMed
136.
go back to reference Allen, H. J., Porter, C., Gamarra, M., Piver, M. S., & Johnson, E. A. (1987). Isolation and morphologic characterization of human ovarian carcinoma cell clusters present in effusions. Experimental Cell Biology, 55(4), 194–208 (Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed Allen, H. J., Porter, C., Gamarra, M., Piver, M. S., & Johnson, E. A. (1987). Isolation and morphologic characterization of human ovarian carcinoma cell clusters present in effusions. Experimental Cell Biology, 55(4), 194–208 (Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed
137.
go back to reference Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M., & Nielsen, L. K. (2003). Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and Bioengineering, 83(2), 173–180. doi:10.1002/bit.10655 (Research support, non-U.S. government).PubMed Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M., & Nielsen, L. K. (2003). Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and Bioengineering, 83(2), 173–180. doi:10.​1002/​bit.​10655 (Research support, non-U.S. government).PubMed
138.
go back to reference Winters, B. S., Shepard, S. R., & Foty, R. A. (2005). Biophysical measurement of brain tumor cohesion. International Journal of Cancer, 114(3), 371–379. doi:10.1002/ijc.20722 (Research support, non-U.S. government). Winters, B. S., Shepard, S. R., & Foty, R. A. (2005). Biophysical measurement of brain tumor cohesion. International Journal of Cancer, 114(3), 371–379. doi:10.​1002/​ijc.​20722 (Research support, non-U.S. government).
139.
go back to reference Ahmed, N., Thompson, E. W., & Quinn, M. A. (2007). Epithelial–mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. Journal of Cellular Physiology, 213(3), 581–588. doi:10.1002/jcp.21240 (Research support, non-U.S. government, Review).PubMed Ahmed, N., Thompson, E. W., & Quinn, M. A. (2007). Epithelial–mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. Journal of Cellular Physiology, 213(3), 581–588. doi:10.​1002/​jcp.​21240 (Research support, non-U.S. government, Review).PubMed
140.
go back to reference Ivascu, A., & Kubbies, M. (2007). Diversity of cell-mediated adhesions in breast cancer spheroids. International Journal of Oncology, 31(6), 1403–1413.PubMed Ivascu, A., & Kubbies, M. (2007). Diversity of cell-mediated adhesions in breast cancer spheroids. International Journal of Oncology, 31(6), 1403–1413.PubMed
141.
go back to reference Lin, R. Z., Chou, L. F., Chien, C. C., & Chang, H. Y. (2006). Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell and Tissue Research, 324(3), 411–422. doi:10.1007/s00441-005-0148-2 (Research support, non-U.S. government).PubMed Lin, R. Z., Chou, L. F., Chien, C. C., & Chang, H. Y. (2006). Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell and Tissue Research, 324(3), 411–422. doi:10.​1007/​s00441-005-0148-2 (Research support, non-U.S. government).PubMed
142.
go back to reference Robinson, E. E., Foty, R. A., & Corbett, S. A. (2004). Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. Molecular Biology of the Cell, 15(3), 973–981. doi:10.1091/mbc.E03-07-0528.PubMed Robinson, E. E., Foty, R. A., & Corbett, S. A. (2004). Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. Molecular Biology of the Cell, 15(3), 973–981. doi:10.​1091/​mbc.​E03-07-0528.PubMed
143.
go back to reference Robinson, E. E., Zazzali, K. M., Corbett, S. A., & Foty, R. A. (2003). Alpha5beta1 integrin mediates strong tissue cohesion. Journal of Cell Science, 116(Pt 2), 377–386.PubMed Robinson, E. E., Zazzali, K. M., Corbett, S. A., & Foty, R. A. (2003). Alpha5beta1 integrin mediates strong tissue cohesion. Journal of Cell Science, 116(Pt 2), 377–386.PubMed
144.
go back to reference Shimazui, T., Schalken, J. A., Kawai, K., Kawamoto, R., van Bockhoven, A., Oosterwijk, E., et al. (2004). Role of complex cadherins in cell–cell adhesion evaluated by spheroid formation in renal cell carcinoma cell lines. Oncology Reports, 11(2), 357–360.PubMed Shimazui, T., Schalken, J. A., Kawai, K., Kawamoto, R., van Bockhoven, A., Oosterwijk, E., et al. (2004). Role of complex cadherins in cell–cell adhesion evaluated by spheroid formation in renal cell carcinoma cell lines. Oncology Reports, 11(2), 357–360.PubMed
145.
go back to reference Dean, D. M., & Morgan, J. R. (2008). Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue Engineering. Part A, 14(12), 1989–1997. doi:10.1089/ten.tea.2007.0320 (Research support, non-U.S. government, Research support, U.S. government, non-P.H.S.).PubMed Dean, D. M., & Morgan, J. R. (2008). Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue Engineering. Part A, 14(12), 1989–1997. doi:10.​1089/​ten.​tea.​2007.​0320 (Research support, non-U.S. government, Research support, U.S. government, non-P.H.S.).PubMed
146.
go back to reference Kohn, E. C., Travers, L. A., Kassis, J., Broome, U., & Klominek, J. (2005). Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagnostic Cytopathology, 33(5), 300–308. doi:10.1002/dc.20279.PubMed Kohn, E. C., Travers, L. A., Kassis, J., Broome, U., & Klominek, J. (2005). Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagnostic Cytopathology, 33(5), 300–308. doi:10.​1002/​dc.​20279.PubMed
147.
go back to reference Iwabu, A., Smith, K., Allen, F. D., Lauffenburger, D. A., & Wells, A. (2004). Epidermal growth factor induces fibroblast contractility and motility via a protein kinase C delta-dependent pathway. Journal of Biological Chemistry, 279(15), 14551–14560. doi:10.1074/jbc.M311981200 (Research support, U.S. government, P.H.S.).PubMed Iwabu, A., Smith, K., Allen, F. D., Lauffenburger, D. A., & Wells, A. (2004). Epidermal growth factor induces fibroblast contractility and motility via a protein kinase C delta-dependent pathway. Journal of Biological Chemistry, 279(15), 14551–14560. doi:10.​1074/​jbc.​M311981200 (Research support, U.S. government, P.H.S.).PubMed
148.
go back to reference Kobayashi, T., Liu, X., Wen, F. Q., Kohyama, T., Shen, L., Wang, X. Q., et al. (2006). Smad3 mediates TGF-beta1-induced collagen gel contraction by human lung fibroblasts. Biochemical and Biophysical Research Communications, 339(1), 290–295. doi:10.1016/j.bbrc.2005.10.209 (Research support, N.I.H., Extramural).PubMed Kobayashi, T., Liu, X., Wen, F. Q., Kohyama, T., Shen, L., Wang, X. Q., et al. (2006). Smad3 mediates TGF-beta1-induced collagen gel contraction by human lung fibroblasts. Biochemical and Biophysical Research Communications, 339(1), 290–295. doi:10.​1016/​j.​bbrc.​2005.​10.​209 (Research support, N.I.H., Extramural).PubMed
149.
go back to reference Lee, D. J., Ho, C. H., & Grinnell, F. (2003). LPA-stimulated fibroblast contraction of floating collagen matrices does not require Rho kinase activity or retraction of fibroblast extensions. Experimental Cell Research, 289(1), 86–94 (Research support, U.S. government, P.H.S.).PubMed Lee, D. J., Ho, C. H., & Grinnell, F. (2003). LPA-stimulated fibroblast contraction of floating collagen matrices does not require Rho kinase activity or retraction of fibroblast extensions. Experimental Cell Research, 289(1), 86–94 (Research support, U.S. government, P.H.S.).PubMed
150.
go back to reference Heldin, C. H., Rubin, K., Pietras, K., & Ostman, A. (2004). High interstitial fluid pressure—an obstacle in cancer therapy. Nature Reviews. Cancer, 4(10), 806–813. doi:10.1038/nrc1456 (Research support, non-U.S. government, Review).PubMed Heldin, C. H., Rubin, K., Pietras, K., & Ostman, A. (2004). High interstitial fluid pressure—an obstacle in cancer therapy. Nature Reviews. Cancer, 4(10), 806–813. doi:10.​1038/​nrc1456 (Research support, non-U.S. government, Review).PubMed
151.
go back to reference Dubessy, C., Merlin, J. M., Marchal, C., & Guillemin, F. (2000). Spheroids in radiobiology and photodynamic therapy. Critical Reviews in Oncology/Hematology, 36(2–3), 179–192 (Research support, non-U.S. government, Review).PubMed Dubessy, C., Merlin, J. M., Marchal, C., & Guillemin, F. (2000). Spheroids in radiobiology and photodynamic therapy. Critical Reviews in Oncology/Hematology, 36(2–3), 179–192 (Research support, non-U.S. government, Review).PubMed
152.
go back to reference Xing, H., Wang, S., Hu, K., Tao, W., Li, J., Gao, Q., et al. (2005). Effect of the cyclin-dependent kinases inhibitor p27 on resistance of ovarian cancer multicellular spheroids to anticancer chemotherapy. Journal of Cancer Research and Clinical Oncology, 131(8), 511–519. doi:10.1007/s00432-005-0677-9 (Research support, non-U.S. government).PubMed Xing, H., Wang, S., Hu, K., Tao, W., Li, J., Gao, Q., et al. (2005). Effect of the cyclin-dependent kinases inhibitor p27 on resistance of ovarian cancer multicellular spheroids to anticancer chemotherapy. Journal of Cancer Research and Clinical Oncology, 131(8), 511–519. doi:10.​1007/​s00432-005-0677-9 (Research support, non-U.S. government).PubMed
153.
go back to reference Kobayashi, H., Man, S., Graham, C. H., Kapitain, S. J., Teicher, B. A., & Kerbel, R. S. (1993). Acquired multicellular-mediated resistance to alkylating agents in cancer. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3294–3298 (Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed Kobayashi, H., Man, S., Graham, C. H., Kapitain, S. J., Teicher, B. A., & Kerbel, R. S. (1993). Acquired multicellular-mediated resistance to alkylating agents in cancer. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3294–3298 (Research support, non-U.S. government, Research support, U.S. government, P.H.S.).PubMed
154.
go back to reference Bookman, M. A. (2003). Developmental chemotherapy and management of recurrent ovarian cancer. Journal of Clinical Oncology, 21(10 Suppl), 149s–167s.PubMed Bookman, M. A. (2003). Developmental chemotherapy and management of recurrent ovarian cancer. Journal of Clinical Oncology, 21(10 Suppl), 149s–167s.PubMed
155.
go back to reference Olson, M. F. (2008). Applications for ROCK kinase inhibition. Current Opinion in Cell Biology, 20(2), 242–248. doi:10.1016/j.ceb.2008.01.002 (Research support, N.I.H., Extramural, Research support, non-U.S. government, Review).PubMed Olson, M. F. (2008). Applications for ROCK kinase inhibition. Current Opinion in Cell Biology, 20(2), 242–248. doi:10.​1016/​j.​ceb.​2008.​01.​002 (Research support, N.I.H., Extramural, Research support, non-U.S. government, Review).PubMed
157.
go back to reference Zhang, H., Liu, X., Liu, Y., Yi, B., & Yu, X. (2011). Epithelial–mesenchymal transition of rat peritoneal mesothelial cells via Rhoa/Rock pathway. In Vitro Cellular and Developmental Biology—Animal, 47(2), 165–172. doi:10.1007/s11626-010-9369-0.PubMed Zhang, H., Liu, X., Liu, Y., Yi, B., & Yu, X. (2011). Epithelial–mesenchymal transition of rat peritoneal mesothelial cells via Rhoa/Rock pathway. In Vitro Cellular and Developmental Biology—Animal, 47(2), 165–172. doi:10.​1007/​s11626-010-9369-0.PubMed
158.
go back to reference Washida, N., Wakino, S., Tonozuka, Y., Homma, K., Tokuyama, H., Hara, Y., et al. (2011). Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrology, Dialysis, Transplantation, 26(9), 2770–2779. doi:10.1093/ndt/gfr012 (Research support, non-U.S. government).PubMed Washida, N., Wakino, S., Tonozuka, Y., Homma, K., Tokuyama, H., Hara, Y., et al. (2011). Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrology, Dialysis, Transplantation, 26(9), 2770–2779. doi:10.​1093/​ndt/​gfr012 (Research support, non-U.S. government).PubMed
159.
go back to reference Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., et al. (2007). A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology, 25(6), 681–686. doi:10.1038/nbt1310 (Research support, non-U.S. government).PubMed Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., et al. (2007). A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology, 25(6), 681–686. doi:10.​1038/​nbt1310 (Research support, non-U.S. government).PubMed
160.
go back to reference Zhang, L., Valdez, J. M., Zhang, B., Wei, L., Chang, J., & Xin, L. (2011). ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS One, 6(3), e18271. doi:10.1371/journal.pone.0018271 (Research support, N.I.H., Extramural, Research support, non-U.S. government).PubMed Zhang, L., Valdez, J. M., Zhang, B., Wei, L., Chang, J., & Xin, L. (2011). ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS One, 6(3), e18271. doi:10.​1371/​journal.​pone.​0018271 (Research support, N.I.H., Extramural, Research support, non-U.S. government).PubMed
161.
go back to reference Pedersen, J. A., & Swartz, M. A. (2005). Mechanobiology in the third dimension. Annals of Biomedical Engineering, 33(11), 1469–1490. doi:10.1007/s10439-005-8159-4 (Research support, N.I.H., Extramural, Research support, non-U.S. government, Research support, U.S. government, non-P.H.S., Review).PubMed Pedersen, J. A., & Swartz, M. A. (2005). Mechanobiology in the third dimension. Annals of Biomedical Engineering, 33(11), 1469–1490. doi:10.​1007/​s10439-005-8159-4 (Research support, N.I.H., Extramural, Research support, non-U.S. government, Research support, U.S. government, non-P.H.S., Review).PubMed
163.
go back to reference Sabeh, F., Ota, I., Holmbeck, K., Birkedal-Hansen, H., Soloway, P., Balbin, M., et al. (2004). Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. The Journal of Cell Biology, 167(4), 769–781. doi:10.1083/jcb.200408028 (Research support, U.S. government, P.H.S.).PubMed Sabeh, F., Ota, I., Holmbeck, K., Birkedal-Hansen, H., Soloway, P., Balbin, M., et al. (2004). Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. The Journal of Cell Biology, 167(4), 769–781. doi:10.​1083/​jcb.​200408028 (Research support, U.S. government, P.H.S.).PubMed
164.
go back to reference Sodek, K. L., Brown, T. J., & Ringuette, M. J. (2008). Collagen I but not Matrigel matrices provide an MMP-dependent barrier to ovarian cancer cell penetration. BMC Cancer, 8, 223. doi:10.1186/1471-2407-8-223 (Research support, non-U.S. government).PubMed Sodek, K. L., Brown, T. J., & Ringuette, M. J. (2008). Collagen I but not Matrigel matrices provide an MMP-dependent barrier to ovarian cancer cell penetration. BMC Cancer, 8, 223. doi:10.​1186/​1471-2407-8-223 (Research support, non-U.S. government).PubMed
165.
go back to reference Noel, A. C., Calle, A., Emonard, H. P., Nusgens, B. V., Simar, L., Foidart, J., et al. (1991). Invasion of reconstituted basement membrane matrix is not correlated to the malignant metastatic cell phenotype. Cancer Research, 51(1), 405–414 (In vitro, Research support, non-U.S. government).PubMed Noel, A. C., Calle, A., Emonard, H. P., Nusgens, B. V., Simar, L., Foidart, J., et al. (1991). Invasion of reconstituted basement membrane matrix is not correlated to the malignant metastatic cell phenotype. Cancer Research, 51(1), 405–414 (In vitro, Research support, non-U.S. government).PubMed
166.
go back to reference Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689. doi:10.1016/j.cell.2006.06.044 (Research support, non-U.S. government, Research support, U.S. government, non-P.H.S.).PubMed Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689. doi:10.​1016/​j.​cell.​2006.​06.​044 (Research support, non-U.S. government, Research support, U.S. government, non-P.H.S.).PubMed
168.
go back to reference Ogura, T., Kobayashi, H., Ueoka, Y., Okugawa, K., Kato, K., Hirakawa, T., et al. (2006). Adenovirus-mediated calponin h1 gene therapy directed against peritoneal dissemination of ovarian cancer: bifunctional therapeutic effects on peritoneal cell layer and cancer cells. Clinical Cancer Research, 12(17), 5216–5223. doi:10.1158/1078-0432.CCR-06-0674 (Research support, non-U.S. government).PubMed Ogura, T., Kobayashi, H., Ueoka, Y., Okugawa, K., Kato, K., Hirakawa, T., et al. (2006). Adenovirus-mediated calponin h1 gene therapy directed against peritoneal dissemination of ovarian cancer: bifunctional therapeutic effects on peritoneal cell layer and cancer cells. Clinical Cancer Research, 12(17), 5216–5223. doi:10.​1158/​1078-0432.​CCR-06-0674 (Research support, non-U.S. government).PubMed
169.
go back to reference Taniguchi, S. (2005). Suppression of cancer phenotypes through a multifunctional actin-binding protein, calponin, that attacks cancer cells and simultaneously protects the host from invasion. Cancer Science, 96(11), 738–746. doi:10.1111/j.1349-7006.2005.00118.x (Research support, non-U.S. government, Review).PubMed Taniguchi, S. (2005). Suppression of cancer phenotypes through a multifunctional actin-binding protein, calponin, that attacks cancer cells and simultaneously protects the host from invasion. Cancer Science, 96(11), 738–746. doi:10.​1111/​j.​1349-7006.​2005.​00118.​x (Research support, non-U.S. government, Review).PubMed
Metadata
Title
Cell–cell and cell–matrix dynamics in intraperitoneal cancer metastasis
Authors
Katharine L. Sodek
K. Joan Murphy
Theodore J. Brown
Maurice J. Ringuette
Publication date
01-06-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9351-2

Other articles of this Issue 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine