Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2010

01-06-2010

Hypoxia, inflammation, and the tumor microenvironment in metastatic disease

Authors: Elizabeth C. Finger, Amato J. Giaccia

Published in: Cancer and Metastasis Reviews | Issue 2/2010

Login to get access

Abstract

Metastasis, the leading cause of cancer deaths, is an intricate process involving many important tumor and stromal proteins that have yet to be fully defined. This review discusses critical components necessary for the metastatic cascade, including hypoxia, inflammation, and the tumor microenvironment. More specifically, this review focuses on tumor cell and stroma interactions, which allow cell detachment from a primary tumor, intravasation to the blood stream, and extravasation at a distant site where cells can seed and tumor metastases can form. Central players involved in this process and discussed in this review include integrins, matrix metalloproteinases, and soluble growth factors/matrix proteins, including the connective tissue growth factor and lysyl oxidase.
Literature
1.
go back to reference Jemal, A., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.CrossRef Jemal, A., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.CrossRef
2.
go back to reference Krug, E. L., Mjaatvedt, C. H., & Markwald, R. R. (1987). Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Developmental Biology, 120(2), 348–355.PubMedCrossRef Krug, E. L., Mjaatvedt, C. H., & Markwald, R. R. (1987). Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Developmental Biology, 120(2), 348–355.PubMedCrossRef
3.
go back to reference Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anatomica (Basel), 154(1), 8–20.CrossRef Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anatomica (Basel), 154(1), 8–20.CrossRef
4.
go back to reference Tarin, D., Thompson, E. W., & Newgreen, D. F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Research, 65(14), 5996–6000. discussion 6000-1.PubMedCrossRef Tarin, D., Thompson, E. W., & Newgreen, D. F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Research, 65(14), 5996–6000. discussion 6000-1.PubMedCrossRef
5.
go back to reference Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198(1), 11–26.PubMed Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198(1), 11–26.PubMed
6.
go back to reference Hotz, B., et al. (2007). Epithelial to mesenchymal transition: Expression of the regulators snail, slug, and twist in pancreatic cancer. Clinical Cancer Research, 13(16), 4769–4776.PubMedCrossRef Hotz, B., et al. (2007). Epithelial to mesenchymal transition: Expression of the regulators snail, slug, and twist in pancreatic cancer. Clinical Cancer Research, 13(16), 4769–4776.PubMedCrossRef
7.
go back to reference Gravdal, K., et al. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical Cancer Research, 13(23), 7003–7011.PubMedCrossRef Gravdal, K., et al. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical Cancer Research, 13(23), 7003–7011.PubMedCrossRef
8.
go back to reference Margulis, A., et al. (2005). E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs. Cancer Research, 65(5), 1783–1791.PubMedCrossRef Margulis, A., et al. (2005). E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs. Cancer Research, 65(5), 1783–1791.PubMedCrossRef
9.
go back to reference Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28(1–2), 15–33.PubMedCrossRef Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28(1–2), 15–33.PubMedCrossRef
10.
go back to reference Haraguchi, M., et al. (2008). Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. Journal of Biological Chemistry, 283(35), 23514–23523.PubMedCrossRef Haraguchi, M., et al. (2008). Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. Journal of Biological Chemistry, 283(35), 23514–23523.PubMedCrossRef
11.
go back to reference Gordon, K. J., et al. (2008). Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis, 29(2), 252–262.PubMedCrossRef Gordon, K. J., et al. (2008). Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis, 29(2), 252–262.PubMedCrossRef
12.
go back to reference Ozdamar, B., et al. (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science, 307(5715), 1603–1609.PubMedCrossRef Ozdamar, B., et al. (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science, 307(5715), 1603–1609.PubMedCrossRef
13.
go back to reference Dumont, N., Bakin, A. V., & Arteaga, C. L. (2003). Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. Journal of Biological Chemistry, 278(5), 3275–3285.PubMedCrossRef Dumont, N., Bakin, A. V., & Arteaga, C. L. (2003). Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. Journal of Biological Chemistry, 278(5), 3275–3285.PubMedCrossRef
14.
go back to reference Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer, 3(6), 422–433.PubMedCrossRef Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer, 3(6), 422–433.PubMedCrossRef
15.
go back to reference Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432(7015), 332–337.PubMedCrossRef Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432(7015), 332–337.PubMedCrossRef
16.
go back to reference Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: Biological implications and therapeutic opportunities. Nataure Reviews Cancer, 10(1), 9–22.CrossRef Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: Biological implications and therapeutic opportunities. Nataure Reviews Cancer, 10(1), 9–22.CrossRef
17.
go back to reference Takayama, S., et al. (2005). The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Research, 25(1A), 79–83.PubMed Takayama, S., et al. (2005). The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Research, 25(1A), 79–83.PubMed
18.
go back to reference Liapis, H., Flath, A., & Kitazawa, S. (1996). Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagnostic Molecular Pathology, 5(2), 127–135.PubMedCrossRef Liapis, H., Flath, A., & Kitazawa, S. (1996). Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagnostic Molecular Pathology, 5(2), 127–135.PubMedCrossRef
19.
go back to reference McCabe, N. P., et al. (2007). Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene, 26(42), 6238–6243.PubMedCrossRef McCabe, N. P., et al. (2007). Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene, 26(42), 6238–6243.PubMedCrossRef
20.
go back to reference Hosotani, R., et al. (2002). Expression of integrin alphaVbeta3 in pancreatic carcinoma: Relation to MMP-2 activation and lymph node metastasis. Pancreas, 25(2), e30–e35.PubMedCrossRef Hosotani, R., et al. (2002). Expression of integrin alphaVbeta3 in pancreatic carcinoma: Relation to MMP-2 activation and lymph node metastasis. Pancreas, 25(2), e30–e35.PubMedCrossRef
21.
go back to reference Gruber, G., et al. (2005). Correlation between the tumoral expression of beta3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. British Journal of Cancer, 92(1), 41–46.PubMedCrossRef Gruber, G., et al. (2005). Correlation between the tumoral expression of beta3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. British Journal of Cancer, 92(1), 41–46.PubMedCrossRef
22.
go back to reference Landen, C. N., et al. (2008). Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia, 10(11), 1259–1267.PubMed Landen, C. N., et al. (2008). Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia, 10(11), 1259–1267.PubMed
23.
go back to reference Bello, L., et al. (2001). Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery, 49(2), 380–9. discussion 390.PubMedCrossRef Bello, L., et al. (2001). Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery, 49(2), 380–9. discussion 390.PubMedCrossRef
24.
go back to reference Mullamitha, S. A., et al. (2007). Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clinincal Cancer Reseach, 13(7), 2128–2135.CrossRef Mullamitha, S. A., et al. (2007). Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clinincal Cancer Reseach, 13(7), 2128–2135.CrossRef
25.
go back to reference Ricart, A. D., et al. (2008). Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: A phase I, pharmacokinetic, and biological correlative study. Clinical Cancer Research, 14(23), 7924–7929.PubMedCrossRef Ricart, A. D., et al. (2008). Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: A phase I, pharmacokinetic, and biological correlative study. Clinical Cancer Research, 14(23), 7924–7929.PubMedCrossRef
26.
go back to reference Gross, J., & Lapiere, C. M. (1962). Collagenolytic activity in amphibian tissues: A tissue culture assay. Proceedings of the National Academy of Science of the United States America, 48, 1014–1022.CrossRef Gross, J., & Lapiere, C. M. (1962). Collagenolytic activity in amphibian tissues: A tissue culture assay. Proceedings of the National Academy of Science of the United States America, 48, 1014–1022.CrossRef
27.
go back to reference Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: A tail of a frog that became a prince. Nature Reviews Molecular Cell Biology, 3(3), 207–214.PubMedCrossRef Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: A tail of a frog that became a prince. Nature Reviews Molecular Cell Biology, 3(3), 207–214.PubMedCrossRef
28.
go back to reference Burrage, P., et al. (2006). Matrix metalloproteinases: Role in arthritis. Frontiers in Bioscience, 11, 529–543. Burrage, P., et al. (2006). Matrix metalloproteinases: Role in arthritis. Frontiers in Bioscience, 11, 529–543.
29.
go back to reference Zucker, S., et al. (1999). Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Annals of the New York Academy of Sciences, 878, 212–227.PubMedCrossRef Zucker, S., et al. (1999). Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Annals of the New York Academy of Sciences, 878, 212–227.PubMedCrossRef
30.
go back to reference Koc, M., et al. (2006). Matrix metalloproteinase-9 (MMP-9) elevated in serum but not in bronchial lavage fluid in patients with lung cancer. Tumori, 92(2), 149–154.PubMed Koc, M., et al. (2006). Matrix metalloproteinase-9 (MMP-9) elevated in serum but not in bronchial lavage fluid in patients with lung cancer. Tumori, 92(2), 149–154.PubMed
31.
go back to reference Hilska, M., et al. (2007). Prognostic significance of matrix metalloproteinases-1, -2, -7 and -13 and tissue inhibitors of metalloproteinases-1, -2, -3 and -4 in colorectal cancer. International Journal of Cancer, 121(4), 714–723.CrossRef Hilska, M., et al. (2007). Prognostic significance of matrix metalloproteinases-1, -2, -7 and -13 and tissue inhibitors of metalloproteinases-1, -2, -3 and -4 in colorectal cancer. International Journal of Cancer, 121(4), 714–723.CrossRef
32.
go back to reference Lengyel, E., et al. (2001). Expression of latent matrix metalloproteinase 9 (MMP-9) predicts survival in advanced ovarian cancer. Gynecologic Oncology, 82(2), 291–298.PubMedCrossRef Lengyel, E., et al. (2001). Expression of latent matrix metalloproteinase 9 (MMP-9) predicts survival in advanced ovarian cancer. Gynecologic Oncology, 82(2), 291–298.PubMedCrossRef
33.
go back to reference Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–5297.PubMedCrossRef Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–5297.PubMedCrossRef
34.
go back to reference Dublanchet, A. C., et al. (2005). Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorganic & Medicinal Chemistry Letters, 15(16), 3787–3790.CrossRef Dublanchet, A. C., et al. (2005). Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorganic & Medicinal Chemistry Letters, 15(16), 3787–3790.CrossRef
35.
go back to reference Chan, D. A., & Giaccia, A. J. (2007). Hypoxia, gene expression, and metastasis. Cancer and Metastasis Reviews, 26(2), 333–339.PubMedCrossRef Chan, D. A., & Giaccia, A. J. (2007). Hypoxia, gene expression, and metastasis. Cancer and Metastasis Reviews, 26(2), 333–339.PubMedCrossRef
36.
go back to reference Masson, N., et al. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO Journal, 20(18), 5197–5206.PubMedCrossRef Masson, N., et al. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO Journal, 20(18), 5197–5206.PubMedCrossRef
37.
go back to reference Chan, D. A., et al. (2002). Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. Journal Biological Chemistry, 277(42), 40112–40117.CrossRef Chan, D. A., et al. (2002). Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. Journal Biological Chemistry, 277(42), 40112–40117.CrossRef
38.
go back to reference Bedogni, B., & Powell, M. B. (2009). Hypoxia, melanocytes and melanoma—Survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Research, 22(2), 166–174.PubMedCrossRef Bedogni, B., & Powell, M. B. (2009). Hypoxia, melanocytes and melanoma—Survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Research, 22(2), 166–174.PubMedCrossRef
39.
go back to reference Epstein, A. C., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107(1), 43–54.PubMedCrossRef Epstein, A. C., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107(1), 43–54.PubMedCrossRef
40.
go back to reference Jaakkola, P., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468–472.PubMedCrossRef Jaakkola, P., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468–472.PubMedCrossRef
41.
go back to reference Mole, D. R., et al. (2009). Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. Journal of Biological Chemistry, 284(25), 16767–16775.PubMedCrossRef Mole, D. R., et al. (2009). Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. Journal of Biological Chemistry, 284(25), 16767–16775.PubMedCrossRef
42.
go back to reference Michieli, P. (2009). Hypoxia, angiogenesis and cancer therapy: To breathe or not to breathe? Cell Cycle, 8(20), 3291–3296.PubMed Michieli, P. (2009). Hypoxia, angiogenesis and cancer therapy: To breathe or not to breathe? Cell Cycle, 8(20), 3291–3296.PubMed
43.
go back to reference Kim, J. W., et al. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.PubMedCrossRef Kim, J. W., et al. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.PubMedCrossRef
44.
go back to reference Bindra, R. S., et al. (2005). Alterations in DNA repair gene expression under hypoxia: Elucidating the mechanisms of hypoxia-induced genetic instability. Annals of the New York Academy of Sciences, 1059, 184–195.PubMedCrossRef Bindra, R. S., et al. (2005). Alterations in DNA repair gene expression under hypoxia: Elucidating the mechanisms of hypoxia-induced genetic instability. Annals of the New York Academy of Sciences, 1059, 184–195.PubMedCrossRef
45.
go back to reference Tang, N., et al. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell, 6(5), 485–495.PubMedCrossRef Tang, N., et al. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell, 6(5), 485–495.PubMedCrossRef
46.
go back to reference Pennacchietti, S., et al. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3(4), 347–361.PubMedCrossRef Pennacchietti, S., et al. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3(4), 347–361.PubMedCrossRef
47.
go back to reference Canning, M. T., et al. (2001). Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. Experimental Cell Research, 267(1), 88–94.PubMedCrossRef Canning, M. T., et al. (2001). Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. Experimental Cell Research, 267(1), 88–94.PubMedCrossRef
48.
go back to reference Esteban, M. A., et al. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Research, 66(7), 3567–3575.PubMedCrossRef Esteban, M. A., et al. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Research, 66(7), 3567–3575.PubMedCrossRef
49.
go back to reference Imai, T., et al. (2003). Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. American Journal of Pathology, 163(4), 1437–1447.PubMed Imai, T., et al. (2003). Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. American Journal of Pathology, 163(4), 1437–1447.PubMed
50.
go back to reference Jiang, Y. G., et al. (2007). Role of Wnt/beta-catenin signaling pathway in epithelial–mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. International Journal of Urology, 14(11), 1034–1039.PubMedCrossRef Jiang, Y. G., et al. (2007). Role of Wnt/beta-catenin signaling pathway in epithelial–mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. International Journal of Urology, 14(11), 1034–1039.PubMedCrossRef
51.
go back to reference Erler, J. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440(7088), 1222–1226.PubMedCrossRef Erler, J. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440(7088), 1222–1226.PubMedCrossRef
52.
go back to reference Dewhirst, M. W., et al. (1989). Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. International Journal of Radiation Oncology, Biology, Physics, 17(1), 91–99.PubMed Dewhirst, M. W., et al. (1989). Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. International Journal of Radiation Oncology, Biology, Physics, 17(1), 91–99.PubMed
53.
go back to reference Jain, R. K. (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 307(5706), 58–62.PubMedCrossRef Jain, R. K. (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 307(5706), 58–62.PubMedCrossRef
54.
go back to reference Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), 353–364.PubMedCrossRef Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), 353–364.PubMedCrossRef
55.
go back to reference Shweiki, D., et al. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359(6398), 843–845.PubMedCrossRef Shweiki, D., et al. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359(6398), 843–845.PubMedCrossRef
56.
go back to reference Holash, J., et al. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 284(5422), 1994–1998.PubMedCrossRef Holash, J., et al. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 284(5422), 1994–1998.PubMedCrossRef
57.
go back to reference Ruan, K., Song, G., & Ouyang, G. (2009). Role of hypoxia in the hallmarks of human cancer. Journal Cell Biochemistry, 107(6), 1053–1062.CrossRef Ruan, K., Song, G., & Ouyang, G. (2009). Role of hypoxia in the hallmarks of human cancer. Journal Cell Biochemistry, 107(6), 1053–1062.CrossRef
58.
go back to reference Laderoute, K. R., et al. (2000). Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clinincal Cancer Research, 6(7), 2941–2950. Laderoute, K. R., et al. (2000). Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clinincal Cancer Research, 6(7), 2941–2950.
59.
go back to reference Talks, K. L., et al. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. American Journal of Pathology, 157(2), 411–421.PubMed Talks, K. L., et al. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. American Journal of Pathology, 157(2), 411–421.PubMed
60.
go back to reference Kallman, R. F., & Dorie, M. J. (1986). Tumor oxygenation and reoxygenation during radiation therapy: Their importance in predicting tumor response. International Journal of Radiation Oncology, Biology, Physics, 12(4), 681–685.PubMed Kallman, R. F., & Dorie, M. J. (1986). Tumor oxygenation and reoxygenation during radiation therapy: Their importance in predicting tumor response. International Journal of Radiation Oncology, Biology, Physics, 12(4), 681–685.PubMed
61.
go back to reference Daruwalla, J., & Christophi, C. (2006). Hyperbaric oxygen therapy for malignancy: A review. World Journal of Surgery, 30(12), 2112–2131.PubMedCrossRef Daruwalla, J., & Christophi, C. (2006). Hyperbaric oxygen therapy for malignancy: A review. World Journal of Surgery, 30(12), 2112–2131.PubMedCrossRef
62.
go back to reference Engert, A. (2005). Recombinant human erythropoietin in oncology: Current status and further developments. Annals of Oncology, 16(10), 1584–1595.PubMedCrossRef Engert, A. (2005). Recombinant human erythropoietin in oncology: Current status and further developments. Annals of Oncology, 16(10), 1584–1595.PubMedCrossRef
63.
go back to reference Galluzzo, M., et al. (2009). Prevention of hypoxia by myoglobin expression in human tumor cells promotes differentiation and inhibits metastasis. Journal of Clinical Investigative, 119(4), 865–875.CrossRef Galluzzo, M., et al. (2009). Prevention of hypoxia by myoglobin expression in human tumor cells promotes differentiation and inhibits metastasis. Journal of Clinical Investigative, 119(4), 865–875.CrossRef
64.
go back to reference Csiszar, K. (2001). Lysyl oxidases: A novel multifunctional amine oxidase family. Progress in Nucleic Acid Research and Molecular Biology, 70, 1–32.PubMedCrossRef Csiszar, K. (2001). Lysyl oxidases: A novel multifunctional amine oxidase family. Progress in Nucleic Acid Research and Molecular Biology, 70, 1–32.PubMedCrossRef
65.
go back to reference Pinnell, S. R., & Martin, G. R. (1968). The cross-linking of collagen and elastin: Enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone. Proceedings of the National Academy of Science of the United States of America, 61(2), 708–716.CrossRef Pinnell, S. R., & Martin, G. R. (1968). The cross-linking of collagen and elastin: Enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone. Proceedings of the National Academy of Science of the United States of America, 61(2), 708–716.CrossRef
66.
go back to reference Trackman, P. C., et al. (1992). Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor. Journal of Biological Chemistry, 267(12), 8666–8671.PubMed Trackman, P. C., et al. (1992). Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor. Journal of Biological Chemistry, 267(12), 8666–8671.PubMed
67.
go back to reference Cronshaw, A. D., Fothergill-Gilmore, L. A., & Hulmes, D. J. (1995). The proteolytic processing site of the precursor of lysyl oxidase. Biochemical Journal, 306(Pt 1), 279–284.PubMed Cronshaw, A. D., Fothergill-Gilmore, L. A., & Hulmes, D. J. (1995). The proteolytic processing site of the precursor of lysyl oxidase. Biochemical Journal, 306(Pt 1), 279–284.PubMed
68.
go back to reference Panchenko, M. V., et al. (1996). Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase. Journal of Biological Chemistry, 271(12), 7113–7119.PubMedCrossRef Panchenko, M. V., et al. (1996). Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase. Journal of Biological Chemistry, 271(12), 7113–7119.PubMedCrossRef
69.
go back to reference Nellaiappan, K., et al. (2000). Fully processed lysyl oxidase catalyst translocates from the extracellular space into nuclei of aortic smooth-muscle cells. Journal of Cell Biochemistry, 79(4), 576–582.CrossRef Nellaiappan, K., et al. (2000). Fully processed lysyl oxidase catalyst translocates from the extracellular space into nuclei of aortic smooth-muscle cells. Journal of Cell Biochemistry, 79(4), 576–582.CrossRef
70.
go back to reference Kagan, H. M., & Li, W. (2003). Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. Journal of Cell Biochemistry, 88(4), 660–672.CrossRef Kagan, H. M., & Li, W. (2003). Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. Journal of Cell Biochemistry, 88(4), 660–672.CrossRef
71.
go back to reference Kagan, H. M., et al. (1983). Histone H1 is a substrate for lysyl oxidase and contains endogenous sodium borotritide-reducible residues. Biochemical and Biophysical Research Communications, 115(1), 186–192.PubMedCrossRef Kagan, H. M., et al. (1983). Histone H1 is a substrate for lysyl oxidase and contains endogenous sodium borotritide-reducible residues. Biochemical and Biophysical Research Communications, 115(1), 186–192.PubMedCrossRef
72.
go back to reference Giampuzzi, M., Oleggini, R., & Di Donato, A. (2003). Demonstration of in vitro interaction between tumor suppressor lysyl oxidase and histones H1 and H2: Definition of the regions involved. Biochimica et Biophysica Acta, 1647(1–2), 245–251.PubMed Giampuzzi, M., Oleggini, R., & Di Donato, A. (2003). Demonstration of in vitro interaction between tumor suppressor lysyl oxidase and histones H1 and H2: Definition of the regions involved. Biochimica et Biophysica Acta, 1647(1–2), 245–251.PubMed
73.
go back to reference Warburton, D., & Shi, W. (2005). Lo, and the niche is knit: Lysyl oxidase activity and maintenance of lung, aorta, and skin integrity. American Journal of Pathology, 167(4), 921–922.PubMed Warburton, D., & Shi, W. (2005). Lo, and the niche is knit: Lysyl oxidase activity and maintenance of lung, aorta, and skin integrity. American Journal of Pathology, 167(4), 921–922.PubMed
74.
go back to reference Maki, J. M., et al. (2005). Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. American Journal of Pathology, 167(4), 927–936.PubMed Maki, J. M., et al. (2005). Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. American Journal of Pathology, 167(4), 927–936.PubMed
75.
go back to reference Maki, J. M., et al. (2002). Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation, 106(19), 2503–2509.PubMedCrossRef Maki, J. M., et al. (2002). Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation, 106(19), 2503–2509.PubMedCrossRef
76.
go back to reference Hornstra, I. K., et al. (2003). Lysyl oxidase is required for vascular and diaphragmatic development in mice. Journal of Biology Chemistry, 278(16), 14387–14393.CrossRef Hornstra, I. K., et al. (2003). Lysyl oxidase is required for vascular and diaphragmatic development in mice. Journal of Biology Chemistry, 278(16), 14387–14393.CrossRef
77.
go back to reference Hayashi, K., et al. (2004). Comparative immunocytochemical localization of lysyl oxidase (LOX) and the lysyl oxidase-like (LOXL) proteins: Changes in the expression of LOXL during development and growth of mouse tissues. Journal of Molecular Histology, 35(8–9), 845–855.PubMedCrossRef Hayashi, K., et al. (2004). Comparative immunocytochemical localization of lysyl oxidase (LOX) and the lysyl oxidase-like (LOXL) proteins: Changes in the expression of LOXL during development and growth of mouse tissues. Journal of Molecular Histology, 35(8–9), 845–855.PubMedCrossRef
78.
go back to reference Kagan, H. M., et al. (1986). Ultrastructural immunolocalization of lysyl oxidase in vascular connective tissue. Journal of Cell Biology, 103(3), 1121–1128.PubMedCrossRef Kagan, H. M., et al. (1986). Ultrastructural immunolocalization of lysyl oxidase in vascular connective tissue. Journal of Cell Biology, 103(3), 1121–1128.PubMedCrossRef
79.
go back to reference Sakai, M., et al. (2009). Expression of lysyl oxidase is correlated with lymph node metastasis and poor prognosis in esophageal squamous cell carcinoma. Annals of Surgical Oncology, 16(9), 2494–2501.PubMedCrossRef Sakai, M., et al. (2009). Expression of lysyl oxidase is correlated with lymph node metastasis and poor prognosis in esophageal squamous cell carcinoma. Annals of Surgical Oncology, 16(9), 2494–2501.PubMedCrossRef
80.
go back to reference Albinger-Hegyi, A., et al. (2009). Lysyl oxidase expression is an independent marker of prognosis and a predictor of lymph node metastasis in oral and oropharyngeal squamous cell carcinoma (OSCC). International Journal of Cancer, 126(11), 2653–2662. Albinger-Hegyi, A., et al. (2009). Lysyl oxidase expression is an independent marker of prognosis and a predictor of lymph node metastasis in oral and oropharyngeal squamous cell carcinoma (OSCC). International Journal of Cancer, 126(11), 2653–2662.
81.
go back to reference Le, Q. T., et al. (2009). Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: Radiation Therapy Oncology Group trial 90-03. Journal of Clinical Oncology, 27(26), 4281–4286.PubMedCrossRef Le, Q. T., et al. (2009). Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: Radiation Therapy Oncology Group trial 90-03. Journal of Clinical Oncology, 27(26), 4281–4286.PubMedCrossRef
82.
go back to reference Erler, J. T., & Giaccia, A. J. (2006). Lysyl oxidase mediates hypoxic control of metastasis. Cancer Research, 66(21), 10238–10241.PubMedCrossRef Erler, J. T., & Giaccia, A. J. (2006). Lysyl oxidase mediates hypoxic control of metastasis. Cancer Research, 66(21), 10238–10241.PubMedCrossRef
83.
go back to reference Kirschmann, D. A., et al. (2002). A molecular role for lysyl oxidase in breast cancer invasion. Cancer Research, 62(15), 4478–4483.PubMed Kirschmann, D. A., et al. (2002). A molecular role for lysyl oxidase in breast cancer invasion. Cancer Research, 62(15), 4478–4483.PubMed
84.
go back to reference Giampuzzi, M., et al. (2005). Beta-catenin signaling and regulation of cyclin D1 promoter in NRK-49F cells transformed by down-regulation of the tumor suppressor lysyl oxidase. Biochimica et Biophysica Acta, 1745(3), 370–381.PubMed Giampuzzi, M., et al. (2005). Beta-catenin signaling and regulation of cyclin D1 promoter in NRK-49F cells transformed by down-regulation of the tumor suppressor lysyl oxidase. Biochimica et Biophysica Acta, 1745(3), 370–381.PubMed
85.
go back to reference Peinado, H., et al. (2005). A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO Journal, 24(19), 3446–3458.PubMedCrossRef Peinado, H., et al. (2005). A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO Journal, 24(19), 3446–3458.PubMedCrossRef
86.
go back to reference Higgins, D. F., et al. (2004). Hypoxic induction of Ctgf is directly mediated by Hif-1. American Journal of Physiology. Renal Physiology, 287(6), F1223–F1232.PubMedCrossRef Higgins, D. F., et al. (2004). Hypoxic induction of Ctgf is directly mediated by Hif-1. American Journal of Physiology. Renal Physiology, 287(6), F1223–F1232.PubMedCrossRef
87.
go back to reference Bork, P. (1993). The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Letters, 327(2), 125–130.PubMedCrossRef Bork, P. (1993). The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Letters, 327(2), 125–130.PubMedCrossRef
88.
go back to reference Wenger, C., et al. (1999). Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene, 18(4), 1073–1080.PubMedCrossRef Wenger, C., et al. (1999). Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene, 18(4), 1073–1080.PubMedCrossRef
89.
go back to reference Xie, D., et al. (2004). Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clinical Cancer Research, 10(6), 2072–2081.PubMedCrossRef Xie, D., et al. (2004). Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clinical Cancer Research, 10(6), 2072–2081.PubMedCrossRef
90.
go back to reference Kubo, M., et al. (1998). Expression of fibrogenic cytokines in desmoplastic malignant melanoma. British Journal of Dermatology, 139(2), 192–197.PubMedCrossRef Kubo, M., et al. (1998). Expression of fibrogenic cytokines in desmoplastic malignant melanoma. British Journal of Dermatology, 139(2), 192–197.PubMedCrossRef
91.
go back to reference Shimo, T., et al. (2001). Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line. Cancer Letters, 174(1), 57–64.PubMedCrossRef Shimo, T., et al. (2001). Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line. Cancer Letters, 174(1), 57–64.PubMedCrossRef
92.
go back to reference Hartel, M., et al. (2004). Desmoplastic reaction influences pancreatic cancer growth behavior. World Journal of Surgery, 28(8), 818–825.PubMedCrossRef Hartel, M., et al. (2004). Desmoplastic reaction influences pancreatic cancer growth behavior. World Journal of Surgery, 28(8), 818–825.PubMedCrossRef
93.
go back to reference Bennewith, K. L., et al. (2009). The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Research, 69(3), 775–784.PubMedCrossRef Bennewith, K. L., et al. (2009). The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Research, 69(3), 775–784.PubMedCrossRef
94.
go back to reference Dornhofer, N., et al. (2006). Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Research, 66(11), 5816–5827.PubMedCrossRef Dornhofer, N., et al. (2006). Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Research, 66(11), 5816–5827.PubMedCrossRef
95.
go back to reference Dammeier, J., et al. (1998). Connective tissue growth factor: A novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? International Journal of Biochemistry and Cell Biology, 30(8), 909–922.PubMedCrossRef Dammeier, J., et al. (1998). Connective tissue growth factor: A novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? International Journal of Biochemistry and Cell Biology, 30(8), 909–922.PubMedCrossRef
96.
go back to reference Igarashi, A., et al. (1996). Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. Journal of Investigative Dermatology, 106(4), 729–733.PubMedCrossRef Igarashi, A., et al. (1996). Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. Journal of Investigative Dermatology, 106(4), 729–733.PubMedCrossRef
97.
go back to reference Ito, Y., et al. (1998). Expression of connective tissue growth factor in human renal fibrosis. Kidney International, 53(4), 853–861.PubMedCrossRef Ito, Y., et al. (1998). Expression of connective tissue growth factor in human renal fibrosis. Kidney International, 53(4), 853–861.PubMedCrossRef
98.
go back to reference Kondo, S., et al. (2002). Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis, 23(5), 769–776.PubMedCrossRef Kondo, S., et al. (2002). Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis, 23(5), 769–776.PubMedCrossRef
99.
go back to reference Koliopanos, A., et al. (2002). Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World Journal of Surgery, 26(4), 420–427.PubMedCrossRef Koliopanos, A., et al. (2002). Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World Journal of Surgery, 26(4), 420–427.PubMedCrossRef
100.
go back to reference Shakunaga, T., et al. (2000). Expression of connective tissue growth factor in cartilaginous tumors. Cancer, 89(7), 1466–1473.PubMedCrossRef Shakunaga, T., et al. (2000). Expression of connective tissue growth factor in cartilaginous tumors. Cancer, 89(7), 1466–1473.PubMedCrossRef
101.
go back to reference Kuper, H., Adami, H. O., & Trichopoulos, D. (2000). Infections as a major preventable cause of human cancer. Journal of Internal Medicine, 248(3), 171–183.PubMedCrossRef Kuper, H., Adami, H. O., & Trichopoulos, D. (2000). Infections as a major preventable cause of human cancer. Journal of Internal Medicine, 248(3), 171–183.PubMedCrossRef
102.
go back to reference Pisani, P., et al. (1997). Cancer and infection: Estimates of the attributable fraction in 1990. Cancer Epidemiology, Biomarkers and Prevention, 6(6), 387–400.PubMed Pisani, P., et al. (1997). Cancer and infection: Estimates of the attributable fraction in 1990. Cancer Epidemiology, Biomarkers and Prevention, 6(6), 387–400.PubMed
103.
104.
go back to reference Wu, Y., & Zhou, B. P. (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. British Journal of Cancer, 102(4), 639–644.PubMedCrossRef Wu, Y., & Zhou, B. P. (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. British Journal of Cancer, 102(4), 639–644.PubMedCrossRef
105.
go back to reference Schoppmann, S. F., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. American Journal of Pathology, 161(3), 947–956.PubMed Schoppmann, S. F., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. American Journal of Pathology, 161(3), 947–956.PubMed
Metadata
Title
Hypoxia, inflammation, and the tumor microenvironment in metastatic disease
Authors
Elizabeth C. Finger
Amato J. Giaccia
Publication date
01-06-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9224-5

Other articles of this Issue 2/2010

Cancer and Metastasis Reviews 2/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine