Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2012

01-06-2012 | NON-THEMATIC REVIEW

Translation initiation in colorectal cancer

Authors: Armen Parsyan, Greco Hernández, Sarkis Meterissian

Published in: Cancer and Metastasis Reviews | Issue 1-2/2012

Login to get access

Abstract

Colorectal cancers (CRC) are one of the most common causes of morbidity and mortality in high-income countries. Targeted screening programs have resulted in early treatment and a substantial decrease in mortality. However, treatment strategies for CRC still require improvement. Understanding the etiology and pathogenesis of CRC would provide tools for improving treatment of patients with this disease. It is only recently that deregulation of the protein synthesis apparatus has begun to gain attention as a major player in cancer development and progression. Among the numerous steps of protein synthesis, deregulation of the process of translation initiation appears to play a key role in cancer growth and proliferation. This manuscript discusses a fascinating and rapidly growing field exploring translation initiation as a fundamental component in CRC development and progression and summarizing CRC treatment perspectives based on agents targeting translation initiation.
Literature
1.
go back to reference Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN. International Journal of Cancer (Journal international du cancer), 127(12), 2893–2917. doi:10.1002/ijc.25516. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN. International Journal of Cancer (Journal international du cancer), 127(12), 2893–2917. doi:10.​1002/​ijc.​25516.
2.
go back to reference Engstrom, P. F., Benson, A. B., 3rd, Chen, Y. J., Choti, M. A., Dilawari, R. A., Enke, C. A., et al. (2005). Colon cancer clinical practice guidelines in oncology. [Guideline Practice Guideline]. Journal of the National Comprehensive Cancer Network, 3(4), 468–491.PubMed Engstrom, P. F., Benson, A. B., 3rd, Chen, Y. J., Choti, M. A., Dilawari, R. A., Enke, C. A., et al. (2005). Colon cancer clinical practice guidelines in oncology. [Guideline Practice Guideline]. Journal of the National Comprehensive Cancer Network, 3(4), 468–491.PubMed
3.
go back to reference Edwards, M. S., Chadda, S. D., Zhao, Z., Barber, B. L., & Sykes, D. P. (2012). A systematic review of treatment guidelines for metastatic colorectal cancer. Colorectal Disease: the Official Journal of the Association of Coloproctology of Great Britain and Ireland, 14(2), e31–e47. doi:10.1111/j.1463-1318.2011.02765.x.CrossRef Edwards, M. S., Chadda, S. D., Zhao, Z., Barber, B. L., & Sykes, D. P. (2012). A systematic review of treatment guidelines for metastatic colorectal cancer. Colorectal Disease: the Official Journal of the Association of Coloproctology of Great Britain and Ireland, 14(2), e31–e47. doi:10.​1111/​j.​1463-1318.​2011.​02765.​x.CrossRef
4.
go back to reference Peeters, M., & Price, T. (2011). Biologic therapies in the metastatic colorectal cancer treatment continuum—Applying current evidence to clinical practice. Cancer Treatment Reviews. doi:10.1016/j.ctrv.2011.08.002. Peeters, M., & Price, T. (2011). Biologic therapies in the metastatic colorectal cancer treatment continuum—Applying current evidence to clinical practice. Cancer Treatment Reviews. doi:10.​1016/​j.​ctrv.​2011.​08.​002.
6.
go back to reference Mathews, M. B., Sonenberg, N., & Hershey, J. W. B. (2007). Translational control in biology and medicine. Cold Spring Harbor: Cold Spring Harbor Laboratory Press. Mathews, M. B., Sonenberg, N., & Hershey, J. W. B. (2007). Translational control in biology and medicine. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
7.
go back to reference Parsyan, A., Svitkin, Y., Shahbazian, D., Gkogkas, C., Lasko, P., Merrick, W. C., et al. (2011). mRNA helicases: The tacticians of translational control. [Research Support, Non-U.S. Gov’t Review]. Nature Reviews. Molecular Cell Biology, 12(4), 235–245. doi:10.1038/nrm3083.PubMedCrossRef Parsyan, A., Svitkin, Y., Shahbazian, D., Gkogkas, C., Lasko, P., Merrick, W. C., et al. (2011). mRNA helicases: The tacticians of translational control. [Research Support, Non-U.S. Gov’t Review]. Nature Reviews. Molecular Cell Biology, 12(4), 235–245. doi:10.​1038/​nrm3083.PubMedCrossRef
8.
go back to reference Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Review]. Cell, 136(4), 731–745. doi:10.1016/j.cell.2009.01.042.PubMedCrossRef Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Review]. Cell, 136(4), 731–745. doi:10.​1016/​j.​cell.​2009.​01.​042.PubMedCrossRef
9.
go back to reference Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Nature Reviews. Molecular Cell Biology, 11(2), 113–127. doi:10.1038/nrm2838.PubMedCrossRef Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Nature Reviews. Molecular Cell Biology, 11(2), 113–127. doi:10.​1038/​nrm2838.PubMedCrossRef
11.
go back to reference Silvera, D., Formenti, S. C., & Schneider, R. J. (2010). Translational control in cancer. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review]. Nature Reviews. Cancer, 10(4), 254–266. doi:10.1038/nrc2824.PubMedCrossRef Silvera, D., Formenti, S. C., & Schneider, R. J. (2010). Translational control in cancer. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review]. Nature Reviews. Cancer, 10(4), 254–266. doi:10.​1038/​nrc2824.PubMedCrossRef
13.
go back to reference Lazaris-Karatzas, A., Montine, K. S., & Sonenberg, N. (1990). Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature, 345(6275), 544–547.PubMedCrossRef Lazaris-Karatzas, A., Montine, K. S., & Sonenberg, N. (1990). Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature, 345(6275), 544–547.PubMedCrossRef
14.
go back to reference Lazaris-Karatzas, A., Smith, M. R., Frederickson, R. M., Jaramillo, M. L., Liu, Y. L., Kung, H. F., et al. (1992). Ras mediates translation initiation factor 4E-induced malignant transformation. Genes & Development, 6(9), 1631–1642.CrossRef Lazaris-Karatzas, A., Smith, M. R., Frederickson, R. M., Jaramillo, M. L., Liu, Y. L., Kung, H. F., et al. (1992). Ras mediates translation initiation factor 4E-induced malignant transformation. Genes & Development, 6(9), 1631–1642.CrossRef
15.
go back to reference Zimmer, S. G., DeBenedetti, A., & Graff, J. R. (2000). Translational control of malignancy: The mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. [Research Support, U.S. Gov't, P.H.S. Review]. Anticancer Research, 20(3A), 1343–1351.PubMed Zimmer, S. G., DeBenedetti, A., & Graff, J. R. (2000). Translational control of malignancy: The mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. [Research Support, U.S. Gov't, P.H.S. Review]. Anticancer Research, 20(3A), 1343–1351.PubMed
16.
go back to reference Joseph, P., O'Kernick, C. M., Othumpangat, S., Lei, Y. X., Yuan, B. Z., & Ong, T. M. (2004). Expression profile of eukaryotic translation factors in human cancer tissues and cell lines. Molecular Carcinogenesis, 40(3), 171–179. doi:10.1002/mc.20033.PubMedCrossRef Joseph, P., O'Kernick, C. M., Othumpangat, S., Lei, Y. X., Yuan, B. Z., & Ong, T. M. (2004). Expression profile of eukaryotic translation factors in human cancer tissues and cell lines. Molecular Carcinogenesis, 40(3), 171–179. doi:10.​1002/​mc.​20033.PubMedCrossRef
17.
go back to reference Rosenwald, I. B., Chen, J. J., Wang, S., Savas, L., London, I. M., & Pullman, J. (1999). Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Oncogene, 18(15), 2507–2517. doi:10.1038/sj.onc.1202563.PubMedCrossRef Rosenwald, I. B., Chen, J. J., Wang, S., Savas, L., London, I. M., & Pullman, J. (1999). Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Oncogene, 18(15), 2507–2517. doi:10.​1038/​sj.​onc.​1202563.PubMedCrossRef
18.
go back to reference Berkel, H. J., Turbat-Herrera, E. A., Shi, R., & de Benedetti, A. (2001). Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. [Research Support, U.S. Gov't, P.H.S.]. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 10(6), 663–666. Berkel, H. J., Turbat-Herrera, E. A., Shi, R., & de Benedetti, A. (2001). Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. [Research Support, U.S. Gov't, P.H.S.]. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 10(6), 663–666.
19.
go back to reference Yang, S. X., Hewitt, S. M., Steinberg, S. M., Liewehr, D. J., & Swain, S. M. (2007). Expression levels of eIF4E, VEGF, and cyclin D1, and correlation of eIF4E with VEGF and cyclin D1 in multi-tumor tissue microarray. Oncology Reports, 17(2), 281–287.PubMed Yang, S. X., Hewitt, S. M., Steinberg, S. M., Liewehr, D. J., & Swain, S. M. (2007). Expression levels of eIF4E, VEGF, and cyclin D1, and correlation of eIF4E with VEGF and cyclin D1 in multi-tumor tissue microarray. Oncology Reports, 17(2), 281–287.PubMed
20.
go back to reference Xi, Y., Formentini, A., Nakajima, G., Kornmann, M., & Ju, J. (2008). Validation of biomarkers associated with 5-fluorouracil and thymidylate synthase in colorectal cancer. [Research Support, Non-U.S. Gov't Validation Studies]. Oncology Reports, 19(1), 257–262.PubMed Xi, Y., Formentini, A., Nakajima, G., Kornmann, M., & Ju, J. (2008). Validation of biomarkers associated with 5-fluorouracil and thymidylate synthase in colorectal cancer. [Research Support, Non-U.S. Gov't Validation Studies]. Oncology Reports, 19(1), 257–262.PubMed
21.
go back to reference Slattery, M. L., Lundgreen, A., Herrick, J. S., Caan, B. J., Potter, J. D., & Wolff, R. K. (2011). Associations between genetic variation in RUNX1, RUNX2, RUNX3, MAPK1 and eIF4E and riskof colon and rectal cancer: Additional support for a TGF-beta-signaling pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Carcinogenesis, 32(3), 318–326. doi:10.1093/carcin/bgq245.PubMedCrossRef Slattery, M. L., Lundgreen, A., Herrick, J. S., Caan, B. J., Potter, J. D., & Wolff, R. K. (2011). Associations between genetic variation in RUNX1, RUNX2, RUNX3, MAPK1 and eIF4E and riskof colon and rectal cancer: Additional support for a TGF-beta-signaling pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Carcinogenesis, 32(3), 318–326. doi:10.​1093/​carcin/​bgq245.PubMedCrossRef
22.
go back to reference Rosenwald, I. B., Wang, S., Savas, L., Woda, B., & Pullman, J. (2003). Expression of translation initiation factor eIF-2alpha is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer, 98(5), 1080–1088. doi:10.1002/cncr.11619.PubMedCrossRef Rosenwald, I. B., Wang, S., Savas, L., Woda, B., & Pullman, J. (2003). Expression of translation initiation factor eIF-2alpha is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer, 98(5), 1080–1088. doi:10.​1002/​cncr.​11619.PubMedCrossRef
23.
go back to reference Yoon, C. H., Lee, E. S., Lim, D. S., & Bae, Y. S. (2009). PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 7852–7857. doi:10.1073/pnas.0812148106.PubMedCrossRef Yoon, C. H., Lee, E. S., Lim, D. S., & Bae, Y. S. (2009). PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 7852–7857. doi:10.​1073/​pnas.​0812148106.PubMedCrossRef
24.
go back to reference Kim, S. H., Gunnery, S., Choe, J. K., & Mathews, M. B. (2002). Neoplastic progression in melanoma and colon cancer is associated with increased expression and activity of the interferon-inducible protein kinase, PKR. [Research Support, U.S. Gov't, P.H.S.]. Oncogene, 21(57), 8741–8748. doi:10.1038/sj.onc.1205987.PubMedCrossRef Kim, S. H., Gunnery, S., Choe, J. K., & Mathews, M. B. (2002). Neoplastic progression in melanoma and colon cancer is associated with increased expression and activity of the interferon-inducible protein kinase, PKR. [Research Support, U.S. Gov't, P.H.S.]. Oncogene, 21(57), 8741–8748. doi:10.​1038/​sj.​onc.​1205987.PubMedCrossRef
25.
go back to reference Garcia, M. A., Carrasco, E., Aguilera, M., Alvarez, P., Rivas, C., Campos, J. M., et al. (2011). The chemotherapeutic drug 5-fluorouracil promotes PKR-mediated apoptosis in a p53-independent manner in colon and breast cancer cells. [Research Support, Non-U.S. Gov't]. PloS One, 6(8), e23887. doi:10.1371/journal.pone.0023887.PubMedCrossRef Garcia, M. A., Carrasco, E., Aguilera, M., Alvarez, P., Rivas, C., Campos, J. M., et al. (2011). The chemotherapeutic drug 5-fluorouracil promotes PKR-mediated apoptosis in a p53-independent manner in colon and breast cancer cells. [Research Support, Non-U.S. Gov't]. PloS One, 6(8), e23887. doi:10.​1371/​journal.​pone.​0023887.PubMedCrossRef
26.
go back to reference Stolfi, C., Sarra, M., Caruso, R., Fantini, M. C., Fina, D., Pellegrini, R., et al. (2010). Inhibition of colon carcinogenesis by 2-methoxy-5-amino-N-hydroxybenzamide, a novel derivative of mesalamine. [Research Support, Non-U.S. Gov't]. Gastroenterology, 138(1), 221–230. doi:10.1053/j.gastro.2009.08.062.PubMedCrossRef Stolfi, C., Sarra, M., Caruso, R., Fantini, M. C., Fina, D., Pellegrini, R., et al. (2010). Inhibition of colon carcinogenesis by 2-methoxy-5-amino-N-hydroxybenzamide, a novel derivative of mesalamine. [Research Support, Non-U.S. Gov't]. Gastroenterology, 138(1), 221–230. doi:10.​1053/​j.​gastro.​2009.​08.​062.PubMedCrossRef
27.
go back to reference Shor, B., Zhang, W. G., Toral-Barza, L., Lucas, J., Abraham, R. T., Gibbons, J. J., et al. (2008). A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Research, 68(8), 2934–2943. doi:10.1158/0008-5472.CAN-07-6487.PubMedCrossRef Shor, B., Zhang, W. G., Toral-Barza, L., Lucas, J., Abraham, R. T., Gibbons, J. J., et al. (2008). A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Research, 68(8), 2934–2943. doi:10.​1158/​0008-5472.​CAN-07-6487.PubMedCrossRef
29.
go back to reference Liu, Z., Dong, Z., Yang, Z., Chen, Q., Pan, Y., Yang, Y., et al. (2007). Role of eIF3a (eIF3 p170) in intestinal cell differentiation and its association with early development. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Differentiation; Research in Biological Diversity, 75(7), 652–661. doi:10.1111/j.1432-0436.2007.00165.x.PubMedCrossRef Liu, Z., Dong, Z., Yang, Z., Chen, Q., Pan, Y., Yang, Y., et al. (2007). Role of eIF3a (eIF3 p170) in intestinal cell differentiation and its association with early development. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Differentiation; Research in Biological Diversity, 75(7), 652–661. doi:10.​1111/​j.​1432-0436.​2007.​00165.​x.PubMedCrossRef
30.
go back to reference Haybaeck, J., O'Connor, T., Spilka, R., Spizzo, G., Ensinger, C., Mikuz, G., et al. (2010). Overexpression of p150, a part of the large subunit of the eukaryotic translation initiation factor 3, in colon cancer. Anticancer Research, 30(4), 1047–1055.PubMed Haybaeck, J., O'Connor, T., Spilka, R., Spizzo, G., Ensinger, C., Mikuz, G., et al. (2010). Overexpression of p150, a part of the large subunit of the eukaryotic translation initiation factor 3, in colon cancer. Anticancer Research, 30(4), 1047–1055.PubMed
31.
go back to reference Goh, S. H., Hong, S. H., Lee, B. C., Ju, M. H., Jeong, J. S., Cho, Y. R., et al. (2011). eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer. [Research Support, N.I.H., Intramural]. Oncogene, 30(4), 398–409. doi:10.1038/onc.2010.422.PubMedCrossRef Goh, S. H., Hong, S. H., Lee, B. C., Ju, M. H., Jeong, J. S., Cho, Y. R., et al. (2011). eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer. [Research Support, N.I.H., Intramural]. Oncogene, 30(4), 398–409. doi:10.​1038/​onc.​2010.​422.PubMedCrossRef
32.
go back to reference Wu, D., Matsushita, K., Matsubara, H., Nomura, F., & Tomonaga, T. (2011). An alternative splicing isoform of eukaryotic initiation factor 4H promotes tumorigenesis in vivo and is a potential therapeutic target for human cancer. [Research Support, Non-U.S. Gov't]. International Journal of Cancer. Journal International du Cancer, 128(5), 1018–1030.PubMedCrossRef Wu, D., Matsushita, K., Matsubara, H., Nomura, F., & Tomonaga, T. (2011). An alternative splicing isoform of eukaryotic initiation factor 4H promotes tumorigenesis in vivo and is a potential therapeutic target for human cancer. [Research Support, Non-U.S. Gov't]. International Journal of Cancer. Journal International du Cancer, 128(5), 1018–1030.PubMedCrossRef
33.
go back to reference Nakagawa, Y., Morikawa, H., Hirata, I., Shiozaki, M., Matsumoto, A., Maemura, K., et al. (1999). Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. [Research Support, Non-U.S. Gov't]. British Journal of Cancer, 80(5-6), 914–917. doi:10.1038/sj.bjc.6690441.PubMedCrossRef Nakagawa, Y., Morikawa, H., Hirata, I., Shiozaki, M., Matsumoto, A., Maemura, K., et al. (1999). Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. [Research Support, Non-U.S. Gov't]. British Journal of Cancer, 80(5-6), 914–917. doi:10.​1038/​sj.​bjc.​6690441.PubMedCrossRef
34.
go back to reference Shahbazian, D., Parsyan, A., Petroulakis, E., Hershey, J., & Sonenberg, N. (2010). eIF4B controls survival and proliferation and is regulated by proto-oncogenic signaling pathways. [Research Support, Non-U.S. Gov't]. Cell Cycle, 9(20), 4106–4109.PubMedCrossRef Shahbazian, D., Parsyan, A., Petroulakis, E., Hershey, J., & Sonenberg, N. (2010). eIF4B controls survival and proliferation and is regulated by proto-oncogenic signaling pathways. [Research Support, Non-U.S. Gov't]. Cell Cycle, 9(20), 4106–4109.PubMedCrossRef
35.
37.
go back to reference Taylor, C. A., Sun, Z., Cliche, D. O., Ming, H., Eshaque, B., Jin, S., et al. (2007). Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor alpha signalling. [Research Support, Non-U.S. Gov't]. Experimental Cell Research, 313(3), 437–449. doi:10.1016/j.yexcr.2006.09.030.PubMedCrossRef Taylor, C. A., Sun, Z., Cliche, D. O., Ming, H., Eshaque, B., Jin, S., et al. (2007). Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor alpha signalling. [Research Support, Non-U.S. Gov't]. Experimental Cell Research, 313(3), 437–449. doi:10.​1016/​j.​yexcr.​2006.​09.​030.PubMedCrossRef
38.
go back to reference Park, M. H., Lee, Y. B., & Joe, Y. A. (1997). Hypusine is essential for eukaryotic cell proliferation. [Review]. Biological Signals, 6(3), 115–123.PubMedCrossRef Park, M. H., Lee, Y. B., & Joe, Y. A. (1997). Hypusine is essential for eukaryotic cell proliferation. [Review]. Biological Signals, 6(3), 115–123.PubMedCrossRef
39.
go back to reference Ignatenko, N. A., Yerushalmi, H. F., Pandey, R., Kachel, K. L., Stringer, D. E., Marton, L. J., et al. (2009). Gene expression analysis of HCT116 colon tumor-derived cells treated with the polyamine analog PG-11047. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Genomics & Proteomics, 6(3), 161–175. Ignatenko, N. A., Yerushalmi, H. F., Pandey, R., Kachel, K. L., Stringer, D. E., Marton, L. J., et al. (2009). Gene expression analysis of HCT116 colon tumor-derived cells treated with the polyamine analog PG-11047. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Genomics & Proteomics, 6(3), 161–175.
40.
go back to reference Malina, A., Cencic, R., & Pelletier, J. (2011). Targeting translation dependence in cancer. [Research Support, Non-U.S. Gov't Review]. Oncotarget, 2(1-2), 76–88.PubMed Malina, A., Cencic, R., & Pelletier, J. (2011). Targeting translation dependence in cancer. [Research Support, Non-U.S. Gov't Review]. Oncotarget, 2(1-2), 76–88.PubMed
41.
go back to reference Konicek, B. W., Stephens, J. R., McNulty, A. M., Robichaud, N., Peery, R. B., Dumstorf, C. A., et al. (2011). Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Research, 71(5), 1849–1857. doi:10.1158/0008-5472.CAN-10-3298.PubMedCrossRef Konicek, B. W., Stephens, J. R., McNulty, A. M., Robichaud, N., Peery, R. B., Dumstorf, C. A., et al. (2011). Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Research, 71(5), 1849–1857. doi:10.​1158/​0008-5472.​CAN-10-3298.PubMedCrossRef
42.
go back to reference Roulin, D., Cerantola, Y., Dormond-Meuwly, A., Demartines, N., & Dormond, O. (2010). Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. [Research Support, Non-U.S. Gov't]. Molecular Cancer, 9, 57. doi:10.1186/1476-4598-9-57.PubMedCrossRef Roulin, D., Cerantola, Y., Dormond-Meuwly, A., Demartines, N., & Dormond, O. (2010). Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. [Research Support, Non-U.S. Gov't]. Molecular Cancer, 9, 57. doi:10.​1186/​1476-4598-9-57.PubMedCrossRef
43.
go back to reference Gulhati, P., Bowen, K. A., Liu, J., Stevens, P. D., Rychahou, P. G., Chen, M., et al. (2011). mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. [Research Support, N.I.H., Extramural]. Cancer Research, 71(9), 3246–3256. doi:10.1158/0008-5472.CAN-10-4058.PubMedCrossRef Gulhati, P., Bowen, K. A., Liu, J., Stevens, P. D., Rychahou, P. G., Chen, M., et al. (2011). mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. [Research Support, N.I.H., Extramural]. Cancer Research, 71(9), 3246–3256. doi:10.​1158/​0008-5472.​CAN-10-4058.PubMedCrossRef
44.
go back to reference O'Reilly, T., McSheehy, P. M., Wartmann, M., Lassota, P., Brandt, R., & Lane, H. A. (2011). Evaluation of the mTOR inhibitor, everolimus, in combination with cytotoxic antitumor agents using human tumor models in vitro and in vivo. Anti-Cancer Drugs, 22(1), 58–78. doi:10.1097/CAD.0b013e3283400a20.PubMedCrossRef O'Reilly, T., McSheehy, P. M., Wartmann, M., Lassota, P., Brandt, R., & Lane, H. A. (2011). Evaluation of the mTOR inhibitor, everolimus, in combination with cytotoxic antitumor agents using human tumor models in vitro and in vivo. Anti-Cancer Drugs, 22(1), 58–78. doi:10.​1097/​CAD.​0b013e3283400a20​.PubMedCrossRef
45.
go back to reference Dilling, M. B., Germain, G. S., Dudkin, L., Jayaraman, A. L., Zhang, X., Harwood, F. C., et al. (2002). 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of Biological Chemistry, 277(16), 13907–13917. doi:10.1074/jbc.M110782200.PubMedCrossRef Dilling, M. B., Germain, G. S., Dudkin, L., Jayaraman, A. L., Zhang, X., Harwood, F. C., et al. (2002). 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of Biological Chemistry, 277(16), 13907–13917. doi:10.​1074/​jbc.​M110782200.PubMedCrossRef
46.
go back to reference Fujishita, T., Aoki, K., Lane, H. A., Aoki, M., & Taketo, M. M. (2008). Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 105(36). doi:10.1073/pnas.0800041105. Fujishita, T., Aoki, K., Lane, H. A., Aoki, M., & Taketo, M. M. (2008). Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 105(36). doi:10.​1073/​pnas.​0800041105.
47.
49.
go back to reference Hosono, K., Endo, H., Takahashi, H., Sugiyama, M., Uchiyama, T., Suzuki, K., et al. (2010). Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. [Research Support, Non-U.S. Gov't]. Molecular Carcinogenesis, 49(7), 662–671. doi:10.1002/mc.20637.PubMedCrossRef Hosono, K., Endo, H., Takahashi, H., Sugiyama, M., Uchiyama, T., Suzuki, K., et al. (2010). Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. [Research Support, Non-U.S. Gov't]. Molecular Carcinogenesis, 49(7), 662–671. doi:10.​1002/​mc.​20637.PubMedCrossRef
50.
go back to reference Zakikhani, M., Dowling, R. J., Sonenberg, N., & Pollak, M. N. (2008). The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. [Research Support, Non-U.S. Gov't]. Cancer Prevention Research, 1(5), 369–375. doi:10.1158/1940-6207.CAPR-08-0081.PubMedCrossRef Zakikhani, M., Dowling, R. J., Sonenberg, N., & Pollak, M. N. (2008). The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. [Research Support, Non-U.S. Gov't]. Cancer Prevention Research, 1(5), 369–375. doi:10.​1158/​1940-6207.​CAPR-08-0081.PubMedCrossRef
51.
go back to reference Buzzai, M., Jones, R. G., Amaravadi, R. K., Lum, J. J., DeBerardinis, R. J., Zhao, F., et al. (2007). Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. [Research Support, N.I.H., Extramural]. Cancer Research, 67(14), 6745–6752. doi:10.1158/0008-5472.CAN-06-4447.PubMedCrossRef Buzzai, M., Jones, R. G., Amaravadi, R. K., Lum, J. J., DeBerardinis, R. J., Zhao, F., et al. (2007). Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. [Research Support, N.I.H., Extramural]. Cancer Research, 67(14), 6745–6752. doi:10.​1158/​0008-5472.​CAN-06-4447.PubMedCrossRef
52.
go back to reference Dumstorf, C. A., Konicek, B. W., McNulty, A. M., Parsons, S. H., Furic, L., Sonenberg, N., et al. (2010). Modulation of 4E-BP1 function as a critical determinant of enzastaurin-induced apoptosis. Molecular Cancer Therapeutics, 9(12), 3158–3163. doi:10.1158/1535-7163.MCT-10-0413.PubMedCrossRef Dumstorf, C. A., Konicek, B. W., McNulty, A. M., Parsons, S. H., Furic, L., Sonenberg, N., et al. (2010). Modulation of 4E-BP1 function as a critical determinant of enzastaurin-induced apoptosis. Molecular Cancer Therapeutics, 9(12), 3158–3163. doi:10.​1158/​1535-7163.​MCT-10-0413.PubMedCrossRef
53.
go back to reference Hu, J., Straub, J., Xiao, D., Singh, S. V., Yang, H. S., Sonenberg, N., et al. (2007). Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Research, 67(8), 3569–3573. doi:10.1158/0008-5472.CAN-07-0392.PubMedCrossRef Hu, J., Straub, J., Xiao, D., Singh, S. V., Yang, H. S., Sonenberg, N., et al. (2007). Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Research, 67(8), 3569–3573. doi:10.​1158/​0008-5472.​CAN-07-0392.PubMedCrossRef
54.
go back to reference Yang, Y. J., Zhang, Y. L., Wang, J. D., Lai, Z. S., Wang, Q. Y., & Cui, H. H. (2003). [Role of eukaryotic initiation factor-4E (eIF-4E) in regulation of expression of NF-appaB and its subsequent influence on transcription and activity of heparanase in human colon adenocarcinoma cell line]. [Research Support, Non-U.S. Gov't]. Ai zheng = Aizheng = Chinese Journal of Cancer, 22(10), 1023–1029. doi:1000467X2003101023.PubMed Yang, Y. J., Zhang, Y. L., Wang, J. D., Lai, Z. S., Wang, Q. Y., & Cui, H. H. (2003). [Role of eukaryotic initiation factor-4E (eIF-4E) in regulation of expression of NF-appaB and its subsequent influence on transcription and activity of heparanase in human colon adenocarcinoma cell line]. [Research Support, Non-U.S. Gov't]. Ai zheng = Aizheng = Chinese Journal of Cancer, 22(10), 1023–1029. doi:1000467X20031010​23.PubMed
55.
go back to reference Yang, Y. J., Zhang, Y. L., Li, X., Dan, H. L., Lai, Z. S., Wang, J. D., et al. (2003). Contribution of eIF-4E inhibition to the expression and activity of heparanase in human colon adenocarcinoma cell line: LS-174T. [Research Support, Non-U.S. Gov't]. World Journal of Gastroenterology, 9(8), 1707–1712.PubMed Yang, Y. J., Zhang, Y. L., Li, X., Dan, H. L., Lai, Z. S., Wang, J. D., et al. (2003). Contribution of eIF-4E inhibition to the expression and activity of heparanase in human colon adenocarcinoma cell line: LS-174T. [Research Support, Non-U.S. Gov't]. World Journal of Gastroenterology, 9(8), 1707–1712.PubMed
56.
go back to reference Yang, Y. J., Zhang, Y. L., Lai, Z. S., Cui, H. H., Zhong, S. S., & Liu, Y. H. (2003). Effect of eIF-4E inhibition on heparanase mRNA and its expression in colon adenocarcinoma cell. [Research Support, Non-U.S. Gov't]. Di 1 jun yi da xue xue bao = Academic Journal of the First Medical College of PLA, 23(7), 655–658.PubMed Yang, Y. J., Zhang, Y. L., Lai, Z. S., Cui, H. H., Zhong, S. S., & Liu, Y. H. (2003). Effect of eIF-4E inhibition on heparanase mRNA and its expression in colon adenocarcinoma cell. [Research Support, Non-U.S. Gov't]. Di 1 jun yi da xue xue bao = Academic Journal of the First Medical College of PLA, 23(7), 655–658.PubMed
Metadata
Title
Translation initiation in colorectal cancer
Authors
Armen Parsyan
Greco Hernández
Sarkis Meterissian
Publication date
01-06-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9349-9

Other articles of this Issue 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Go to the issue

NON-THEMATIC REVIEW

Bee venom in cancer therapy

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine