Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2012

01-06-2012 | NON-THEMATIC REVIEW

BRACking news on triple-negative/basal-like breast cancers: how BRCA1 deficiency may result in the development of a selective tumor subtype

Authors: Manuela Santarosa, Roberta Maestro

Published in: Cancer and Metastasis Reviews | Issue 1-2/2012

Login to get access

Abstract

Mutations in the BRCA1 tumor suppressor predispose to the development of breast and ovarian cancers. Noticeably, the majority of BRCA1-associated breast cancers are triple-negative (ER-, PR- and HER2-) and display a basal-like phenotype, which are features relatively uncommon among sporadic breast cancers. It is well documented that BRCA1 is involved in a number of cellular functions converging to the maintenance of genomic stability. However, the control over DNA integrity does not seem to account for the peculiar phenotype of BRCA1-associated tumors since mutations in other genes involved in such a function, namely BRCA2, associate to a broader spectrum of breast carcinoma subtypes. Indeed, an increasing body of evidence indicates that BRCA1 is implicated also in the regulation of transcription by impinging upon general components of the transcriptional machinery. Thus, elucidating the complex biochemical network regulated by BRCA1 may allow a better understanding also of the biology of sporadic triple-negative/basal-like tumors and lay down the basis for novel preventive measures and more effective therapeutic strategies. This review summarizes recent findings on the role of BRCA1 in the regulation of transcription and how this might set the ground for the development of cancers with triple-negative/basal-like features.
Literature
1.
go back to reference Esteller, M., Silva, J. M., Dominguez, G., Bonilla, F., Matias-Guiu, X., Lerma, E., et al. (2000). Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. Journal of the National Cancer Institute, 92(7), 564–569.PubMedCrossRef Esteller, M., Silva, J. M., Dominguez, G., Bonilla, F., Matias-Guiu, X., Lerma, E., et al. (2000). Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. Journal of the National Cancer Institute, 92(7), 564–569.PubMedCrossRef
2.
go back to reference Welcsh, P. L., Lee, M. K., Gonzalez-Hernandez, R. M., Black, D. J., Mahadevappa, M., Swisher, E. M., et al. (2002). BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7560–7565.PubMedCrossRef Welcsh, P. L., Lee, M. K., Gonzalez-Hernandez, R. M., Black, D. J., Mahadevappa, M., Swisher, E. M., et al. (2002). BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7560–7565.PubMedCrossRef
3.
go back to reference Turner, N. C., Reis-Filho, J. S., Russell, A. M., Springall, R. J., Ryder, K., Steele, D., et al. (2007). BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene, 26(14), 2126–2132.PubMedCrossRef Turner, N. C., Reis-Filho, J. S., Russell, A. M., Springall, R. J., Ryder, K., Steele, D., et al. (2007). BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene, 26(14), 2126–2132.PubMedCrossRef
4.
go back to reference Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science (New York, N.Y.), 266(5182), 66–71.CrossRef Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science (New York, N.Y.), 266(5182), 66–71.CrossRef
5.
go back to reference Venkitaraman, A. R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell, 108(2), 171–182.PubMedCrossRef Venkitaraman, A. R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell, 108(2), 171–182.PubMedCrossRef
6.
go back to reference Tutt, A., & Ashworth, A. (2002). The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends in Molecular Medicine, 8(12), 571–576.PubMedCrossRef Tutt, A., & Ashworth, A. (2002). The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends in Molecular Medicine, 8(12), 571–576.PubMedCrossRef
7.
go back to reference Howlett, N. G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die-Smulders, C., et al. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science (New York, N.Y.), 297(5581), 606–609.CrossRef Howlett, N. G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die-Smulders, C., et al. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science (New York, N.Y.), 297(5581), 606–609.CrossRef
8.
go back to reference Kennedy, R. D., Quinn, J. E., Mullan, P. B., Johnston, P. G., & Harkin, D. P. (2004). The role of BRCA1 in the cellular response to chemotherapy. Journal of the National Cancer Institute, 96(22), 1659–1668.PubMedCrossRef Kennedy, R. D., Quinn, J. E., Mullan, P. B., Johnston, P. G., & Harkin, D. P. (2004). The role of BRCA1 in the cellular response to chemotherapy. Journal of the National Cancer Institute, 96(22), 1659–1668.PubMedCrossRef
9.
go back to reference Sgagias, M. K., Wagner, K. U., Hamik, B., Stoeger, S., Spieker, R., Huber, L. J., et al. (2004). Brca1-deficient murine mammary epithelial cells have increased sensitivity to CDDP and MMS. Cell Cycle, 3(11), 1451–1456.PubMedCrossRef Sgagias, M. K., Wagner, K. U., Hamik, B., Stoeger, S., Spieker, R., Huber, L. J., et al. (2004). Brca1-deficient murine mammary epithelial cells have increased sensitivity to CDDP and MMS. Cell Cycle, 3(11), 1451–1456.PubMedCrossRef
10.
go back to reference Santarosa, M., Del Col, L., Tonin, E., Caragnano, A., Viel, A., & Maestro, R. (2009). Premature senescence is a major response to DNA cross-linking agents in BRCA1-defective cells: implication for tailored treatments of BRCA1 mutation carriers. Molecular Cancer Therapeutics, 8(4), 844–854.PubMedCrossRef Santarosa, M., Del Col, L., Tonin, E., Caragnano, A., Viel, A., & Maestro, R. (2009). Premature senescence is a major response to DNA cross-linking agents in BRCA1-defective cells: implication for tailored treatments of BRCA1 mutation carriers. Molecular Cancer Therapeutics, 8(4), 844–854.PubMedCrossRef
11.
go back to reference Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917–921.PubMedCrossRef Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917–921.PubMedCrossRef
12.
go back to reference Stefansson, O. A., Jonasson, J. G., Johannsson, O. T., Olafsdottir, K., Steinarsdottir, M., Valgeirsdottir, S., et al. (2009). Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Breast Cancer Research, 11(4), R47.PubMedCrossRef Stefansson, O. A., Jonasson, J. G., Johannsson, O. T., Olafsdottir, K., Steinarsdottir, M., Valgeirsdottir, S., et al. (2009). Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Breast Cancer Research, 11(4), R47.PubMedCrossRef
13.
go back to reference Lakhani, S. R., Van De Vijver, M. J., Jacquemier, J., Anderson, T. J., Osin, P. P., McGuffog, L., et al. (2002). The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. Journal of Clinical Oncology, 20(9), 2310–2318.PubMedCrossRef Lakhani, S. R., Van De Vijver, M. J., Jacquemier, J., Anderson, T. J., Osin, P. P., McGuffog, L., et al. (2002). The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. Journal of Clinical Oncology, 20(9), 2310–2318.PubMedCrossRef
14.
go back to reference Foulkes, W. D., Stefansson, I. M., Chappuis, P. O., Begin, L. R., Goffin, J. R., Wong, N., et al. (2003). Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. Journal of the National Cancer Institute, 95(19), 1482–148. Foulkes, W. D., Stefansson, I. M., Chappuis, P. O., Begin, L. R., Goffin, J. R., Wong, N., et al. (2003). Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. Journal of the National Cancer Institute, 95(19), 1482–148.
15.
go back to reference Turner, N., Tutt, A., & Ashworth, A. (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nature Reviews.Cancer, 4(10), 814–819.PubMedCrossRef Turner, N., Tutt, A., & Ashworth, A. (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nature Reviews.Cancer, 4(10), 814–819.PubMedCrossRef
16.
go back to reference Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423.PubMedCrossRef Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423.PubMedCrossRef
17.
go back to reference Lakhani, S. R., Reis-Filho, J. S., Fulford, L., Penault-Llorca, F., van der Vijver, M., Parry, S., et al. (2005). Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clinical Cancer Research, 11(14), 5175–5180.PubMedCrossRef Lakhani, S. R., Reis-Filho, J. S., Fulford, L., Penault-Llorca, F., van der Vijver, M., Parry, S., et al. (2005). Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clinical Cancer Research, 11(14), 5175–5180.PubMedCrossRef
18.
go back to reference Palacios, J., Honrado, E., Osorio, A., Cazorla, A., Sarrio, D., Barroso, A., et al. (2005). Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Research and Treatment, 90(1), 5–14.PubMedCrossRef Palacios, J., Honrado, E., Osorio, A., Cazorla, A., Sarrio, D., Barroso, A., et al. (2005). Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Research and Treatment, 90(1), 5–14.PubMedCrossRef
19.
go back to reference Rodriguez-Pinilla, S. M., Sarrio, D., Honrado, E., Moreno-Bueno, G., Hardisson, D., Calero, F., et al. (2007). Vimentin and laminin expression is associated with basal-like phenotype in both sporadic and BRCA1-associated breast carcinomas. Journal of Clinical Pathology, 60(9), 1006–1012.PubMedCrossRef Rodriguez-Pinilla, S. M., Sarrio, D., Honrado, E., Moreno-Bueno, G., Hardisson, D., Calero, F., et al. (2007). Vimentin and laminin expression is associated with basal-like phenotype in both sporadic and BRCA1-associated breast carcinomas. Journal of Clinical Pathology, 60(9), 1006–1012.PubMedCrossRef
20.
go back to reference Lakhani, S. R., Jacquemier, J., Sloane, J. P., Gusterson, B. A., Anderson, T. J., van de Vijver, M. J., et al. (1998). Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. Journal of the National Cancer Institute, 90(15), 1138–1145.PubMedCrossRef Lakhani, S. R., Jacquemier, J., Sloane, J. P., Gusterson, B. A., Anderson, T. J., van de Vijver, M. J., et al. (1998). Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. Journal of the National Cancer Institute, 90(15), 1138–1145.PubMedCrossRef
21.
go back to reference McCarthy, A., Savage, K., Gabriel, A., Naceur, C., Reis-Filho, J. S., & Ashworth, A. (2007). A mouse model of basal-like breast carcinoma with metaplastic elements. The Journal of Pathology, 211(4), 389–398.PubMedCrossRef McCarthy, A., Savage, K., Gabriel, A., Naceur, C., Reis-Filho, J. S., & Ashworth, A. (2007). A mouse model of basal-like breast carcinoma with metaplastic elements. The Journal of Pathology, 211(4), 389–398.PubMedCrossRef
22.
go back to reference Liu, X., Holstege, H., van der Gulden, H., Treur-Mulder, M., Zevenhoven, J., Velds, A., et al. (2007). Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12111–12116.PubMedCrossRef Liu, X., Holstege, H., van der Gulden, H., Treur-Mulder, M., Zevenhoven, J., Velds, A., et al. (2007). Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12111–12116.PubMedCrossRef
23.
go back to reference Shakya, R., Szabolcs, M., McCarthy, E., Ospina, E., Basso, K., Nandula, S., et al. (2008). The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 7040–7045.PubMedCrossRef Shakya, R., Szabolcs, M., McCarthy, E., Ospina, E., Basso, K., Nandula, S., et al. (2008). The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 7040–7045.PubMedCrossRef
24.
go back to reference Rakha, E. A., Elsheikh, S. E., Aleskandarany, M. A., Habashi, H. O., Green, A. R., Powe, D. G., et al. (2009). Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clinical Cancer Research, 15(7), 2302–2310.PubMedCrossRef Rakha, E. A., Elsheikh, S. E., Aleskandarany, M. A., Habashi, H. O., Green, A. R., Powe, D. G., et al. (2009). Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clinical Cancer Research, 15(7), 2302–2310.PubMedCrossRef
25.
go back to reference Cheang, M. C., Voduc, D., Bajdik, C., Leung, S., McKinney, S., Chia, S. K., et al. (2008). Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clinical Cancer Research, 14(5), 1368–1376.PubMedCrossRef Cheang, M. C., Voduc, D., Bajdik, C., Leung, S., McKinney, S., Chia, S. K., et al. (2008). Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clinical Cancer Research, 14(5), 1368–1376.PubMedCrossRef
26.
go back to reference Yarden, R. I., & Brody, L. C. (1999). BRCA1 interacts with components of the histone deacetylase complex. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 4983–4988.PubMedCrossRef Yarden, R. I., & Brody, L. C. (1999). BRCA1 interacts with components of the histone deacetylase complex. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 4983–4988.PubMedCrossRef
27.
go back to reference Pao, G. M., Janknecht, R., Ruffner, H., Hunter, T., & Verma, I. M. (2000). CBP/p300 interact with and function as transcriptional coactivators of BRCA1. Proceedings of the National Academy of Sciences of the United States of America, 97(3), 1020–1025.PubMedCrossRef Pao, G. M., Janknecht, R., Ruffner, H., Hunter, T., & Verma, I. M. (2000). CBP/p300 interact with and function as transcriptional coactivators of BRCA1. Proceedings of the National Academy of Sciences of the United States of America, 97(3), 1020–1025.PubMedCrossRef
28.
go back to reference Oishi, H., Kitagawa, H., Wada, O., Takezawa, S., Tora, L., Kouzu-Fujita, M., et al. (2006). An hGCN5/TRRAP histone acetyltransferase complex co-activates BRCA1 transactivation function through histone modification. The Journal of Biological Chemistry, 281(1), 20–26.PubMedCrossRef Oishi, H., Kitagawa, H., Wada, O., Takezawa, S., Tora, L., Kouzu-Fujita, M., et al. (2006). An hGCN5/TRRAP histone acetyltransferase complex co-activates BRCA1 transactivation function through histone modification. The Journal of Biological Chemistry, 281(1), 20–26.PubMedCrossRef
29.
go back to reference Bochar, D. A., Wang, L., Beniya, H., Kinev, A., Xue, Y., Lane, W. S., et al. (2000). BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell, 102(2), 257–265.PubMedCrossRef Bochar, D. A., Wang, L., Beniya, H., Kinev, A., Xue, Y., Lane, W. S., et al. (2000). BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell, 102(2), 257–265.PubMedCrossRef
30.
go back to reference Harte, M. T., O'Brien, G. J., Ryan, N. M., Gorski, J. J., Savage, K. I., Crawford, N. T., et al. (2010). BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Research, 70(6), 2538–2547.PubMedCrossRef Harte, M. T., O'Brien, G. J., Ryan, N. M., Gorski, J. J., Savage, K. I., Crawford, N. T., et al. (2010). BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Research, 70(6), 2538–2547.PubMedCrossRef
31.
go back to reference Mullan, P. B., Quinn, J. E., & Harkin, D. P. (2006). The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene, 25(43), 5854–5863.PubMedCrossRef Mullan, P. B., Quinn, J. E., & Harkin, D. P. (2006). The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene, 25(43), 5854–5863.PubMedCrossRef
32.
go back to reference Huen, M. S., Sy, S. M., & Chen, J. (2010). BRCA1 and its toolbox for the maintenance of genome integrity. Nature Reviews. Molecular Cell Biology, 11(2), 138–148.PubMedCrossRef Huen, M. S., Sy, S. M., & Chen, J. (2010). BRCA1 and its toolbox for the maintenance of genome integrity. Nature Reviews. Molecular Cell Biology, 11(2), 138–148.PubMedCrossRef
33.
go back to reference Hartman, A. R., & Ford, J. M. (2002). BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nature Genetics, 32(1), 180–184.PubMedCrossRef Hartman, A. R., & Ford, J. M. (2002). BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nature Genetics, 32(1), 180–184.PubMedCrossRef
34.
go back to reference De Siervi, A., De Luca, P., Byun, J. S., Di, L. J., Fufa, T., Haggerty, C. M., et al. (2010). Transcriptional autoregulation by BRCA1. Cancer Research, 70(2), 532–542.PubMedCrossRef De Siervi, A., De Luca, P., Byun, J. S., Di, L. J., Fufa, T., Haggerty, C. M., et al. (2010). Transcriptional autoregulation by BRCA1. Cancer Research, 70(2), 532–542.PubMedCrossRef
35.
go back to reference Chapman, M. S., & Verma, I. M. (1996). Transcriptional activation by BRCA1. Nature, 382(6593), 678–679.PubMedCrossRef Chapman, M. S., & Verma, I. M. (1996). Transcriptional activation by BRCA1. Nature, 382(6593), 678–679.PubMedCrossRef
36.
go back to reference Monteiro, A. N., August, A., & Hanafusa, H. (1996). Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13595–13599.PubMedCrossRef Monteiro, A. N., August, A., & Hanafusa, H. (1996). Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13595–13599.PubMedCrossRef
37.
go back to reference Scully, R., Anderson, S. F., Chao, D. M., Wei, W., Ye, L., Young, R. A., et al. (1997). BRCA1 is a component of the RNA polymerase II holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5605–5610.PubMedCrossRef Scully, R., Anderson, S. F., Chao, D. M., Wei, W., Ye, L., Young, R. A., et al. (1997). BRCA1 is a component of the RNA polymerase II holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5605–5610.PubMedCrossRef
38.
go back to reference Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S., & Parvin, J. D. (1998). BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genetics, 19(3), 254–256.PubMedCrossRef Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S., & Parvin, J. D. (1998). BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genetics, 19(3), 254–256.PubMedCrossRef
39.
go back to reference Krum, S. A., Miranda, G. A., Lin, C., & Lane, T. F. (2003). BRCA1 associates with processive RNA polymerase II. The Journal of Biological Chemistry, 278(52), 52012–52020.PubMedCrossRef Krum, S. A., Miranda, G. A., Lin, C., & Lane, T. F. (2003). BRCA1 associates with processive RNA polymerase II. The Journal of Biological Chemistry, 278(52), 52012–52020.PubMedCrossRef
40.
go back to reference Kleiman, F. E., & Manley, J. L. (1999). Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science (New York, N.Y.), 285(5433), 1576–1579.CrossRef Kleiman, F. E., & Manley, J. L. (1999). Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science (New York, N.Y.), 285(5433), 1576–1579.CrossRef
41.
go back to reference Aiyar, S., Sun, J. L., & Li, R. (2005). BRCA1: a locus-specific "liaison" in gene expression and genetic integrity. Journal of Cellular Biochemistry, 94(6), 1103–1111.PubMedCrossRef Aiyar, S., Sun, J. L., & Li, R. (2005). BRCA1: a locus-specific "liaison" in gene expression and genetic integrity. Journal of Cellular Biochemistry, 94(6), 1103–1111.PubMedCrossRef
42.
go back to reference Kleiman, F. E., Wu-Baer, F., Fonseca, D., Kaneko, S., Baer, R., & Manley, J. L. (2005). BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes & Development, 19(10), 1227–1237.CrossRef Kleiman, F. E., Wu-Baer, F., Fonseca, D., Kaneko, S., Baer, R., & Manley, J. L. (2005). BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes & Development, 19(10), 1227–1237.CrossRef
43.
go back to reference Starita, L. M., Horwitz, A. A., Keogh, M. C., Ishioka, C., Parvin, J. D., & Chiba, N. (2005). BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. The Journal of Biological Chemistry, 280(26), 24498–24505.PubMedCrossRef Starita, L. M., Horwitz, A. A., Keogh, M. C., Ishioka, C., Parvin, J. D., & Chiba, N. (2005). BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. The Journal of Biological Chemistry, 280(26), 24498–24505.PubMedCrossRef
44.
go back to reference Santarosa, M., Del Col, L., Viel, A., Bivi, N., D'Ambrosio, C., Scaloni, A., et al. (2010). BRCA1 modulates the expression of hnRNPA2B1 and KHSRP. Cell Cycle, 9(23), 4666–4673.PubMedCrossRef Santarosa, M., Del Col, L., Viel, A., Bivi, N., D'Ambrosio, C., Scaloni, A., et al. (2010). BRCA1 modulates the expression of hnRNPA2B1 and KHSRP. Cell Cycle, 9(23), 4666–4673.PubMedCrossRef
45.
go back to reference Gherzi, R., Trabucchi, M., Ponassi, M., Ruggiero, T., Corte, G., Moroni, C., et al. (2006). The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biology, 5(1), e5.PubMedCrossRef Gherzi, R., Trabucchi, M., Ponassi, M., Ruggiero, T., Corte, G., Moroni, C., et al. (2006). The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biology, 5(1), e5.PubMedCrossRef
46.
go back to reference Dreyfuss, G., Kim, V. N., & Kataoka, N. (2002). Messenger-RNA-binding proteins and the messages they carry. Nature Reviews. Molecular Cell Biology, 3(3), 195–205.PubMedCrossRef Dreyfuss, G., Kim, V. N., & Kataoka, N. (2002). Messenger-RNA-binding proteins and the messages they carry. Nature Reviews. Molecular Cell Biology, 3(3), 195–205.PubMedCrossRef
47.
go back to reference Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., et al. (2007). Estrogen receptors: how do they signal and what are their targets. Physiological Reviews, 87(3), 905–931.PubMedCrossRef Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., et al. (2007). Estrogen receptors: how do they signal and what are their targets. Physiological Reviews, 87(3), 905–931.PubMedCrossRef
48.
go back to reference Liehr, J. G. (2000). Is estradiol a genotoxic mutagenic carcinogen? Endocrine Reviews, 21(1), 40–54.PubMedCrossRef Liehr, J. G. (2000). Is estradiol a genotoxic mutagenic carcinogen? Endocrine Reviews, 21(1), 40–54.PubMedCrossRef
49.
go back to reference Okoh, V., Deoraj, A., & Roy, D. (2011). Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochimica Et Biophysica Acta-Reviews on Cancer, 1815(1), 115–133.CrossRef Okoh, V., Deoraj, A., & Roy, D. (2011). Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochimica Et Biophysica Acta-Reviews on Cancer, 1815(1), 115–133.CrossRef
50.
go back to reference Narod, S. A., Brunet, J. S., Ghadirian, P., Robson, M., Heimdal, K., Neuhausen, S. L., et al. (2000). Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case–control study. Hereditary Breast Cancer Clinical Study Group. Lancet, 356(9245), 1876–1881.PubMedCrossRef Narod, S. A., Brunet, J. S., Ghadirian, P., Robson, M., Heimdal, K., Neuhausen, S. L., et al. (2000). Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case–control study. Hereditary Breast Cancer Clinical Study Group. Lancet, 356(9245), 1876–1881.PubMedCrossRef
51.
go back to reference Rosen, E. M., Fan, S., & Isaacs, C. (2005). BRCA1 in hormonal carcinogenesis: basic and clinical research. Endocrine-Related Cancer, 12(3), 533–548.PubMedCrossRef Rosen, E. M., Fan, S., & Isaacs, C. (2005). BRCA1 in hormonal carcinogenesis: basic and clinical research. Endocrine-Related Cancer, 12(3), 533–548.PubMedCrossRef
52.
go back to reference Fan, S., Wang, J., Yuan, R., Ma, Y., Meng, Q., Erdos, M. R., et al. (1999). BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science (New York, N.Y.), 284(5418), 1354–1356.CrossRef Fan, S., Wang, J., Yuan, R., Ma, Y., Meng, Q., Erdos, M. R., et al. (1999). BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science (New York, N.Y.), 284(5418), 1354–1356.CrossRef
53.
go back to reference Zheng, L., Annab, L. A., Afshari, C. A., Lee, W. H., & Boyer, T. G. (2001). BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9587–9592.PubMedCrossRef Zheng, L., Annab, L. A., Afshari, C. A., Lee, W. H., & Boyer, T. G. (2001). BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9587–9592.PubMedCrossRef
54.
go back to reference Xu, J., Fan, S., & Rosen, E. M. (2005). Regulation of the estrogen-inducible gene expression profile by the breast cancer susceptibility gene BRCA1. Endocrinology, 146(4), 2031–2047.PubMedCrossRef Xu, J., Fan, S., & Rosen, E. M. (2005). Regulation of the estrogen-inducible gene expression profile by the breast cancer susceptibility gene BRCA1. Endocrinology, 146(4), 2031–2047.PubMedCrossRef
55.
go back to reference Gorski, J. J., Kennedy, R. D., Hosey, A. M., & Harkin, D. P. (2009). The complex relationship between BRCA1 and ERalpha in hereditary breast cancer. Clinical Cancer Research, 15(5), 1514–1518.PubMedCrossRef Gorski, J. J., Kennedy, R. D., Hosey, A. M., & Harkin, D. P. (2009). The complex relationship between BRCA1 and ERalpha in hereditary breast cancer. Clinical Cancer Research, 15(5), 1514–1518.PubMedCrossRef
56.
go back to reference Fan, S., Ma, Y. X., Wang, C., Yuan, R. Q., Meng, Q., Wang, J. A., et al. (2002). p300 modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Research, 62(1), 141–151.PubMed Fan, S., Ma, Y. X., Wang, C., Yuan, R. Q., Meng, Q., Wang, J. A., et al. (2002). p300 modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Research, 62(1), 141–151.PubMed
57.
go back to reference Hosey, A. M., Gorski, J. J., Murray, M. M., Quinn, J. E., Chung, W. Y., Stewart, G. E., et al. (2007). Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. Journal of the National Cancer Institute, 99(22), 1683–1694.PubMedCrossRef Hosey, A. M., Gorski, J. J., Murray, M. M., Quinn, J. E., Chung, W. Y., Stewart, G. E., et al. (2007). Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. Journal of the National Cancer Institute, 99(22), 1683–1694.PubMedCrossRef
58.
go back to reference Lusa, L., Peissel, B., Manoukian, S., Marchesi, E., Radice, P., Pierotti, M. A., et al. (2008). Re: Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. Journal of the National Cancer Institute, 100(10), 752–753.PubMedCrossRef Lusa, L., Peissel, B., Manoukian, S., Marchesi, E., Radice, P., Pierotti, M. A., et al. (2008). Re: Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. Journal of the National Cancer Institute, 100(10), 752–753.PubMedCrossRef
59.
go back to reference Creighton, C. J., Hilger, A. M., Murthy, S., Rae, J. M., Chinnaiyan, A. M., & El-Ashry, D. (2006). Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Research, 66(7), 3903–3911.PubMedCrossRef Creighton, C. J., Hilger, A. M., Murthy, S., Rae, J. M., Chinnaiyan, A. M., & El-Ashry, D. (2006). Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Research, 66(7), 3903–3911.PubMedCrossRef
60.
go back to reference Lopez-Tarruella, S., & Schiff, R. (2007). The dynamics of estrogen receptor status in breast cancer: re-shaping the paradigm. Clinical Cancer Research, 13(23), 6921–6925.PubMedCrossRef Lopez-Tarruella, S., & Schiff, R. (2007). The dynamics of estrogen receptor status in breast cancer: re-shaping the paradigm. Clinical Cancer Research, 13(23), 6921–6925.PubMedCrossRef
61.
go back to reference Bayliss, J., Hilger, A., Vishnu, P., Diehl, K., & El-Ashry, D. (2007). Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clinical Cancer, 13(23), 7029–7036.CrossRef Bayliss, J., Hilger, A., Vishnu, P., Diehl, K., & El-Ashry, D. (2007). Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clinical Cancer, 13(23), 7029–7036.CrossRef
62.
go back to reference Adams, B. D., Furneaux, H., & White, B. A. (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Molecular Endocrinology, 21(5), 1132–1147.PubMedCrossRef Adams, B. D., Furneaux, H., & White, B. A. (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Molecular Endocrinology, 21(5), 1132–1147.PubMedCrossRef
63.
go back to reference Pandey, D. P., & Picard, D. (2009). miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Molecular and Cellular Biology, 29(13), 3783–3790.PubMedCrossRef Pandey, D. P., & Picard, D. (2009). miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Molecular and Cellular Biology, 29(13), 3783–3790.PubMedCrossRef
64.
go back to reference Trabucchi, M., Briata, P., Garcia-Mayoral, M., Haase, A. D., Filipowicz, W., Ramos, A., et al. (2009). The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 459(7249), 1010–1014.PubMedCrossRef Trabucchi, M., Briata, P., Garcia-Mayoral, M., Haase, A. D., Filipowicz, W., Ramos, A., et al. (2009). The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 459(7249), 1010–1014.PubMedCrossRef
65.
go back to reference Horwitz, K. B., & McGuire, W. L. (1978). Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. The Journal of Biological Chemistry, 253(7), 2223–2228.PubMed Horwitz, K. B., & McGuire, W. L. (1978). Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. The Journal of Biological Chemistry, 253(7), 2223–2228.PubMed
66.
go back to reference Cui, X., Zhang, P., Deng, W., Oesterreich, S., Lu, Y., Mills, G. B., et al. (2003). Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Molecular Endocrinology, 17(4), 575–588.PubMedCrossRef Cui, X., Zhang, P., Deng, W., Oesterreich, S., Lu, Y., Mills, G. B., et al. (2003). Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Molecular Endocrinology, 17(4), 575–588.PubMedCrossRef
67.
go back to reference Cormier, E. M., Wolf, M. F., & Jordan, V. C. (1989). Decrease in estradiol-stimulated progesterone receptor production in MCF-7 cells by epidermal growth factor and possible clinical implication for paracrine-regulated breast cancer growth. Cancer Research, 49(3), 576–580.PubMed Cormier, E. M., Wolf, M. F., & Jordan, V. C. (1989). Decrease in estradiol-stimulated progesterone receptor production in MCF-7 cells by epidermal growth factor and possible clinical implication for paracrine-regulated breast cancer growth. Cancer Research, 49(3), 576–580.PubMed
68.
go back to reference McClelland, R. A., Barrow, D., Madden, T. A., Dutkowski, C. M., Pamment, J., Knowlden, J. M., et al. (2001). Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). Endocrinology, 142(7), 2776–2788.PubMedCrossRef McClelland, R. A., Barrow, D., Madden, T. A., Dutkowski, C. M., Pamment, J., Knowlden, J. M., et al. (2001). Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex). Endocrinology, 142(7), 2776–2788.PubMedCrossRef
69.
go back to reference Voskuil, D. W., Bosma, A., Vrieling, A., Rookus, M. A., & van’t Veer, L. J. (2004). Insulin-like growth factor (IGF)-system mRNA quantities in normal and tumor breast tissue of women with sporadic and familial breast cancer risk. Breast Cancer Research and Treatment, 84(3), 225–233.PubMedCrossRef Voskuil, D. W., Bosma, A., Vrieling, A., Rookus, M. A., & van’t Veer, L. J. (2004). Insulin-like growth factor (IGF)-system mRNA quantities in normal and tumor breast tissue of women with sporadic and familial breast cancer risk. Breast Cancer Research and Treatment, 84(3), 225–233.PubMedCrossRef
70.
go back to reference Collins, L. C., Martyniak, A., Kandel, M. J., Stadler, Z. K., Masciari, S., Miron, A., et al. (2009). Basal cytokeratin and epidermal growth factor receptor expression are not predictive of BRCA1 mutation status in women with triple-negative breast cancers. The American Journal of Surgical Pathology, 33(7), 1093–1097.PubMedCrossRef Collins, L. C., Martyniak, A., Kandel, M. J., Stadler, Z. K., Masciari, S., Miron, A., et al. (2009). Basal cytokeratin and epidermal growth factor receptor expression are not predictive of BRCA1 mutation status in women with triple-negative breast cancers. The American Journal of Surgical Pathology, 33(7), 1093–1097.PubMedCrossRef
71.
go back to reference Burga, L. N., Hu, H., Juvekar, A., Tung, N. M., Troyan, S. L., Hofstatter, E. W., et al. (2011). Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast Cancer Research, 13(2), R30.PubMedCrossRef Burga, L. N., Hu, H., Juvekar, A., Tung, N. M., Troyan, S. L., Hofstatter, E. W., et al. (2011). Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast Cancer Research, 13(2), R30.PubMedCrossRef
72.
go back to reference Kageyama, R., Merlino, G. T., & Pastan, I. (1988). Epidermal growth factor (EGF) receptor gene transcription. Requirement for Sp1 and an EGF receptor-specific factor. The Journal of Biological Chemistry, 263(13), 6329–6336.PubMed Kageyama, R., Merlino, G. T., & Pastan, I. (1988). Epidermal growth factor (EGF) receptor gene transcription. Requirement for Sp1 and an EGF receptor-specific factor. The Journal of Biological Chemistry, 263(13), 6329–6336.PubMed
73.
go back to reference Lamber, E. P., Horwitz, A. A., & Parvin, J. D. (2010). BRCA1 represses amphiregulin gene expression. Cancer Research, 70(3), 996–1005.PubMedCrossRef Lamber, E. P., Horwitz, A. A., & Parvin, J. D. (2010). BRCA1 represses amphiregulin gene expression. Cancer Research, 70(3), 996–1005.PubMedCrossRef
74.
go back to reference Willmarth, N. E., & Ethier, S. P. (2006). Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. The Journal of Biological Chemistry, 281(49), 37728–37737.PubMedCrossRef Willmarth, N. E., & Ethier, S. P. (2006). Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. The Journal of Biological Chemistry, 281(49), 37728–37737.PubMedCrossRef
75.
go back to reference Burga, L. N., Tung, N. M., Troyan, S. L., Bostina, M., Konstantinopoulos, P. A., Fountzilas, H., et al. (2009). Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers. Cancer Research, 69(4), 1273–1278.PubMedCrossRef Burga, L. N., Tung, N. M., Troyan, S. L., Bostina, M., Konstantinopoulos, P. A., Fountzilas, H., et al. (2009). Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers. Cancer Research, 69(4), 1273–1278.PubMedCrossRef
76.
go back to reference Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.PubMedCrossRef Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.PubMedCrossRef
77.
go back to reference Hudelist, G., Wagner, T., Rosner, M., Fink-Retter, A., Gschwantler-Kaulich, D., Czerwenka, K., et al. (2007). Intratumoral IGF-I protein expression is selectively upregulated in breast cancer patients with BRCA1/2 mutations. Endocrine-Related Cancer, 14(4), 1053–1062.PubMedCrossRef Hudelist, G., Wagner, T., Rosner, M., Fink-Retter, A., Gschwantler-Kaulich, D., Czerwenka, K., et al. (2007). Intratumoral IGF-I protein expression is selectively upregulated in breast cancer patients with BRCA1/2 mutations. Endocrine-Related Cancer, 14(4), 1053–1062.PubMedCrossRef
78.
go back to reference Maor, S., Yosepovich, A., Papa, M. Z., Yarden, R. I., Mayer, D., Friedman, E., et al. (2007). Elevated insulin-like growth factor-I receptor (IGF-IR) levels in primary breast tumors associated with BRCA1 mutations. Cancer Letters, 257(2), 236–243.PubMedCrossRef Maor, S., Yosepovich, A., Papa, M. Z., Yarden, R. I., Mayer, D., Friedman, E., et al. (2007). Elevated insulin-like growth factor-I receptor (IGF-IR) levels in primary breast tumors associated with BRCA1 mutations. Cancer Letters, 257(2), 236–243.PubMedCrossRef
79.
go back to reference Shukla, V., Coumoul, X., Cao, L., Wang, R. H., Xiao, C., Xu, X., et al. (2006). Absence of the full-length breast cancer-associated gene-1 leads to increased expression of insulin-like growth factor signaling axis members. Cancer Research, 66(14), 7151–7157.PubMedCrossRef Shukla, V., Coumoul, X., Cao, L., Wang, R. H., Xiao, C., Xu, X., et al. (2006). Absence of the full-length breast cancer-associated gene-1 leads to increased expression of insulin-like growth factor signaling axis members. Cancer Research, 66(14), 7151–7157.PubMedCrossRef
80.
go back to reference Sachdev, D. (2008). Regulation of breast cancer metastasis by IGF signaling. Journal of Mammary Gland Biology and Neoplasia, 13(4), 431–441.PubMedCrossRef Sachdev, D. (2008). Regulation of breast cancer metastasis by IGF signaling. Journal of Mammary Gland Biology and Neoplasia, 13(4), 431–441.PubMedCrossRef
81.
go back to reference Creighton, C. J., Casa, A., Lazard, Z., Huang, S., Tsimelzon, A., Hilsenbeck, S. G., et al. (2008). Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. Journal of Clinical Oncology, 26(25), 4078–4085.PubMedCrossRef Creighton, C. J., Casa, A., Lazard, Z., Huang, S., Tsimelzon, A., Hilsenbeck, S. G., et al. (2008). Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. Journal of Clinical Oncology, 26(25), 4078–4085.PubMedCrossRef
82.
go back to reference Dupont, J., Fernandez, A. M., Glackin, C. A., Helman, L., & LeRoith, D. (2001). Insulin-like growth factor 1 (IGF-1)-induced twist expression is involved in the anti-apoptotic effects of the IGF-1 receptor. The Journal of Biological Chemistry, 276(28), 26699–26707.PubMedCrossRef Dupont, J., Fernandez, A. M., Glackin, C. A., Helman, L., & LeRoith, D. (2001). Insulin-like growth factor 1 (IGF-1)-induced twist expression is involved in the anti-apoptotic effects of the IGF-1 receptor. The Journal of Biological Chemistry, 276(28), 26699–26707.PubMedCrossRef
83.
go back to reference Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68(7), 2479–2488.PubMedCrossRef Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68(7), 2479–2488.PubMedCrossRef
84.
go back to reference Palacios, J., Honrado, E., Osorio, A., Cazorla, A., Sarrio, D., Barroso, A., et al. (2003). Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clinical Cancer Research, 9(10 Pt 1), 3606–3614.PubMed Palacios, J., Honrado, E., Osorio, A., Cazorla, A., Sarrio, D., Barroso, A., et al. (2003). Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clinical Cancer Research, 9(10 Pt 1), 3606–3614.PubMed
85.
go back to reference Sarrio, D., Rodriguez-Pinilla, S. M., Hardisson, D., Cano, A., Moreno-Bueno, G., & Palacios, J. (2008). Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Research, 68(4), 989–997.PubMedCrossRef Sarrio, D., Rodriguez-Pinilla, S. M., Hardisson, D., Cano, A., Moreno-Bueno, G., & Palacios, J. (2008). Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Research, 68(4), 989–997.PubMedCrossRef
86.
go back to reference Turashvili, G., McKinney, S. E., Goktepe, O., Leung, S. C., Huntsman, D. G., Gelmon, K. A., et al. (2011). P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Modern Pathology, 24(1), 64–81.PubMedCrossRef Turashvili, G., McKinney, S. E., Goktepe, O., Leung, S. C., Huntsman, D. G., Gelmon, K. A., et al. (2011). P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Modern Pathology, 24(1), 64–81.PubMedCrossRef
87.
go back to reference Gorski, J. J., James, C. R., Quinn, J. E., Stewart, G. E., Staunton, K. C., Buckley, N. E., et al. (2010). BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Research and Treatment, 122(3), 721–731.PubMedCrossRef Gorski, J. J., James, C. R., Quinn, J. E., Stewart, G. E., Staunton, K. C., Buckley, N. E., et al. (2010). BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Research and Treatment, 122(3), 721–731.PubMedCrossRef
88.
go back to reference Arnes, J. B., Brunet, J. S., Stefansson, I., Begin, L. R., Wong, N., Chappuis, P. O., et al. (2005). Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clinical Cancer Research, 11(11), 4003–4011.PubMedCrossRef Arnes, J. B., Brunet, J. S., Stefansson, I., Begin, L. R., Wong, N., Chappuis, P. O., et al. (2005). Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clinical Cancer Research, 11(11), 4003–4011.PubMedCrossRef
89.
go back to reference Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMedCrossRef Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMedCrossRef
90.
go back to reference Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511.PubMedCrossRef Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511.PubMedCrossRef
91.
go back to reference Phillips, T. M., McBride, W. H., & Pajonk, F. (2006). The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute, 98(24), 1777–1785.PubMedCrossRef Phillips, T. M., McBride, W. H., & Pajonk, F. (2006). The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute, 98(24), 1777–1785.PubMedCrossRef
92.
go back to reference Sheridan, C., Kishimoto, H., Fuchs, R. K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C. H., et al. (2006). CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Research, 8(5), R59.PubMedCrossRef Sheridan, C., Kishimoto, H., Fuchs, R. K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C. H., et al. (2006). CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Research, 8(5), R59.PubMedCrossRef
93.
go back to reference Honeth, G., Bendahl, P. O., Ringner, M., Saal, L. H., Gruvberger-Saal, S. K., Lovgren, K., et al. (2008). The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Research, 10(3), R53.PubMedCrossRef Honeth, G., Bendahl, P. O., Ringner, M., Saal, L. H., Gruvberger-Saal, S. K., Lovgren, K., et al. (2008). The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Research, 10(3), R53.PubMedCrossRef
94.
go back to reference Furuta, S., Jiang, X., Gu, B., Cheng, E., Chen, P. L., & Lee, W. H. (2005). Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9176–9181.PubMedCrossRef Furuta, S., Jiang, X., Gu, B., Cheng, E., Chen, P. L., & Lee, W. H. (2005). Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9176–9181.PubMedCrossRef
95.
go back to reference Liu, S., Ginestier, C., Charafe-Jauffret, E., Foco, H., Kleer, C. G., Merajver, S. D., et al. (2008). BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1680–1685.PubMedCrossRef Liu, S., Ginestier, C., Charafe-Jauffret, E., Foco, H., Kleer, C. G., Merajver, S. D., et al. (2008). BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1680–1685.PubMedCrossRef
96.
go back to reference Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913.PubMedCrossRef Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913.PubMedCrossRef
97.
go back to reference Molyneux, G., Geyer, F. C., Magnay, F. A., McCarthy, A., Kendrick, H., Natrajan, R., et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3), 403–417.PubMedCrossRef Molyneux, G., Geyer, F. C., Magnay, F. A., McCarthy, A., Kendrick, H., Natrajan, R., et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3), 403–417.PubMedCrossRef
98.
go back to reference Proia, T. A., Keller, P. J., Gupta, P. B., Klebba, I., Jones, A. D., Sedic, M., et al. (2011). Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell, 8(2), 149–163.PubMedCrossRef Proia, T. A., Keller, P. J., Gupta, P. B., Klebba, I., Jones, A. D., Sedic, M., et al. (2011). Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell, 8(2), 149–163.PubMedCrossRef
99.
go back to reference Niessen, K., Fu, Y., Chang, L., Hoodless, P. A., McFadden, D., & Karsan, A. (2008). Slug is a direct Notch target required for initiation of cardiac cushion cellularization. The Journal of Cell Biology, 182(2), 315–325.PubMedCrossRef Niessen, K., Fu, Y., Chang, L., Hoodless, P. A., McFadden, D., & Karsan, A. (2008). Slug is a direct Notch target required for initiation of cardiac cushion cellularization. The Journal of Cell Biology, 182(2), 315–325.PubMedCrossRef
100.
go back to reference DiMeo, T. A., Anderson, K., Phadke, P., Fan, C., Perou, C. M., Naber, S., et al. (2009). A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Research, 69(13), 5364–5373.PubMedCrossRef DiMeo, T. A., Anderson, K., Phadke, P., Fan, C., Perou, C. M., Naber, S., et al. (2009). A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Research, 69(13), 5364–5373.PubMedCrossRef
101.
go back to reference Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J. X., Shetuni, B., et al. (2010). ERalpha signaling through slug regulates E-cadherin and EMT. Oncogene, 29(10), 1451–1462.PubMedCrossRef Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J. X., Shetuni, B., et al. (2010). ERalpha signaling through slug regulates E-cadherin and EMT. Oncogene, 29(10), 1451–1462.PubMedCrossRef
102.
go back to reference Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRef Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRef
103.
go back to reference Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495.PubMedCrossRef Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495.PubMedCrossRef
104.
go back to reference McKeon, F. (2004). P63 and the epithelial stem cell: more than status quo? Genes & Development, 18(5), 465–469.CrossRef McKeon, F. (2004). P63 and the epithelial stem cell: more than status quo? Genes & Development, 18(5), 465–469.CrossRef
105.
go back to reference Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M. D., Dotsch, V., et al. (1998). P63, a P53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Molecular Cell, 2(3), 305–316.PubMedCrossRef Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M. D., Dotsch, V., et al. (1998). P63, a P53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Molecular Cell, 2(3), 305–316.PubMedCrossRef
106.
go back to reference Murray-Zmijewski, F., Lane, D. P., & Bourdon, J. C. (2006). P53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death and Differentiation, 13(6), 962–972.PubMedCrossRef Murray-Zmijewski, F., Lane, D. P., & Bourdon, J. C. (2006). P53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death and Differentiation, 13(6), 962–972.PubMedCrossRef
107.
go back to reference Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). P63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.PubMedCrossRef Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). P63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.PubMedCrossRef
108.
go back to reference Senoo, M., Pinto, F., Crum, C. P., & McKeon, F. (2007). p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129(3), 523–536.PubMedCrossRef Senoo, M., Pinto, F., Crum, C. P., & McKeon, F. (2007). p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129(3), 523–536.PubMedCrossRef
109.
go back to reference Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.PubMed Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.PubMed
110.
go back to reference Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.PubMedCrossRef Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.PubMedCrossRef
111.
go back to reference DeYoung, M. P., Johannessen, C. M., Leong, C. O., Faquin, W., Rocco, J. W., & Ellisen, L. W. (2006). Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Research, 66(19), 9362–9368.PubMedCrossRef DeYoung, M. P., Johannessen, C. M., Leong, C. O., Faquin, W., Rocco, J. W., & Ellisen, L. W. (2006). Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Research, 66(19), 9362–9368.PubMedCrossRef
112.
go back to reference Ribeiro-Silva, A., Ramalho, L. N., Garcia, S. B., Brandao, D. F., Chahud, F., & Zucoloto, S. (2005). p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas: further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology, 47(5), 458–466.PubMedCrossRef Ribeiro-Silva, A., Ramalho, L. N., Garcia, S. B., Brandao, D. F., Chahud, F., & Zucoloto, S. (2005). p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas: further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology, 47(5), 458–466.PubMedCrossRef
113.
go back to reference Leong, C. O., Vidnovic, N., DeYoung, M. P., Sgroi, D., & Ellisen, L. W. (2007). The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. The Journal of Clinical Investigation, 117(5), 1370–1380.PubMedCrossRef Leong, C. O., Vidnovic, N., DeYoung, M. P., Sgroi, D., & Ellisen, L. W. (2007). The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. The Journal of Clinical Investigation, 117(5), 1370–1380.PubMedCrossRef
114.
go back to reference Buckley, N. E., Conlon, S. J., Jirstrom, K., Kay, E. W., Crawford, N. T., O'Grady, A., et al. (2011). The DeltaNp63 proteins are key allies of BRCA1 in the prevention of basal-like breast cancer. Cancer Research, 71(5), 1933–1944.PubMedCrossRef Buckley, N. E., Conlon, S. J., Jirstrom, K., Kay, E. W., Crawford, N. T., O'Grady, A., et al. (2011). The DeltaNp63 proteins are key allies of BRCA1 in the prevention of basal-like breast cancer. Cancer Research, 71(5), 1933–1944.PubMedCrossRef
115.
go back to reference Nguyen, P. L., Taghian, A. G., Katz, M. S., Niemierko, A., Abi Raad, R. F., Boon, W. L., et al. (2008). Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. Journal of Clinical Oncology, 26(14), 2373–2378.PubMedCrossRef Nguyen, P. L., Taghian, A. G., Katz, M. S., Niemierko, A., Abi Raad, R. F., Boon, W. L., et al. (2008). Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. Journal of Clinical Oncology, 26(14), 2373–2378.PubMedCrossRef
116.
go back to reference Carey, L., Winer, E., Viale, G., Cameron, D., & Gianni, L. (2010). Triple-negative breast cancer: disease entity or title of convenience? Nature Reviews. Clinical Oncology, 7(12), 683–692.PubMedCrossRef Carey, L., Winer, E., Viale, G., Cameron, D., & Gianni, L. (2010). Triple-negative breast cancer: disease entity or title of convenience? Nature Reviews. Clinical Oncology, 7(12), 683–692.PubMedCrossRef
117.
go back to reference Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. The New England Journal of Medicine, 363(20), 1938–1948.PubMedCrossRef Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. The New England Journal of Medicine, 363(20), 1938–1948.PubMedCrossRef
118.
go back to reference Haffty, B. G., & Buchholz, T. A. (2010). Molecular predictors of locoregional recurrence in breast cancer: ready for prime time? Journal of Clinical Oncology, 28(10), 1627–1629.PubMedCrossRef Haffty, B. G., & Buchholz, T. A. (2010). Molecular predictors of locoregional recurrence in breast cancer: ready for prime time? Journal of Clinical Oncology, 28(10), 1627–1629.PubMedCrossRef
119.
go back to reference Lee, E. H., Park, S. K., Park, B., Kim, S. W., Lee, M. H., Ahn, S. H., et al. (2010). Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and meta-analysis. Breast Cancer Research and Treatment, 122(1), 11–25.PubMedCrossRef Lee, E. H., Park, S. K., Park, B., Kim, S. W., Lee, M. H., Ahn, S. H., et al. (2010). Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and meta-analysis. Breast Cancer Research and Treatment, 122(1), 11–25.PubMedCrossRef
120.
go back to reference Lee, L. J., Alexander, B., Schnitt, S. J., Comander, A., Gallagher, B., Garber, J. E., et al. (2011). Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer, 117(14), 3093–3100.PubMedCrossRef Lee, L. J., Alexander, B., Schnitt, S. J., Comander, A., Gallagher, B., Garber, J. E., et al. (2011). Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer, 117(14), 3093–3100.PubMedCrossRef
121.
go back to reference Gonzalez-Angulo, A. M., Timms, K. M., Liu, S., Chen, H., Litton, J. K., Potter, J., et al. (2011). Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clinical Cancer, 17(5), 1082–1089.CrossRef Gonzalez-Angulo, A. M., Timms, K. M., Liu, S., Chen, H., Litton, J. K., Potter, J., et al. (2011). Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clinical Cancer, 17(5), 1082–1089.CrossRef
122.
go back to reference Ben-Porath, I., Thomson, M. W., Carey, V. J., Ge, R., Bell, G. W., Regev, A., et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics, 40(5), 499–507.PubMedCrossRef Ben-Porath, I., Thomson, M. W., Carey, V. J., Ge, R., Bell, G. W., Regev, A., et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics, 40(5), 499–507.PubMedCrossRef
123.
go back to reference Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., & Kasimir-Bauer, S. (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Research, 11(4), R46.PubMedCrossRef Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., & Kasimir-Bauer, S. (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Research, 11(4), R46.PubMedCrossRef
124.
go back to reference Yasmeen, A., Liu, W., Dekhil, H., Kassab, A., Aloyz, R., Foulkes, W. D., et al. (2008). BRCA1 mutations contribute to cell motility and invasion by affecting its main regulators. Cell Cycle, 7(23), 3781–3783.PubMedCrossRef Yasmeen, A., Liu, W., Dekhil, H., Kassab, A., Aloyz, R., Foulkes, W. D., et al. (2008). BRCA1 mutations contribute to cell motility and invasion by affecting its main regulators. Cell Cycle, 7(23), 3781–3783.PubMedCrossRef
125.
go back to reference Promkan, M., Liu, G., Patmasiriwat, P., & Chakrabarty, S. (2009). BRCA1 modulates malignant cell behavior, the expression of survivin and chemosensitivity in human breast cancer cells. International Journal of Cancer, 125(12), 2820–2828.CrossRef Promkan, M., Liu, G., Patmasiriwat, P., & Chakrabarty, S. (2009). BRCA1 modulates malignant cell behavior, the expression of survivin and chemosensitivity in human breast cancer cells. International Journal of Cancer, 125(12), 2820–2828.CrossRef
126.
go back to reference Litzenburger, B. C., Creighton, C. J., Tsimelzon, A., Chan, B. T., Hilsenbeck, S. G., Wang, T., et al. (2011). High IGF-IR activity in triple-negative breast cancer cell lines and tumorgrafts correlates with sensitivity to anti-IGF-IR therapy. Clinical Cancer Research, 17(8), 2314–2327.PubMedCrossRef Litzenburger, B. C., Creighton, C. J., Tsimelzon, A., Chan, B. T., Hilsenbeck, S. G., Wang, T., et al. (2011). High IGF-IR activity in triple-negative breast cancer cell lines and tumorgrafts correlates with sensitivity to anti-IGF-IR therapy. Clinical Cancer Research, 17(8), 2314–2327.PubMedCrossRef
127.
go back to reference Yerushalmi, R., Gelmon, K. A., Leung, S., Gao, D., Cheang, M., Pollak, M., et al. (2011). Insulin-like growth factor receptor (IGF-1R) in breast cancer subtypes. Breast Cancer Research and Treatment, Epub ahead of print. Yerushalmi, R., Gelmon, K. A., Leung, S., Gao, D., Cheang, M., Pollak, M., et al. (2011). Insulin-like growth factor receptor (IGF-1R) in breast cancer subtypes. Breast Cancer Research and Treatment, Epub ahead of print.
128.
go back to reference Montserrat, N., Gallardo, A., Escuin, D., Catasus, L., Prat, J., Gutierrez-Avigno, F. J., et al. (2011). Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal carcinomas of the breast: a cooperative effort? Human Pathology, 42(1), 103–110.PubMedCrossRef Montserrat, N., Gallardo, A., Escuin, D., Catasus, L., Prat, J., Gutierrez-Avigno, F. J., et al. (2011). Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal carcinomas of the breast: a cooperative effort? Human Pathology, 42(1), 103–110.PubMedCrossRef
129.
go back to reference Geradts, J., de Herreros, A. G., Su, Z., Burchette, J., Broadwater, G., & Bachelder, R. E. (2011). Nuclear Snail1 and nuclear ZEB1 protein expression in invasive and intraductal human breast carcinomas. Human Pathology, 42(8), 1125–1131.PubMedCrossRef Geradts, J., de Herreros, A. G., Su, Z., Burchette, J., Broadwater, G., & Bachelder, R. E. (2011). Nuclear Snail1 and nuclear ZEB1 protein expression in invasive and intraductal human breast carcinomas. Human Pathology, 42(8), 1125–1131.PubMedCrossRef
130.
go back to reference Storci, G., Sansone, P., Trere, D., Tavolari, S., Taffurelli, M., Ceccarelli, C., et al. (2008). The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. The Journal of Pathology, 214(1), 25–37.PubMedCrossRef Storci, G., Sansone, P., Trere, D., Tavolari, S., Taffurelli, M., Ceccarelli, C., et al. (2008). The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. The Journal of Pathology, 214(1), 25–37.PubMedCrossRef
131.
go back to reference Park, S. Y., Lee, H. E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clinical Cancer Research, 16(3), 876–887.PubMedCrossRef Park, S. Y., Lee, H. E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clinical Cancer Research, 16(3), 876–887.PubMedCrossRef
132.
go back to reference Richardson, A. L., Wang, Z. C., De Nicolo, A., Lu, X., Brown, M., Miron, A., et al. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell, 9(2), 121–132.PubMedCrossRef Richardson, A. L., Wang, Z. C., De Nicolo, A., Lu, X., Brown, M., Miron, A., et al. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell, 9(2), 121–132.PubMedCrossRef
133.
go back to reference Ganesan, S., Silver, D. P., Greenberg, R. A., Avni, D., Drapkin, R., Miron, A., et al. (2002). BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell, 111(3), 393–405.PubMedCrossRef Ganesan, S., Silver, D. P., Greenberg, R. A., Avni, D., Drapkin, R., Miron, A., et al. (2002). BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell, 111(3), 393–405.PubMedCrossRef
Metadata
Title
BRACking news on triple-negative/basal-like breast cancers: how BRCA1 deficiency may result in the development of a selective tumor subtype
Authors
Manuela Santarosa
Roberta Maestro
Publication date
01-06-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9336-6

Other articles of this Issue 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine