Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

01-06-2009

Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility

Authors: T. Y. Kim, D. Vigil, C. J. Der, R. L. Juliano

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

DLC-1 was originally identified as a potential tumor suppressor. One of the key biochemical functions of DLC-1 is to serve as a GTPase activating protein (GAP) for members of the Rho family of GTPases, particularly Rho A-C and Cdc 42. Since these GTPases are critically involved in regulation of the cytoskeleton and cell migration, it seems clear that DLC-1 will also influence these processes. In this review we examine basic aspects of the actin cyoskeleton and how it relates to cell motility. We then delineate the characteristics of DLC-1 and other members of its family, and describe how they may have multiple effects on the regulation of cell polarity, actin organization, and cell migration.
Literature
1.
go back to reference Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.PubMedCrossRef Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.PubMedCrossRef
3.
go back to reference Vicente-Manzanares, M., Webb, D. J., & Horwitz, A. R. (2005). Cell migration at a glance. Journal of Cell Science, 118(Pt 21), 4917–4919.PubMedCrossRef Vicente-Manzanares, M., Webb, D. J., & Horwitz, A. R. (2005). Cell migration at a glance. Journal of Cell Science, 118(Pt 21), 4917–4919.PubMedCrossRef
4.
go back to reference Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: integrating signals from front to back. Science, 302(5651), 1704–1709.PubMedCrossRef Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: integrating signals from front to back. Science, 302(5651), 1704–1709.PubMedCrossRef
5.
go back to reference Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of Cellular Physiology, 213(3), 565–573.PubMedCrossRef Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of Cellular Physiology, 213(3), 565–573.PubMedCrossRef
6.
go back to reference Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef
7.
go back to reference Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247–269.PubMedCrossRef Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247–269.PubMedCrossRef
8.
go back to reference Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Molecular Medicine, 11(5), 1185–1207.PubMedCrossRef Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Molecular Medicine, 11(5), 1185–1207.PubMedCrossRef
9.
go back to reference Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.PubMedCrossRef Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.PubMedCrossRef
10.
go back to reference Larsen, M., Artym, V. V., Green, J. A., & Yamada, K. M. (2006). The matrix reorganized: extracellular matrix remodeling and integrin signaling. Current Opinion in Cell Biology, 18(5), 463–471.PubMedCrossRef Larsen, M., Artym, V. V., Green, J. A., & Yamada, K. M. (2006). The matrix reorganized: extracellular matrix remodeling and integrin signaling. Current Opinion in Cell Biology, 18(5), 463–471.PubMedCrossRef
11.
go back to reference Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions, 32(Pt3), 416–420.PubMedCrossRef Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions, 32(Pt3), 416–420.PubMedCrossRef
12.
go back to reference Del Pozo, M. A., & Schwartz, M. A. (2007). Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology, 17(5), 246–250.PubMedCrossRef Del Pozo, M. A., & Schwartz, M. A. (2007). Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology, 17(5), 246–250.PubMedCrossRef
13.
go back to reference Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt3), 443–446.PubMedCrossRef Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt3), 443–446.PubMedCrossRef
14.
go back to reference Moissoglu, K., & Schwartz, M. A. (2006). Integrin signalling in directed cell migration. Biology of the Cell, 98(9), 547–555.PubMedCrossRef Moissoglu, K., & Schwartz, M. A. (2006). Integrin signalling in directed cell migration. Biology of the Cell, 98(9), 547–555.PubMedCrossRef
15.
go back to reference Ridley, A. J., & Hall, A. (2004). Snails, Swiss, and serum: the solution for Rac ‘n’ Rho. Cell, 116(2 Suppl), S23–25, 22 p following S25.PubMedCrossRef Ridley, A. J., & Hall, A. (2004). Snails, Swiss, and serum: the solution for Rac ‘n’ Rho. Cell, 116(2 Suppl), S23–25, 22 p following S25.PubMedCrossRef
16.
go back to reference Wennerberg, K., & Der, C. J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). Journal of Cell Science, 117(Pt 8), 1301–1312.PubMedCrossRef Wennerberg, K., & Der, C. J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). Journal of Cell Science, 117(Pt 8), 1301–1312.PubMedCrossRef
17.
18.
go back to reference Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A., & Hahn, K. M. (2004). Activation of endogenous Cdc42 visualized in living cells. Science, 305(5690), 1615–1619.PubMedCrossRef Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A., & Hahn, K. M. (2004). Activation of endogenous Cdc42 visualized in living cells. Science, 305(5690), 1615–1619.PubMedCrossRef
19.
go back to reference Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440(7087), 1069–1072.PubMedCrossRef Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440(7087), 1069–1072.PubMedCrossRef
20.
go back to reference Weaver, A. M., Young, M. E., Lee, W. L., & Cooper, J. A. (2003). Integration of signals to the Arp2/3 complex. Current Opinion in Cell Biology, 15(1), 23–30.PubMedCrossRef Weaver, A. M., Young, M. E., Lee, W. L., & Cooper, J. A. (2003). Integration of signals to the Arp2/3 complex. Current Opinion in Cell Biology, 15(1), 23–30.PubMedCrossRef
21.
go back to reference Bensenor, L. B., Kan, H. M., Wang, N., Wallrabe, H., Davidson, L. A., Cai, Y., et al. (2007). IQGAP1 regulates cell motility by linking growth factor signaling to actin assembly. Journal of Cell Science, 120(Pt 4), 658–669.PubMedCrossRef Bensenor, L. B., Kan, H. M., Wang, N., Wallrabe, H., Davidson, L. A., Cai, Y., et al. (2007). IQGAP1 regulates cell motility by linking growth factor signaling to actin assembly. Journal of Cell Science, 120(Pt 4), 658–669.PubMedCrossRef
22.
go back to reference Huang, T. Y., DerMardirossian, C., & Bokoch, G. M. (2006). Cofilin phosphatases and regulation of actin dynamics. Current Opinion in Cell Biology, 18(1), 26–31.PubMedCrossRef Huang, T. Y., DerMardirossian, C., & Bokoch, G. M. (2006). Cofilin phosphatases and regulation of actin dynamics. Current Opinion in Cell Biology, 18(1), 26–31.PubMedCrossRef
23.
go back to reference Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773(5), 642–652.PubMed Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773(5), 642–652.PubMed
24.
go back to reference Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature Reviews Cancer, 6(6), 459–471.PubMedCrossRef Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature Reviews Cancer, 6(6), 459–471.PubMedCrossRef
25.
go back to reference Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A., & Bear, J. E. (2007). Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell, 128(5), 915–929.PubMedCrossRef Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A., & Bear, J. E. (2007). Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell, 128(5), 915–929.PubMedCrossRef
26.
go back to reference Krause, M., Dent, E. W., Bear, J. E., Loureiro, J. J., & Gertler, F. B. (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annual Review of Cell and Developmental Biology, 19, 541–564.PubMedCrossRef Krause, M., Dent, E. W., Bear, J. E., Loureiro, J. J., & Gertler, F. B. (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annual Review of Cell and Developmental Biology, 19, 541–564.PubMedCrossRef
27.
go back to reference Fukata, Y., Amano, M., & Kaibuchi, K. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends in Pharmacological Sciences, 22(1), 32–39.PubMedCrossRef Fukata, Y., Amano, M., & Kaibuchi, K. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends in Pharmacological Sciences, 22(1), 32–39.PubMedCrossRef
28.
go back to reference Pellegrin, S., & Mellor, H. (2007). Actin stress fibres. Journal of Cell Science, 120(Pt 20), 3491–3499.PubMedCrossRef Pellegrin, S., & Mellor, H. (2007). Actin stress fibres. Journal of Cell Science, 120(Pt 20), 3491–3499.PubMedCrossRef
29.
go back to reference Watanabe, N., & Higashida, C. (2004). Formins: processive cappers of growing actin filaments. Experimental Cell Research, 301(1), 16–22.PubMedCrossRef Watanabe, N., & Higashida, C. (2004). Formins: processive cappers of growing actin filaments. Experimental Cell Research, 301(1), 16–22.PubMedCrossRef
30.
go back to reference Nayal, A., Webb, D. J., Brown, C. M., Schaefer, E. M., Vicente-Manzanares, M., & Horwitz, A. R. (2006). Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. Journal of Cell Biology, 173(4), 587–589.PubMedCrossRef Nayal, A., Webb, D. J., Brown, C. M., Schaefer, E. M., Vicente-Manzanares, M., & Horwitz, A. R. (2006). Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. Journal of Cell Biology, 173(4), 587–589.PubMedCrossRef
31.
go back to reference Nishiya, N., Kiosses, W. B., Han, J., & Ginsberg, M. H. (2005). An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nature Cell Biology, 7(4), 343–352.PubMedCrossRef Nishiya, N., Kiosses, W. B., Han, J., & Ginsberg, M. H. (2005). An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nature Cell Biology, 7(4), 343–352.PubMedCrossRef
32.
go back to reference Dow, L. E., & Humbert, P. O. (2007). Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. International Review of Cytology, 262, 253–302.PubMedCrossRef Dow, L. E., & Humbert, P. O. (2007). Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. International Review of Cytology, 262, 253–302.PubMedCrossRef
33.
go back to reference Myers, K. R., & Casanova, J. E. (2008). Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends in Cell Biology, 18(4), 184–192.PubMedCrossRef Myers, K. R., & Casanova, J. E. (2008). Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends in Cell Biology, 18(4), 184–192.PubMedCrossRef
34.
go back to reference Balasubramanian, N., Scott, D. W., Castle, J. D., Casanova, J. E., & Schwartz, M. A. (2007). Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biology, 9(12), 1381–1391.PubMedCrossRef Balasubramanian, N., Scott, D. W., Castle, J. D., Casanova, J. E., & Schwartz, M. A. (2007). Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biology, 9(12), 1381–1391.PubMedCrossRef
35.
go back to reference Palamidessi, A., Frittoli, E., Garre, M., Faretta, M., Mione, M., Testa, I., et al. (2008). Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell, 134(1), 135–147.PubMedCrossRef Palamidessi, A., Frittoli, E., Garre, M., Faretta, M., Mione, M., Testa, I., et al. (2008). Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell, 134(1), 135–147.PubMedCrossRef
36.
go back to reference Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5), 865–877.PubMedCrossRef Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5), 865–877.PubMedCrossRef
37.
go back to reference Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews. Molecular Cell Biology, 6(2), 167–180.PubMedCrossRef Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews. Molecular Cell Biology, 6(2), 167–180.PubMedCrossRef
38.
go back to reference Bernards, A., & Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends in Cell Biology, 14(7), 377–385.PubMedCrossRef Bernards, A., & Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends in Cell Biology, 14(7), 377–385.PubMedCrossRef
39.
go back to reference Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef
40.
go back to reference Kandpal, R. P. (2006). Rho GTPase activating proteins in cancer phenotypes. Current Protein & Peptide Science, 7(4), 355–365.CrossRef Kandpal, R. P. (2006). Rho GTPase activating proteins in cancer phenotypes. Current Protein & Peptide Science, 7(4), 355–365.CrossRef
41.
go back to reference Chang, J. H., Gill, S., Settleman, J., & Parsons, S. J. (1995). c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. Journal of Cell Biology, 130(2), 355–368.PubMedCrossRef Chang, J. H., Gill, S., Settleman, J., & Parsons, S. J. (1995). c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. Journal of Cell Biology, 130(2), 355–368.PubMedCrossRef
42.
go back to reference Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22(11), 1439–1444.CrossRef Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22(11), 1439–1444.CrossRef
43.
go back to reference Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedCrossRef Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedCrossRef
44.
go back to reference Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.PubMedCrossRef Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.PubMedCrossRef
45.
go back to reference Yuan, B. Z., Jefferson, A. M., Baldwin, K. T., Thorgeirsson, S. S., Popescu, N. C., & Reynolds, S. H. (2004). DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. Oncogene, 23(7), 1405–1411.PubMedCrossRef Yuan, B. Z., Jefferson, A. M., Baldwin, K. T., Thorgeirsson, S. S., Popescu, N. C., & Reynolds, S. H. (2004). DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. Oncogene, 23(7), 1405–1411.PubMedCrossRef
46.
go back to reference Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22(3), 445–450.PubMedCrossRef Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22(3), 445–450.PubMedCrossRef
47.
go back to reference Zhou, X., Thorgeirsson, S. S., & Popescu, N. C. (2004). Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene, 23(6), 1308–1313.PubMedCrossRef Zhou, X., Thorgeirsson, S. S., & Popescu, N. C. (2004). Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene, 23(6), 1308–1313.PubMedCrossRef
48.
go back to reference Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Molecular Carcinogenesis, 47(5), 326–337.PubMedCrossRef Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Molecular Carcinogenesis, 47(5), 326–337.PubMedCrossRef
49.
go back to reference Li, H., Fung, K. L., Jin, D. Y., Chung, S. S., Ching, Y. P., Ng, I. O., et al. (2007). Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins, 67(4), 1154–1166.PubMedCrossRef Li, H., Fung, K. L., Jin, D. Y., Chung, S. S., Ching, Y. P., Ng, I. O., et al. (2007). Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins, 67(4), 1154–1166.PubMedCrossRef
51.
go back to reference Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Journal of Cell Biology, 176(1), 43–49.PubMedCrossRef Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Journal of Cell Biology, 176(1), 43–49.PubMedCrossRef
52.
go back to reference Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012–9017.PubMedCrossRef Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012–9017.PubMedCrossRef
53.
go back to reference Gay, N. J., & Keith, F. J. (1991). Drosophila Toll and IL-1 receptor. Nature, 351(6325), 355–356.PubMedCrossRef Gay, N. J., & Keith, F. J. (1991). Drosophila Toll and IL-1 receptor. Nature, 351(6325), 355–356.PubMedCrossRef
54.
go back to reference Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. International Journal of Oncology, 32(6), 1285–1291.PubMed Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. International Journal of Oncology, 32(6), 1285–1291.PubMed
55.
go back to reference Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef
56.
go back to reference Kim, T. Y., Lee, J. W., Kim, H. P., Jong, H. S., Kim, T. Y., Jung, M., et al. (2007). DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 355(1), 72–77.PubMedCrossRef Kim, T. Y., Lee, J. W., Kim, H. P., Jong, H. S., Kim, T. Y., Jung, M., et al. (2007). DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 355(1), 72–77.PubMedCrossRef
57.
go back to reference Syed, V., Mukherjee, K., Lyons-Weiler, J., Lau, K. M., Mashima, T., Tsuruo, T., et al. (2005). Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene, 24(10), 1774–1787.PubMedCrossRef Syed, V., Mukherjee, K., Lyons-Weiler, J., Lau, K. M., Mashima, T., Tsuruo, T., et al. (2005). Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene, 24(10), 1774–1787.PubMedCrossRef
58.
go back to reference Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Research, 65(19), 8861–8868.PubMedCrossRef Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Research, 65(19), 8861–8868.PubMedCrossRef
59.
go back to reference Euer, N., Schwirzke, M., Evtimova, V., Burtscher, H., Jarsch, M., Tarin, D., et al. (2002). Identification of genes associated with metastasis of mammary carcinoma in metastatic versus non-metastatic cell lines. Anticancer Research, 22(2A), 733–740.PubMed Euer, N., Schwirzke, M., Evtimova, V., Burtscher, H., Jarsch, M., Tarin, D., et al. (2002). Identification of genes associated with metastasis of mammary carcinoma in metastatic versus non-metastatic cell lines. Anticancer Research, 22(2A), 733–740.PubMed
Metadata
Title
Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility
Authors
T. Y. Kim
D. Vigil
C. J. Der
R. L. Juliano
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9167-2

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine