Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2008

01-12-2008 | NON-THEMATIC REVIEW

Caveolin-1 in tumor progression: the good, the bad and the ugly

Authors: Jacky G. Goetz, Patrick Lajoie, Sam M. Wiseman, Ivan R. Nabi

Published in: Cancer and Metastasis Reviews | Issue 4/2008

Login to get access

Abstract

Caveolin-1 (Cav1) is a multifunctional scaffolding protein with multiple binding partners that is associated with cell surface caveolae and the regulation of lipid raft domains. Cav1 regulates multiple cancer-associated processes including cellular transformation, tumor growth, cell migration and metastasis, cell death and survival, multidrug resistance and angiogenesis. However, Cav1 has been reported to impact both positively and negatively on various aspects of tumor progression and while reported to function as a tumor suppressor, it has also been identified as a poor prognostic factor in various human cancers. In this review, we survey the functional roles of Cav1 in cancer and argue that Cav1 function is interdependent on tumor stage and the expression of molecular effectors that impact on its role during tumor progression.
Literature
1.
go back to reference Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMed Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMed
2.
go back to reference Yamada, E. (1955). The fine structure of the gall bladder epithelium of the mouse. Journal of Biophysical and Biochemical Cytology, 1(5), 445–458.PubMedCrossRef Yamada, E. (1955). The fine structure of the gall bladder epithelium of the mouse. Journal of Biophysical and Biochemical Cytology, 1(5), 445–458.PubMedCrossRef
3.
go back to reference Palade, G. E. (1953). Fine structure of blood capillaries. Journal of Applied Physiology, 24, 1424. Palade, G. E. (1953). Fine structure of blood capillaries. Journal of Applied Physiology, 24, 1424.
4.
go back to reference Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., & Anderson, R. G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell, 68(4), 673–82.PubMed Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., & Anderson, R. G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell, 68(4), 673–82.PubMed
5.
go back to reference Kurzchalia, T. V., Dupree, P., Parton, R. G., Kellner, R., Virta, H., Lehnert, M., et al. (1992). VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. Journal of Cell Biology, 118(5), 1003–1014.PubMed Kurzchalia, T. V., Dupree, P., Parton, R. G., Kellner, R., Virta, H., Lehnert, M., et al. (1992). VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. Journal of Cell Biology, 118(5), 1003–1014.PubMed
6.
go back to reference Glenney Jr., J. R., & Soppet, D. (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 89(21), 10517–10521.PubMed Glenney Jr., J. R., & Soppet, D. (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 89(21), 10517–10521.PubMed
7.
go back to reference Williams, T. M., & Lisanti, M. P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. American Journal of Physiology. Cell Physiology, 288(3), C494–506.PubMed Williams, T. M., & Lisanti, M. P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. American Journal of Physiology. Cell Physiology, 288(3), C494–506.PubMed
8.
go back to reference Navarro, A., Anand-Apte, B., & Parat, M.-O. (2004). A role for caveolae in cell migration. ASEB Journal, 18(15), 1801–1811. Navarro, A., Anand-Apte, B., & Parat, M.-O. (2004). A role for caveolae in cell migration. ASEB Journal, 18(15), 1801–1811.
9.
go back to reference Parton, R. G., & Simons, K. (2007). The multiple faces of caveolae. Nature Reviews. Molecular Cell Biology, 8(3), 185–194.PubMed Parton, R. G., & Simons, K. (2007). The multiple faces of caveolae. Nature Reviews. Molecular Cell Biology, 8(3), 185–194.PubMed
10.
go back to reference Koleske, A. J., Baltimore, D., & Lisanti, M. P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1381–1385.PubMed Koleske, A. J., Baltimore, D., & Lisanti, M. P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1381–1385.PubMed
11.
go back to reference Capozza, F., Williams, T. M., Schubert, W., McClain, S., Bouzahzah, B., Sotgia, F., et al. (2003). Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. American Journal of Pathology, 162(6), 2029–2039.PubMed Capozza, F., Williams, T. M., Schubert, W., McClain, S., Bouzahzah, B., Sotgia, F., et al. (2003). Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. American Journal of Pathology, 162(6), 2029–2039.PubMed
12.
go back to reference Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B., & Schnitzer, J. E. (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 16(11), 1391–1397.PubMed Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B., & Schnitzer, J. E. (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 16(11), 1391–1397.PubMed
13.
go back to reference Engelman, J. A., Zhang, X. L., Galbiati, F., & Lisanti, M. P. (1998). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Letters, 429(3), 330–336.PubMed Engelman, J. A., Zhang, X. L., Galbiati, F., & Lisanti, M. P. (1998). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Letters, 429(3), 330–336.PubMed
14.
go back to reference Razani, B., Schlegel, A., Liu, J., & Lisanti, M. P. (2001). Caveolin-1, a putative tumour suppressor gene. Biochemical Society Transactions, 29(Pt 4), 494–499.PubMed Razani, B., Schlegel, A., Liu, J., & Lisanti, M. P. (2001). Caveolin-1, a putative tumour suppressor gene. Biochemical Society Transactions, 29(Pt 4), 494–499.PubMed
15.
go back to reference Patel, H. H., Murray, F., & Insel, P. A. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual Review of Pharmacology and Toxicology, 48, 359–391.PubMed Patel, H. H., Murray, F., & Insel, P. A. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual Review of Pharmacology and Toxicology, 48, 359–391.PubMed
16.
go back to reference Hayashi, K., Matsuda, S., Machida, K., Yamamoto, T., Fukuda, Y., Nimura, Y., et al. (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Research, 61(6), 2361–2364.PubMed Hayashi, K., Matsuda, S., Machida, K., Yamamoto, T., Fukuda, Y., Nimura, Y., et al. (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Research, 61(6), 2361–2364.PubMed
17.
go back to reference Lajoie, P., Partridge, E., Guay, G., Goetz, J. G., Pawling, J., Lagana, A., et al. (2007). Plasma membrane domain organization regulates EGFR signaling in tumor cells. Journal of Cell Biology, 179(2), 341–56.PubMed Lajoie, P., Partridge, E., Guay, G., Goetz, J. G., Pawling, J., Lagana, A., et al. (2007). Plasma membrane domain organization regulates EGFR signaling in tumor cells. Journal of Cell Biology, 179(2), 341–56.PubMed
18.
go back to reference Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., et al. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24(3), 227–35.PubMed Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., et al. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24(3), 227–35.PubMed
19.
go back to reference Liscovitch, M., Burgermeister, E., Jain, N., Ravid, D., Shatz, M., & Tencer, L. (2005). Caveolin and cancer: A complex relationship. In M Mattson (Ed.), Membrane microdomain signaling lipid rafts in biology and medicine (pp. 161–190). Totowa, NJ: Human Press. Liscovitch, M., Burgermeister, E., Jain, N., Ravid, D., Shatz, M., & Tencer, L. (2005). Caveolin and cancer: A complex relationship. In M Mattson (Ed.), Membrane microdomain signaling lipid rafts in biology and medicine (pp. 161–190). Totowa, NJ: Human Press.
20.
go back to reference Fra, A. M., Williamson, E., Simons, K., & Parton, R. G. (1995). De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proceedings of the National Academy of Sciences of the United States of America, 92(19), 8655–8659.PubMed Fra, A. M., Williamson, E., Simons, K., & Parton, R. G. (1995). De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proceedings of the National Academy of Sciences of the United States of America, 92(19), 8655–8659.PubMed
21.
go back to reference Williams, T. M., & Lisanti, M. P. (2004). The Caveolin genes: From cell biology to medicine. Annals of Medicine, 36(8), 584–895.PubMed Williams, T. M., & Lisanti, M. P. (2004). The Caveolin genes: From cell biology to medicine. Annals of Medicine, 36(8), 584–895.PubMed
22.
go back to reference Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., et al. (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. Journal of Biological Chemistry, 272(46), 29337–29346.PubMed Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., et al. (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. Journal of Biological Chemistry, 272(46), 29337–29346.PubMed
23.
go back to reference Razani, B. (2002). Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Molecular and Cellular Biology, 22, 2329–2344.PubMed Razani, B. (2002). Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Molecular and Cellular Biology, 22, 2329–2344.PubMed
24.
go back to reference Lahtinen, U., Honsho, M., Parton, R. G., Simons, K., & Verkade, P. (2003). Involvement of caveolin-2 in caveolar biogenesis in MDCK cells. FEBS Letters, 538(1–3), 85–88.PubMed Lahtinen, U., Honsho, M., Parton, R. G., Simons, K., & Verkade, P. (2003). Involvement of caveolin-2 in caveolar biogenesis in MDCK cells. FEBS Letters, 538(1–3), 85–88.PubMed
25.
go back to reference Way, M., & Parton, R. G. (1995). M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 376(1–2), 108–112.PubMed Way, M., & Parton, R. G. (1995). M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 376(1–2), 108–112.PubMed
26.
go back to reference Silva, W. I., Maldonado, H. M., Lisanti, M. P., Devellis, J., Chompre, G., Mayol, N., et al. (1999). Identification of caveolae and caveolin in C6 glioma cells. International Journal of Developmental Neuroscience, 17(7), 705–714.PubMed Silva, W. I., Maldonado, H. M., Lisanti, M. P., Devellis, J., Chompre, G., Mayol, N., et al. (1999). Identification of caveolae and caveolin in C6 glioma cells. International Journal of Developmental Neuroscience, 17(7), 705–714.PubMed
27.
go back to reference Galbiati, F., Engelman, J. A., Volonte, D., Zhang, X. L., Minetti, C., Li, M., et al. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. Journal of Biological Chemistry, 276(24), 21425–21433.PubMed Galbiati, F., Engelman, J. A., Volonte, D., Zhang, X. L., Minetti, C., Li, M., et al. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. Journal of Biological Chemistry, 276(24), 21425–21433.PubMed
28.
go back to reference Li, S., Seitz, R., & Lisanti, M. P. (1996). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. Journal of Biological Chemistry, 271(7), 3863–3868.PubMed Li, S., Seitz, R., & Lisanti, M. P. (1996). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. Journal of Biological Chemistry, 271(7), 3863–3868.PubMed
29.
go back to reference Glenney Jr., J. R. (1989). Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. Journal of Biological Chemistry, 264(34), 20163–20166.PubMed Glenney Jr., J. R. (1989). Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. Journal of Biological Chemistry, 264(34), 20163–20166.PubMed
30.
go back to reference Sanguinetti, A. R., & Mastick, C. C. (2003). c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cellular Signalling, 15(3), 289–298.PubMed Sanguinetti, A. R., & Mastick, C. C. (2003). c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cellular Signalling, 15(3), 289–298.PubMed
31.
go back to reference Sanguinetti, A. R., Cao, H., & Corley Mastick, C. (2003). Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1. Biochemical Journal, 376(Pt 1), 159–168.PubMed Sanguinetti, A. R., Cao, H., & Corley Mastick, C. (2003). Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1. Biochemical Journal, 376(Pt 1), 159–168.PubMed
32.
go back to reference Schlegel, A., Arvan, P., & Lisanti, M. P. (2001). Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. Journal of Biological Chemistry, 276(6), 4398–4408.PubMed Schlegel, A., Arvan, P., & Lisanti, M. P. (2001). Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. Journal of Biological Chemistry, 276(6), 4398–4408.PubMed
33.
go back to reference Dietzen, D. J., Hastings, W. R., & Lublin, D. M. (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. Journal of Biological Chemistry, 270(12), 6838–6842.PubMed Dietzen, D. J., Hastings, W. R., & Lublin, D. M. (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. Journal of Biological Chemistry, 270(12), 6838–6842.PubMed
34.
go back to reference Monier, S., Dietzen, D. J., Hastings, W. R., Lublin, D. M., & Kurzchalia, T. V. (1996). Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Letters, 388(2–3), 143–149.PubMed Monier, S., Dietzen, D. J., Hastings, W. R., Lublin, D. M., & Kurzchalia, T. V. (1996). Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Letters, 388(2–3), 143–149.PubMed
35.
go back to reference Couet, J., Li, S., Okamoto, T., Ikezu, T., & Lisanti, M. P. (1997). Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. Journal of Biological Chemistry, 272(10), 6525–6533.PubMed Couet, J., Li, S., Okamoto, T., Ikezu, T., & Lisanti, M. P. (1997). Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. Journal of Biological Chemistry, 272(10), 6525–6533.PubMed
36.
go back to reference Garcia-Cardena, G., Martasek, P., Masters, B. S., Skidd, P. M., Couet, J., Li, S., et al. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. Journal of Biological Chemistry, 272(41), 25437–25440.PubMed Garcia-Cardena, G., Martasek, P., Masters, B. S., Skidd, P. M., Couet, J., Li, S., et al. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. Journal of Biological Chemistry, 272(41), 25437–25440.PubMed
37.
go back to reference Li, S., Couet, J., & Lisanti, M. P. (1996). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. Journal of Biological Chemistry, 271(46), 29182–29190.PubMed Li, S., Couet, J., & Lisanti, M. P. (1996). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. Journal of Biological Chemistry, 271(46), 29182–29190.PubMed
38.
go back to reference Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., et al. (1995). Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. Journal of Biological Chemistry, 270(26), 15693–15701.PubMed Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., et al. (1995). Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. Journal of Biological Chemistry, 270(26), 15693–15701.PubMed
39.
go back to reference Ostrom, R. S., & Insel, P. A. (2004). The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. British Journal of Pharmacology, 143(2), 235–245.PubMed Ostrom, R. S., & Insel, P. A. (2004). The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. British Journal of Pharmacology, 143(2), 235–245.PubMed
40.
go back to reference Engelman, J. A., Lee, R. J., Karnezis, A., Bearss, D. J., Webster, M., Siegel, P., et al. (1998). Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. Journal of Biological Chemistry, 273(32), 20448–20455.PubMed Engelman, J. A., Lee, R. J., Karnezis, A., Bearss, D. J., Webster, M., Siegel, P., et al. (1998). Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. Journal of Biological Chemistry, 273(32), 20448–20455.PubMed
41.
go back to reference Engelman, J. A., Wykoff, C. C., Yasuhara, S., Song, K. S., Okamoto, T., & Lisanti, M. P. (1997). Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. Journal of Biological Chemistry, 272(26), 16374–16781.PubMed Engelman, J. A., Wykoff, C. C., Yasuhara, S., Song, K. S., Okamoto, T., & Lisanti, M. P. (1997). Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. Journal of Biological Chemistry, 272(26), 16374–16781.PubMed
42.
go back to reference Zhang, X., Ling, M. T., Wang, Q., Lau, C. K., Leung, S. C., Lee, T. K., et al. (2007). Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. Journal of Biological Chemistry, 282(46), 33284–33294.PubMed Zhang, X., Ling, M. T., Wang, Q., Lau, C. K., Leung, S. C., Lee, T. K., et al. (2007). Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. Journal of Biological Chemistry, 282(46), 33284–33294.PubMed
43.
go back to reference Bernatchez, P. N., Bauer, P. M., Yu, J., Prendergast, J. S., He, P., & Sessa, W. C. (2005). Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 761–766.PubMed Bernatchez, P. N., Bauer, P. M., Yu, J., Prendergast, J. S., He, P., & Sessa, W. C. (2005). Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 761–766.PubMed
44.
go back to reference Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539), 2449–2452.PubMed Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539), 2449–2452.PubMed
45.
go back to reference Fernandez, I., Ying, Y., Albanesi, J., & Anderson, R. G. W. (2002). Mechanism of caveolin filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11193–11198.PubMed Fernandez, I., Ying, Y., Albanesi, J., & Anderson, R. G. W. (2002). Mechanism of caveolin filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11193–11198.PubMed
46.
go back to reference Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A., & Kurzchalia, T. V. (1995). VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular Biology of the Cell, 6(7), 911–927.PubMed Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A., & Kurzchalia, T. V. (1995). VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular Biology of the Cell, 6(7), 911–927.PubMed
47.
go back to reference Thomsen, P., Roepstorff, K., Stahlhut, M., & van Deurs, B. (2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Molecular Biology of the Cell, 13, 238–250.PubMed Thomsen, P., Roepstorff, K., Stahlhut, M., & van Deurs, B. (2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Molecular Biology of the Cell, 13, 238–250.PubMed
48.
go back to reference Tagawa, A., Mezzacasa, A., Hayer, A., Longatti, A., Pelkmans, L., & Helenius, A. (2005). Assembly and trafficking of caveolar domains in the cell: Caveolae as stable, cargo-triggered, vesicular transporters. Journal of Cell Biology, 170(5), 769–779.PubMed Tagawa, A., Mezzacasa, A., Hayer, A., Longatti, A., Pelkmans, L., & Helenius, A. (2005). Assembly and trafficking of caveolar domains in the cell: Caveolae as stable, cargo-triggered, vesicular transporters. Journal of Cell Biology, 170(5), 769–779.PubMed
49.
go back to reference Pol, A., Martin, S., Fernandez, M. A., Ingelmo-Torres, M., Ferguson, C., Enrich, C., et al. (2005). Cholesterol and fatty acids regulate dynamic caveolin trafficking through the golgi complex and between the cell surface and lipid bodies. Molecular Biology of the Cell, 16(4), 2091–2105.PubMed Pol, A., Martin, S., Fernandez, M. A., Ingelmo-Torres, M., Ferguson, C., Enrich, C., et al. (2005). Cholesterol and fatty acids regulate dynamic caveolin trafficking through the golgi complex and between the cell surface and lipid bodies. Molecular Biology of the Cell, 16(4), 2091–2105.PubMed
50.
go back to reference Breuza, L., Corby, S., Arsanto, J. P., Delgrossi, M. H., Scheiffele, P., & Le Bivic, A. (2002). The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. Journal of Cell Science, 115(Pt 23), 4457–4467.PubMed Breuza, L., Corby, S., Arsanto, J. P., Delgrossi, M. H., Scheiffele, P., & Le Bivic, A. (2002). The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. Journal of Cell Science, 115(Pt 23), 4457–4467.PubMed
51.
go back to reference Fernandez, M. A. (2006). Caveolin-1 is essential for liver regeneration. Science, 313, 1628–1632.PubMed Fernandez, M. A. (2006). Caveolin-1 is essential for liver regeneration. Science, 313, 1628–1632.PubMed
52.
go back to reference Drab, M. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in Caveolin-1 gene-disrupted mice. Science, 293, 2449–2452.PubMed Drab, M. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in Caveolin-1 gene-disrupted mice. Science, 293, 2449–2452.PubMed
53.
go back to reference Schubert, W., Frank, P. G., Razani, B., Park, D. S., Chow, C. W., & Lisanti, M. P. (2001). Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. Journal of Biological Chemistry, 276(52), 48619–48622.PubMed Schubert, W., Frank, P. G., Razani, B., Park, D. S., Chow, C. W., & Lisanti, M. P. (2001). Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. Journal of Biological Chemistry, 276(52), 48619–48622.PubMed
54.
go back to reference Anderson, H. A., Chen, Y., & Norkin, L. C. (1996). Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Molecular Biology of the Cell, 7(11), 1825–1834.PubMed Anderson, H. A., Chen, Y., & Norkin, L. C. (1996). Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Molecular Biology of the Cell, 7(11), 1825–1834.PubMed
55.
go back to reference Pelkmans, L., & Helenius, A. (2002). Endocytosis via caveolae. Traffic, 3(5), 311–320.PubMed Pelkmans, L., & Helenius, A. (2002). Endocytosis via caveolae. Traffic, 3(5), 311–320.PubMed
56.
go back to reference Moriyama, T., Marquez, J. P., Wakatsuki, T., & Sorokin, A. (2007). Caveolar endocytosis is critical for BK virus infection of human renal proximal tubular epithelial cells. Journal of Virology, 81(16), 8552–8562.PubMed Moriyama, T., Marquez, J. P., Wakatsuki, T., & Sorokin, A. (2007). Caveolar endocytosis is critical for BK virus infection of human renal proximal tubular epithelial cells. Journal of Virology, 81(16), 8552–8562.PubMed
57.
go back to reference Schnitzer, J. E., Oh, P., & McIntosh, D. P. (1996). Role of GTP hydrolysis in fission of caveolae directly from plasma membranes [published erratum appears in Science 1996 Nov 15;274(5290):1069]. Science, 274(5285), 239–242.PubMed Schnitzer, J. E., Oh, P., & McIntosh, D. P. (1996). Role of GTP hydrolysis in fission of caveolae directly from plasma membranes [published erratum appears in Science 1996 Nov 15;274(5290):1069]. Science, 274(5285), 239–242.PubMed
58.
go back to reference Minshall, R. D., Tiruppathi, C., Vogel, S. M., Niles, W. D., Gilchrist, A., Hamm, H. E., et al. (2000). Endothelial cell-surface gp60 activates vesicle formation and trafficking via Gi-coupled src kinase signaling pathway. Journal of Cell Biology, 150(5), 1057–1070.PubMed Minshall, R. D., Tiruppathi, C., Vogel, S. M., Niles, W. D., Gilchrist, A., Hamm, H. E., et al. (2000). Endothelial cell-surface gp60 activates vesicle formation and trafficking via Gi-coupled src kinase signaling pathway. Journal of Cell Biology, 150(5), 1057–1070.PubMed
59.
go back to reference Parton, R. G., Joggerst, B., & Simons, K. (1994). Regulated internalization of caveolae. Journal of Cell Biology, 127, 1199–1215.PubMed Parton, R. G., Joggerst, B., & Simons, K. (1994). Regulated internalization of caveolae. Journal of Cell Biology, 127, 1199–1215.PubMed
60.
go back to reference Pike, L. J. (2006). Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. Journal of Lipid Research, 47(7), 1597–1598.PubMed Pike, L. J. (2006). Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. Journal of Lipid Research, 47(7), 1597–1598.PubMed
61.
go back to reference Simons, K., & van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27(17), 6197–6202.PubMed Simons, K., & van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27(17), 6197–6202.PubMed
62.
go back to reference Brown, D. (1994). GPI-anchored proteins and detergent-resistant membrane domains. Brazilian Journal of Medical and Biological Research, 27(2), 309–315 (Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica).PubMed Brown, D. (1994). GPI-anchored proteins and detergent-resistant membrane domains. Brazilian Journal of Medical and Biological Research, 27(2), 309–315 (Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica).PubMed
63.
go back to reference Munro, S. (2003). Lipid rafts: Elusive or illusive? Cell, 115(4), 377–388.PubMed Munro, S. (2003). Lipid rafts: Elusive or illusive? Cell, 115(4), 377–388.PubMed
64.
go back to reference Sharma, P., Varma, R., Sarasij, R. C., Ira, , Gousset, K., Krishnamoorthy, G., et al. (2004). Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell, 116(4), 577–589.PubMed Sharma, P., Varma, R., Sarasij, R. C., Ira, , Gousset, K., Krishnamoorthy, G., et al. (2004). Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell, 116(4), 577–589.PubMed
65.
go back to reference Subczynski, W. K., & Kusumi, A. (2003). Dynamics of raft molecules in the cell and artificial membranes: Approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochimica et Biophysica Acta, 1610(2), 231–243.PubMed Subczynski, W. K., & Kusumi, A. (2003). Dynamics of raft molecules in the cell and artificial membranes: Approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochimica et Biophysica Acta, 1610(2), 231–243.PubMed
66.
go back to reference Suzuki, K. G., Fujiwara, T. K., Edidin, M., & Kusumi, A. (2007). Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: Single-molecule tracking study 2. Journal of Cell Biology, 177(4), 731–742.PubMed Suzuki, K. G., Fujiwara, T. K., Edidin, M., & Kusumi, A. (2007). Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: Single-molecule tracking study 2. Journal of Cell Biology, 177(4), 731–742.PubMed
67.
go back to reference Suzuki, K. G., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M., & Kusumi, A. (2007). GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: Single-molecule tracking study 1. Journal of Cell Biology, 177(4), 717–730.PubMed Suzuki, K. G., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M., & Kusumi, A. (2007). GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: Single-molecule tracking study 1. Journal of Cell Biology, 177(4), 717–730.PubMed
68.
go back to reference Parton, R. G., & Hancock, J. F. (2004). Lipid rafts and plasma membrane microorganization: Insights from Ras. Trends in Cell Biology, 14(3), 141–147.PubMed Parton, R. G., & Hancock, J. F. (2004). Lipid rafts and plasma membrane microorganization: Insights from Ras. Trends in Cell Biology, 14(3), 141–147.PubMed
69.
go back to reference Murata, M. (1995). VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 92, 10339–10343.PubMed Murata, M. (1995). VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 92, 10339–10343.PubMed
70.
go back to reference Fielding, C. J., Bist, A., & Fielding, P. E. (1997). Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proceedings of the National Academy of Sciences of the United States of America, 94(8), 3753–3758.PubMed Fielding, C. J., Bist, A., & Fielding, P. E. (1997). Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proceedings of the National Academy of Sciences of the United States of America, 94(8), 3753–3758.PubMed
71.
go back to reference Nabi, I. R., & Le, P. U. (2003). Caveolae/raft-dependent endocytosis. Journal of Cell Biology, 161(4), 673–677.PubMed Nabi, I. R., & Le, P. U. (2003). Caveolae/raft-dependent endocytosis. Journal of Cell Biology, 161(4), 673–677.PubMed
72.
go back to reference Kojic, L., Joshi, B., Lajoie, P., Le, P. U., Leung, S., Cox, M. E., et al. (2007). Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol-3-kinase-dependent in breast carcinoma cells. Journal of Biological Chemistry, 282(40), 29305–29313.PubMed Kojic, L., Joshi, B., Lajoie, P., Le, P. U., Leung, S., Cox, M. E., et al. (2007). Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol-3-kinase-dependent in breast carcinoma cells. Journal of Biological Chemistry, 282(40), 29305–29313.PubMed
73.
go back to reference Le, P. U., Guay, G., Altschuler, Y., & Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. Journal of Biological Chemistry, 277(5), 3371–3379.PubMed Le, P. U., Guay, G., Altschuler, Y., & Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. Journal of Biological Chemistry, 277(5), 3371–3379.PubMed
74.
go back to reference Sharma, D. K., Brown, J. C., Choudhury, A., Peterson, T. E., Holicky, E., Marks, D. L., et al. (2004). Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Molecular Biology of the Cell, 15(7), 3114–3122.PubMed Sharma, D. K., Brown, J. C., Choudhury, A., Peterson, T. E., Holicky, E., Marks, D. L., et al. (2004). Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Molecular Biology of the Cell, 15(7), 3114–3122.PubMed
75.
go back to reference Hernandez-Deviez, D. J., Howes, M. T., Laval, S. H., Bushby, K., Hancock, J. F., & Parton, R. G. (2007). Caveolin regulates endocytosis of the muscle repair protein, dysferlin. Journal of Biological Chemistry, 283(10), 6476–6488.PubMed Hernandez-Deviez, D. J., Howes, M. T., Laval, S. H., Bushby, K., Hancock, J. F., & Parton, R. G. (2007). Caveolin regulates endocytosis of the muscle repair protein, dysferlin. Journal of Biological Chemistry, 283(10), 6476–6488.PubMed
76.
go back to reference Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., et al. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132(1), 113–124.PubMed Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., et al. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132(1), 113–124.PubMed
77.
go back to reference Liu, L., & Pilch, P. F. (2008). A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. Journal of Biological Chemistry, 283(7), 4314–4322.PubMed Liu, L., & Pilch, P. F. (2008). A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. Journal of Biological Chemistry, 283(7), 4314–4322.PubMed
78.
go back to reference Head, B. P., & Insel, P. A. (2007). Do caveolins regulate cells by actions outside of caveolae? Trends in Cell Biology, 17(2), 51–57.PubMed Head, B. P., & Insel, P. A. (2007). Do caveolins regulate cells by actions outside of caveolae? Trends in Cell Biology, 17(2), 51–57.PubMed
79.
go back to reference Li, W. P., Liu, P., Pilcher, B. K., & Anderson, R. G. (2001). Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. Journal of Cell Science, 114(Pt 7), 1397–1408.PubMed Li, W. P., Liu, P., Pilcher, B. K., & Anderson, R. G. (2001). Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. Journal of Cell Science, 114(Pt 7), 1397–1408.PubMed
80.
go back to reference Uittenbogaard, A., Ying, Y., & Smart, E. J. (1998). Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. Journal of Biological Chemistry, 273(11), 6525–6532.PubMed Uittenbogaard, A., Ying, Y., & Smart, E. J. (1998). Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. Journal of Biological Chemistry, 273(11), 6525–6532.PubMed
81.
go back to reference Liu, P., Li, W. P., Machleidt, T., & Anderson, R. G. (1999). Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biology, 1(6), 369–375.PubMed Liu, P., Li, W. P., Machleidt, T., & Anderson, R. G. (1999). Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biology, 1(6), 369–375.PubMed
82.
go back to reference Sanna, E., Miotti, S., Mazzi, M., De Santis, G., Canevari, S., & Tomassetti, A. (2007). Binding of nuclear caveolin-1 to promoter elements of growth-associated genes in ovarian carcinoma cells. Experimental Cell Research, 313(7), 1307–1317.PubMed Sanna, E., Miotti, S., Mazzi, M., De Santis, G., Canevari, S., & Tomassetti, A. (2007). Binding of nuclear caveolin-1 to promoter elements of growth-associated genes in ovarian carcinoma cells. Experimental Cell Research, 313(7), 1307–1317.PubMed
83.
go back to reference Feng, Y., Venema, V. J., Venema, R. C., Tsai, N., & Caldwell, R. B. (1999). VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochemical and Biophysical Research Communications, 256(1), 192–197.PubMed Feng, Y., Venema, V. J., Venema, R. C., Tsai, N., & Caldwell, R. B. (1999). VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochemical and Biophysical Research Communications, 256(1), 192–197.PubMed
84.
go back to reference Pelkmans, L., Burli, T., Zerial, M., & Helenius, A. (2004). Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell, 118(6), 767–780.PubMed Pelkmans, L., Burli, T., Zerial, M., & Helenius, A. (2004). Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell, 118(6), 767–780.PubMed
85.
go back to reference Lee, H., Volonte, D., Galbiati, F., Iyengar, P., Lublin, D. M., Bregman, D. B., et al. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Molecular Endocrinology, 14(11), 1750–1775.PubMed Lee, H., Volonte, D., Galbiati, F., Iyengar, P., Lublin, D. M., Bregman, D. B., et al. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Molecular Endocrinology, 14(11), 1750–1775.PubMed
86.
go back to reference Beardsley, A., Fang, K., Mertz, H., Castranova, V., Friend, S., & Liu, J. (2005). Loss of Caveolin-1 polarity impedes endothelial cell polarization and directional movement. Journal of Biological Chemistry, 280(5), 3541–3547.PubMed Beardsley, A., Fang, K., Mertz, H., Castranova, V., Friend, S., & Liu, J. (2005). Loss of Caveolin-1 polarity impedes endothelial cell polarization and directional movement. Journal of Biological Chemistry, 280(5), 3541–3547.PubMed
87.
go back to reference Hill, M. M., Scherbakov, N., Schiefermeier, N., Baran, J., Hancock, J. F., Huber, L.A., et al. (2007). Reassessing the role of phosphocaveolin-1 in cell adhesion and migration. Traffic, 8, 1695–1705.PubMed Hill, M. M., Scherbakov, N., Schiefermeier, N., Baran, J., Hancock, J. F., Huber, L.A., et al. (2007). Reassessing the role of phosphocaveolin-1 in cell adhesion and migration. Traffic, 8, 1695–1705.PubMed
88.
go back to reference del Pozo, M. A., Balasubramanian, N., Alderson, N. B., Kiosses, W. B., Grande-Garcia, A., Anderson, R. G., et al. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology, 7(9), 901–908.PubMed del Pozo, M. A., Balasubramanian, N., Alderson, N. B., Kiosses, W. B., Grande-Garcia, A., Anderson, R. G., et al. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology, 7(9), 901–908.PubMed
89.
go back to reference Radel, C., & Rizzo, V. (2005). Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. American Journal of Physiology, Heart and Circulatory Physiology, 288(2), H936–945. Radel, C., & Rizzo, V. (2005). Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. American Journal of Physiology, Heart and Circulatory Physiology, 288(2), H936–945.
90.
go back to reference Wei, Y., Yang, X., Liu, Q., Wilkins, J. A., & Chapman, H. A. (1999). A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. Journal of Cell Biology, 144(6), 1285–1294.PubMed Wei, Y., Yang, X., Liu, Q., Wilkins, J. A., & Chapman, H. A. (1999). A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. Journal of Cell Biology, 144(6), 1285–1294.PubMed
91.
go back to reference Gaus, K., Le Lay, S., Balasubramanian, N., & Schwartz, M. A. (2006). Integrin-mediated adhesion regulates membrane order. Journal of Cell Biology, 174(5), 725–734.PubMed Gaus, K., Le Lay, S., Balasubramanian, N., & Schwartz, M. A. (2006). Integrin-mediated adhesion regulates membrane order. Journal of Cell Biology, 174(5), 725–734.PubMed
92.
go back to reference Goetz, J., Joshi, B., Lajoie, P., Strugnell, S., Scudamore, T., Kojic, L., et al. (2008). Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine phosphorylated caveolin-1. Journal of Cell Biology, 180(6), 1261–1275.PubMed Goetz, J., Joshi, B., Lajoie, P., Strugnell, S., Scudamore, T., Kojic, L., et al. (2008). Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine phosphorylated caveolin-1. Journal of Cell Biology, 180(6), 1261–1275.PubMed
93.
go back to reference Mettouchi, A., Klein, S., Guo, W., Lopez-Lago, M., Lemichez, E., Westwick, J. K., et al. (2001). Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Molecular Cell, 8(1), 115–127.PubMed Mettouchi, A., Klein, S., Guo, W., Lopez-Lago, M., Lemichez, E., Westwick, J. K., et al. (2001). Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Molecular Cell, 8(1), 115–127.PubMed
94.
go back to reference Wary, K. K., Mariotti, A., Zurzolo, C., & Giancotti, F. G. (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell, 94(5), 625–634.PubMed Wary, K. K., Mariotti, A., Zurzolo, C., & Giancotti, F. G. (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell, 94(5), 625–634.PubMed
95.
go back to reference Scherer, P. E., Lisanti, M. P., Baldini, G., Sargiacomo, M., Mastick, C. C., & Lodish, H. F. (1994). Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. Journal of Cell Biology, 127(5), 1233–1243.PubMed Scherer, P. E., Lisanti, M. P., Baldini, G., Sargiacomo, M., Mastick, C. C., & Lodish, H. F. (1994). Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. Journal of Cell Biology, 127(5), 1233–1243.PubMed
96.
go back to reference Mikol, D. D., Hong, H. L., Cheng, H. L., & Feldman, E. L. (1999). Caveolin-1 expression in Schwann cells. Glia, 27(1), 39–52.PubMed Mikol, D. D., Hong, H. L., Cheng, H. L., & Feldman, E. L. (1999). Caveolin-1 expression in Schwann cells. Glia, 27(1), 39–52.PubMed
97.
go back to reference Hagiwara, Y., Nishina, Y., Yorifuji, H., & Kikuchi, T. (2002). Immunolocalization of caveolin-1 and caveolin-3 in monkey skeletal, cardiac and uterine smooth muscles. Cell Structure and Function, 27(5), 375–382.PubMed Hagiwara, Y., Nishina, Y., Yorifuji, H., & Kikuchi, T. (2002). Immunolocalization of caveolin-1 and caveolin-3 in monkey skeletal, cardiac and uterine smooth muscles. Cell Structure and Function, 27(5), 375–382.PubMed
98.
go back to reference Kandror, K. V., Stephens, J. M., & Pilch, P. F. (1995). Expression and compartmentalization of caveolin in adipose cells: Coordinate regulation with and structural segregation from GLUT4. Journal of Cell Biology, 129(4), 999–1006.PubMed Kandror, K. V., Stephens, J. M., & Pilch, P. F. (1995). Expression and compartmentalization of caveolin in adipose cells: Coordinate regulation with and structural segregation from GLUT4. Journal of Cell Biology, 129(4), 999–1006.PubMed
99.
go back to reference Campbell, L., Hollins, A. J., Al-Eid, A., Newman, G. R., von Ruhland, C., & Gumbleton, M. (1999). Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochemical and Biophysical Research Communications, 262(3), 744–751.PubMed Campbell, L., Hollins, A. J., Al-Eid, A., Newman, G. R., von Ruhland, C., & Gumbleton, M. (1999). Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochemical and Biophysical Research Communications, 262(3), 744–751.PubMed
100.
go back to reference Schwab, W., Galbiati, F., Volonte, D., Hempel, U., Wenzel, K. W., Funk, R. H., et al. (1999). Characterisation of caveolins from cartilage: Expression of caveolin-1, -2 and -3 in chondrocytes and in alginate cell culture of the rat tibia. Histochemistry and Cell Biology, 112(1), 41–49.PubMed Schwab, W., Galbiati, F., Volonte, D., Hempel, U., Wenzel, K. W., Funk, R. H., et al. (1999). Characterisation of caveolins from cartilage: Expression of caveolin-1, -2 and -3 in chondrocytes and in alginate cell culture of the rat tibia. Histochemistry and Cell Biology, 112(1), 41–49.PubMed
101.
go back to reference Fiucci, G., Ravid, D., Reich, R., & Liscovitch, M. (2002). Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene, 21(15), 2365–2375.PubMed Fiucci, G., Ravid, D., Reich, R., & Liscovitch, M. (2002). Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene, 21(15), 2365–2375.PubMed
102.
go back to reference Suzuki, T., Suzuki, Y., Hanada, K., Hashimoto, A., Redpath, J. L., Stanbridge, E. J., et al. (1998). Reduction of caveolin-1 expression in tumorigenic human cell hybrids. Journal of Biochemistry (Tokyo), 124(2), 383–388. Suzuki, T., Suzuki, Y., Hanada, K., Hashimoto, A., Redpath, J. L., Stanbridge, E. J., et al. (1998). Reduction of caveolin-1 expression in tumorigenic human cell hybrids. Journal of Biochemistry (Tokyo), 124(2), 383–388.
103.
go back to reference Razani, B., Altschuler, Y., Zhu, L., Pestell, R. G., Mostov, K. E., & Lisanti, M. P. (2000). Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry, 39(45), 13916–13924.PubMed Razani, B., Altschuler, Y., Zhu, L., Pestell, R. G., Mostov, K. E., & Lisanti, M. P. (2000). Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry, 39(45), 13916–13924.PubMed
104.
go back to reference Park, D. S., Razani, B., Lasorella, A., Schreiber-Agus, N., Pestell, R. G., Iavarone, A., et al. (2001). Evidence that Myc isoforms transcriptionally repress caveolin-1 gene expression via an INR-dependent mechanism. Biochemistry, 40(11), 3354–3362.PubMed Park, D. S., Razani, B., Lasorella, A., Schreiber-Agus, N., Pestell, R. G., Iavarone, A., et al. (2001). Evidence that Myc isoforms transcriptionally repress caveolin-1 gene expression via an INR-dependent mechanism. Biochemistry, 40(11), 3354–3362.PubMed
105.
go back to reference Galbiati, F., Volonte, D., Engelman, J. A., Watanabe, G., Burk, R., Pestell, R. G., et al. (1998). Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO Journal, 17(22), 6633–6648.PubMed Galbiati, F., Volonte, D., Engelman, J. A., Watanabe, G., Burk, R., Pestell, R. G., et al. (1998). Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO Journal, 17(22), 6633–6648.PubMed
106.
go back to reference Sasai, K., Kakumoto, K., Hanafusa, H., & Akagi, T. (2007). The Ras-MAPK pathway downregulates caveolin-1 in rodent fibroblast but not in human fibroblasts: Implications in the resistance to oncogene-mediated transformation. Oncogene, 26(3), 449–455.PubMed Sasai, K., Kakumoto, K., Hanafusa, H., & Akagi, T. (2007). The Ras-MAPK pathway downregulates caveolin-1 in rodent fibroblast but not in human fibroblasts: Implications in the resistance to oncogene-mediated transformation. Oncogene, 26(3), 449–455.PubMed
107.
go back to reference Tirado, O. M., Mateo-Lozano, S., Villar, J., Dettin, L. E., Llort, A., Gallego, S., et al. (2006). Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing’s sarcoma cells. Cancer Research, 66(20), 9937–9947.PubMed Tirado, O. M., Mateo-Lozano, S., Villar, J., Dettin, L. E., Llort, A., Gallego, S., et al. (2006). Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing’s sarcoma cells. Cancer Research, 66(20), 9937–9947.PubMed
108.
go back to reference Cantiani, L., Manara, M. C., Zucchini, C., De Sanctis, P., Zuntini, M., Valvassori, L., et al. (2007). Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Research, 67(16), 7675–7685.PubMed Cantiani, L., Manara, M. C., Zucchini, C., De Sanctis, P., Zuntini, M., Valvassori, L., et al. (2007). Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Research, 67(16), 7675–7685.PubMed
109.
go back to reference Zou, W., McDaneld, L., & Smith, L. M. (2003). Caveolin-1 haploinsufficiency leads to partial transformation of human breast epithelial cells. Anticancer Research, 23(6C), 4581–4586.PubMed Zou, W., McDaneld, L., & Smith, L. M. (2003). Caveolin-1 haploinsufficiency leads to partial transformation of human breast epithelial cells. Anticancer Research, 23(6C), 4581–4586.PubMed
110.
go back to reference Zhang, X., Shen, P., Coleman, M., Zou, W., Loggie, B. W., Smith, L. M., et al. (2005). Caveolin-1 down-regulation activates estrogen receptor alpha expression and leads to 17beta-estradiol-stimulated mammary tumorigenesis. Anticancer Research, 25(1A), 369–375.PubMed Zhang, X., Shen, P., Coleman, M., Zou, W., Loggie, B. W., Smith, L. M., et al. (2005). Caveolin-1 down-regulation activates estrogen receptor alpha expression and leads to 17beta-estradiol-stimulated mammary tumorigenesis. Anticancer Research, 25(1A), 369–375.PubMed
111.
go back to reference Williams, T. M., Lee, H., Cheung, M. W., Cohen, A. W., Razani, B., Iyengar, P., et al. (2004). Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis: Role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. Journal of Biological Chemistry, 279(23), 24745–24756.PubMed Williams, T. M., Lee, H., Cheung, M. W., Cohen, A. W., Razani, B., Iyengar, P., et al. (2004). Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis: Role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. Journal of Biological Chemistry, 279(23), 24745–24756.PubMed
112.
go back to reference Williams, T. M., Cheung, M. W., Park, D. S., Razani, B., Cohen, A. W., Muller, W. J., et al. (2003). Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Molecular Biology of the Cell, 14(3), 1027–1042.PubMed Williams, T. M., Cheung, M. W., Park, D. S., Razani, B., Cohen, A. W., Muller, W. J., et al. (2003). Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Molecular Biology of the Cell, 14(3), 1027–1042.PubMed
113.
go back to reference Williams, T. M., Medina, F., Badano, I., Hazan, R. B., Hutchinson, J., Muller, W. J., et al. (2004). Caveolin-1 gene disruption promotes mammary tumorigenesis and |dramatically enhances lung metastasis in vivo: Role of cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. Journal of Biological Chemistry, 279(49), 51630–51646.PubMed Williams, T. M., Medina, F., Badano, I., Hazan, R. B., Hutchinson, J., Muller, W. J., et al. (2004). Caveolin-1 gene disruption promotes mammary tumorigenesis and |dramatically enhances lung metastasis in vivo: Role of cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. Journal of Biological Chemistry, 279(49), 51630–51646.PubMed
114.
go back to reference Lee, H., Park, D. S., Razani, B., Russell, R. G., Pestell, R. G., & Lisanti, M. P. (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: Caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. American Journal of Pathology, 161(4), 1357–1369.PubMed Lee, H., Park, D. S., Razani, B., Russell, R. G., Pestell, R. G., & Lisanti, M. P. (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: Caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. American Journal of Pathology, 161(4), 1357–1369.PubMed
115.
go back to reference Sotgia, F., Williams, T. M., Schubert, W., Medina, F., Minetti, C., Pestell, R. G., et al. (2006). Caveolin-1 deficiency (−/−) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. American Journal of Pathology, 168(1), 292–309.PubMed Sotgia, F., Williams, T. M., Schubert, W., Medina, F., Minetti, C., Pestell, R. G., et al. (2006). Caveolin-1 deficiency (−/−) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. American Journal of Pathology, 168(1), 292–309.PubMed
116.
go back to reference Sotgia, F., Schubert, W., Pestell, R. G., & Lisanti, M. P. (2006). Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biology & Therapy, 5(3), 292–297. Sotgia, F., Schubert, W., Pestell, R. G., & Lisanti, M. P. (2006). Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biology & Therapy, 5(3), 292–297.
117.
go back to reference Sloan, E. K., Stanley, K. L., & Anderson, R. L. (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene, 23(47), 7893–7897.PubMed Sloan, E. K., Stanley, K. L., & Anderson, R. L. (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene, 23(47), 7893–7897.PubMed
118.
go back to reference Hurlstone, A. F., Reid, G., Reeves, J. R., Fraser, J., Strathdee, G., Rahilly, M., et al. (1999). Analysis of the CAVEOLIN-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene, 18(10), 1881–1890.PubMed Hurlstone, A. F., Reid, G., Reeves, J. R., Fraser, J., Strathdee, G., Rahilly, M., et al. (1999). Analysis of the CAVEOLIN-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene, 18(10), 1881–1890.PubMed
119.
go back to reference Li, T., Sotgia, F., Vuolo, M. A., Li, M., Yang, W. C., Pestell, R. G., et al. (2006). Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. American Journal of Pathology, 168(6), 1998–2013.PubMed Li, T., Sotgia, F., Vuolo, M. A., Li, M., Yang, W. C., Pestell, R. G., et al. (2006). Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. American Journal of Pathology, 168(6), 1998–2013.PubMed
120.
go back to reference Han, S. E., Park, K. H., Lee, G., Huh, Y. J., & Min, B. M. (2004). Mutation and aberrant expression of Caveolin-1 in human oral squamous cell carcinomas and oral cancer cell lines. International Journal of Oncology, 24(2), 435–440.PubMed Han, S. E., Park, K. H., Lee, G., Huh, Y. J., & Min, B. M. (2004). Mutation and aberrant expression of Caveolin-1 in human oral squamous cell carcinomas and oral cancer cell lines. International Journal of Oncology, 24(2), 435–440.PubMed
121.
go back to reference Haeusler, J., Hoegel, J., Bachmann, N., Herkommer, K., Paiss, T., Vogel, W., et al. (2005). Association of a CAV-1 haplotype to familial aggressive prostate cancer. The Prostate, 65(2), 171–177.PubMed Haeusler, J., Hoegel, J., Bachmann, N., Herkommer, K., Paiss, T., Vogel, W., et al. (2005). Association of a CAV-1 haplotype to familial aggressive prostate cancer. The Prostate, 65(2), 171–177.PubMed
122.
go back to reference Cui, J., Rohr, L. R., Swanson, G., Speights, V. O., Maxwell, T., & Brothman, A. R. (2001). Hypermethylation of the caveolin-1 gene promoter in prostate cancer. The Prostate, 46(3), 249–256.PubMed Cui, J., Rohr, L. R., Swanson, G., Speights, V. O., Maxwell, T., & Brothman, A. R. (2001). Hypermethylation of the caveolin-1 gene promoter in prostate cancer. The Prostate, 46(3), 249–256.PubMed
123.
go back to reference Williams, T. M., Hassan, G. S., Li, J., Cohen, A. W., Medina, F., Frank, P. G., et al. (2005). Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: Genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. Journal of Biological Chemistry, 280(26), 25134–25145.PubMed Williams, T. M., Hassan, G. S., Li, J., Cohen, A. W., Medina, F., Frank, P. G., et al. (2005). Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: Genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. Journal of Biological Chemistry, 280(26), 25134–25145.PubMed
124.
go back to reference Nasu, Y., Timme, T. L., Yang, G., Bangma, C. H., Li, L., Ren, C., et al. (1998). Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nature Medicine, 4(9), 1062–1064.PubMed Nasu, Y., Timme, T. L., Yang, G., Bangma, C. H., Li, L., Ren, C., et al. (1998). Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nature Medicine, 4(9), 1062–1064.PubMed
125.
go back to reference Li, L., Yang, G., Ebara, S., Satoh, T., Nasu, Y., Timme, T. L., et al. (2001). Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Research, 61(11), 4386–4392.PubMed Li, L., Yang, G., Ebara, S., Satoh, T., Nasu, Y., Timme, T. L., et al. (2001). Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Research, 61(11), 4386–4392.PubMed
126.
go back to reference Satoh, T., Yang, G., Egawa, S., Addai, J., Frolov, A., Kuwao, S., et al. (2003). Caveolin-1 expression is a predictor of recurrence-free survival in pT2N0 prostate carcinoma diagnosed in Japanese patients. Cancer, 97(5), 1225–1233.PubMed Satoh, T., Yang, G., Egawa, S., Addai, J., Frolov, A., Kuwao, S., et al. (2003). Caveolin-1 expression is a predictor of recurrence-free survival in pT2N0 prostate carcinoma diagnosed in Japanese patients. Cancer, 97(5), 1225–1233.PubMed
127.
go back to reference Yang, G., Truong, L. D., Wheeler, T. M., & Thompson, T. C. (1999). Caveolin-1 expression in clinically confined human prostate cancer: A novel prognostic marker. Cancer Research, 59(22), 5719–5723.PubMed Yang, G., Truong, L. D., Wheeler, T. M., & Thompson, T. C. (1999). Caveolin-1 expression in clinically confined human prostate cancer: A novel prognostic marker. Cancer Research, 59(22), 5719–5723.PubMed
128.
go back to reference Suzuoki, M., Miyamoto, M., Kato, K., Hiraoka, K., Oshikiri, T., Nakakubo, Y., et al. (2002). Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. British Journal of Cancer, 87(10), 1140–1144.PubMed Suzuoki, M., Miyamoto, M., Kato, K., Hiraoka, K., Oshikiri, T., Nakakubo, Y., et al. (2002). Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. British Journal of Cancer, 87(10), 1140–1144.PubMed
129.
go back to reference Ando, T., Ishiguro, H., Kimura, M., Mitsui, A., Mori, Y., Sugito, N., et al. (2007). The overexpression of caveolin-1 and caveolin-2 correlates with a poor prognosis and tumor progression in esophageal squamous cell carcinoma. Oncology Reports, 18(3), 601–609.PubMed Ando, T., Ishiguro, H., Kimura, M., Mitsui, A., Mori, Y., Sugito, N., et al. (2007). The overexpression of caveolin-1 and caveolin-2 correlates with a poor prognosis and tumor progression in esophageal squamous cell carcinoma. Oncology Reports, 18(3), 601–609.PubMed
130.
go back to reference Kato, K., Hida, Y., Miyamoto, M., Hashida, H., Shinohara, T., Itoh, T., et al. (2002). Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer, 94(4), 929–933.PubMed Kato, K., Hida, Y., Miyamoto, M., Hashida, H., Shinohara, T., Itoh, T., et al. (2002). Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer, 94(4), 929–933.PubMed
131.
go back to reference Joshi, B., Strugnell, S., Goetz, J., Kojic, L., Cox, M., Wiseman, S., et al. (2008). Rho/ROCK signaling acts via phospho-caveolin-1 to regulate focal adhesion dynamics and tumor cell migration. Cancer Research, (in press). Joshi, B., Strugnell, S., Goetz, J., Kojic, L., Cox, M., Wiseman, S., et al. (2008). Rho/ROCK signaling acts via phospho-caveolin-1 to regulate focal adhesion dynamics and tumor cell migration. Cancer Research, (in press).
132.
go back to reference Pinilla, S. M., Honrado, E., Hardisson, D., Benitez, J., & Palacios, J. (2006). Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Research and Treatment, 99(1), 85–90.PubMed Pinilla, S. M., Honrado, E., Hardisson, D., Benitez, J., & Palacios, J. (2006). Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Research and Treatment, 99(1), 85–90.PubMed
133.
go back to reference Savage, K., Lambros, M. B., Robertson, D., Jones, R. L., Jones, C., Mackay, A., et al. (2007). Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: A morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clinical Cancer Research, 13(1), 90–101.PubMed Savage, K., Lambros, M. B., Robertson, D., Jones, R. L., Jones, C., Mackay, A., et al. (2007). Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: A morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clinical Cancer Research, 13(1), 90–101.PubMed
134.
go back to reference Joo, H. J., Oh, D. K., Kim, Y. S., Lee, K. B., & Kim, S. J. (2004). Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU International, 93(3), 291–296.PubMed Joo, H. J., Oh, D. K., Kim, Y. S., Lee, K. B., & Kim, S. J. (2004). Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU International, 93(3), 291–296.PubMed
135.
go back to reference Phuoc, N. B., Ehara, H., Gotoh, T., Nakano, M., Yokoi, S., Deguchi, T., et al. (2007). Immunohistochemical analysis with multiple antibodies in search of prognostic markers for clear cell renal cell carcinoma. Urology, 69(5), 843–848.PubMed Phuoc, N. B., Ehara, H., Gotoh, T., Nakano, M., Yokoi, S., Deguchi, T., et al. (2007). Immunohistochemical analysis with multiple antibodies in search of prognostic markers for clear cell renal cell carcinoma. Urology, 69(5), 843–848.PubMed
136.
go back to reference Campbell, L., Gumbleton, M., & Griffiths, D. F. (2003). Caveolin-1 overexpression predicts poor disease-free survival of patients with clinically confined renal cell carcinoma. British Journal of Cancer, 89(10), 1909–1913.PubMed Campbell, L., Gumbleton, M., & Griffiths, D. F. (2003). Caveolin-1 overexpression predicts poor disease-free survival of patients with clinically confined renal cell carcinoma. British Journal of Cancer, 89(10), 1909–1913.PubMed
137.
go back to reference Barresi, V., Cerasoli, S., Paioli, G., Vitarelli, E., Giuffre, G., Guiducci, G., et al. (2006). Caveolin-1 in meningiomas: Expression and clinico-pathological correlations. Acta Neuropathologica, 112(5), 617–626.PubMed Barresi, V., Cerasoli, S., Paioli, G., Vitarelli, E., Giuffre, G., Guiducci, G., et al. (2006). Caveolin-1 in meningiomas: Expression and clinico-pathological correlations. Acta Neuropathologica, 112(5), 617–626.PubMed
138.
go back to reference Ho, C. C., Huang, P. H., Huang, H. Y., Chen, Y. H., Yang, P. C., & Hsu, S. M. (2002). Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. American Journal of Pathology, 161(5), 1647–1656.PubMed Ho, C. C., Huang, P. H., Huang, H. Y., Chen, Y. H., Yang, P. C., & Hsu, S. M. (2002). Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. American Journal of Pathology, 161(5), 1647–1656.PubMed
139.
go back to reference Ho, C. C., Kuo, S. H., Huang, P. H., Huang, H. Y., Yang, C. H., & Yang, P. C. (2007). Caveolin-1 expression is significantly associated with drug resistance and poor prognosis in advanced non-small cell lung cancer patients treated with gemcitabine-based chemotherapy. Lung Cancer, 59(1), 105–110.PubMed Ho, C. C., Kuo, S. H., Huang, P. H., Huang, H. Y., Yang, C. H., & Yang, P. C. (2007). Caveolin-1 expression is significantly associated with drug resistance and poor prognosis in advanced non-small cell lung cancer patients treated with gemcitabine-based chemotherapy. Lung Cancer, 59(1), 105–110.PubMed
140.
go back to reference Moon, K. C., Lee, G. K., Yoo, S. H., Jeon, Y. K., Chung, J. H., Han, J., et al. (2005). Expression of caveolin-1 in pleomorphic carcinoma of the lung is correlated with a poor prognosis. Anticancer Research, 25(6C), 4631–4637.PubMed Moon, K. C., Lee, G. K., Yoo, S. H., Jeon, Y. K., Chung, J. H., Han, J., et al. (2005). Expression of caveolin-1 in pleomorphic carcinoma of the lung is correlated with a poor prognosis. Anticancer Research, 25(6C), 4631–4637.PubMed
141.
go back to reference Yoo, S. H., Park, Y. S., Kim, H. R., Sung, S. W., Kim, J. H., Shim, Y. S., et al. (2003). Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer, 42(2), 195–202.PubMed Yoo, S. H., Park, Y. S., Kim, H. R., Sung, S. W., Kim, J. H., Shim, Y. S., et al. (2003). Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer, 42(2), 195–202.PubMed
142.
go back to reference Yang, G., Timme, T. L., Frolov, A., Wheeler, T. M., & Thompson, T. C. (2005). Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer, 103(6), 1186–1194.PubMed Yang, G., Timme, T. L., Frolov, A., Wheeler, T. M., & Thompson, T. C. (2005). Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer, 103(6), 1186–1194.PubMed
143.
go back to reference Sagara, Y., Mimori, K., Yoshinaga, K., Tanaka, F., Nishida, K., Ohno, S., et al. (2004). Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. British Journal of Cancer, 91(5), 959–965.PubMed Sagara, Y., Mimori, K., Yoshinaga, K., Tanaka, F., Nishida, K., Ohno, S., et al. (2004). Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. British Journal of Cancer, 91(5), 959–965.PubMed
144.
go back to reference Sunaga, N., Miyajima, K., Suzuki, M., Sato, M., White, M. A., Ramirez, R. D., et al. (2004). Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Research, 64(12), 4277–4285.PubMed Sunaga, N., Miyajima, K., Suzuki, M., Sato, M., White, M. A., Ramirez, R. D., et al. (2004). Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Research, 64(12), 4277–4285.PubMed
145.
go back to reference Wikman, H., Seppanen, J. K., Sarhadi, V. K., Kettunen, E., Salmenkivi, K., Kuosma, E., et al. (2004). Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue microarrays. The Journal of Pathology, 203(1), 584–593.PubMed Wikman, H., Seppanen, J. K., Sarhadi, V. K., Kettunen, E., Salmenkivi, K., Kuosma, E., et al. (2004). Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue microarrays. The Journal of Pathology, 203(1), 584–593.PubMed
146.
go back to reference Wiechen, K., Diatchenko, L., Agoulnik, A., Scharff, K. M., Schober, H., Arlt, K., et al. (2001). Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. American Journal of Pathology, 159(5), 1635–1643.PubMed Wiechen, K., Diatchenko, L., Agoulnik, A., Scharff, K. M., Schober, H., Arlt, K., et al. (2001). Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. American Journal of Pathology, 159(5), 1635–1643.PubMed
147.
go back to reference Davidson, B., Nesland, J. M., Goldberg, I., Kopolovic, J., Gotlieb, W. H., Bryne, M., et al. (2001). Caveolin-1 expression in advanced-stage ovarian carcinoma—a clinicopathologic study. Gynecologic Oncology, 81(2), 166–171.PubMed Davidson, B., Nesland, J. M., Goldberg, I., Kopolovic, J., Gotlieb, W. H., Bryne, M., et al. (2001). Caveolin-1 expression in advanced-stage ovarian carcinoma—a clinicopathologic study. Gynecologic Oncology, 81(2), 166–171.PubMed
148.
go back to reference Aldred, M. A., Ginn-Pease, M. E., Morrison, C. D., Popkie, A. P., Gimm, O., Hoang-Vu, C., et al. (2003). Caveolin-1 and caveolin-2, together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Cancer Research, 63(11), 2864–2871.PubMed Aldred, M. A., Ginn-Pease, M. E., Morrison, C. D., Popkie, A. P., Gimm, O., Hoang-Vu, C., et al. (2003). Caveolin-1 and caveolin-2, together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Cancer Research, 63(11), 2864–2871.PubMed
149.
go back to reference Wiechen, K., Sers, C., Agoulnik, A., Arlt, K., Dietel, M., Schlag, P. M., et al. (2001). Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. American Journal of Pathology, 158(3), 833–839.PubMed Wiechen, K., Sers, C., Agoulnik, A., Arlt, K., Dietel, M., Schlag, P. M., et al. (2001). Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. American Journal of Pathology, 158(3), 833–839.PubMed
150.
go back to reference Forget, M. A., Desrosiers, R. R., Del, M., Moumdjian, R., Shedid, D., Berthelet, F., et al. (2002). The expression of Rho proteins decreases with human brain tumor progression: Potential tumor markers. Clinical & Experimental Metastasis, 19(1), 9–15. Forget, M. A., Desrosiers, R. R., Del, M., Moumdjian, R., Shedid, D., Berthelet, F., et al. (2002). The expression of Rho proteins decreases with human brain tumor progression: Potential tumor markers. Clinical & Experimental Metastasis, 19(1), 9–15.
151.
go back to reference Cassoni, P., Senetta, R., Castellano, I., Ortolan, E., Bosco, M., Magnani, I., et al. (2007). Caveolin-1 expression is variably displayed in astroglial-derived tumors and absent in oligodendrogliomas: Concrete premises for a new reliable diagnostic marker in gliomas. American Journal of Surgical Pathology, 31(5), 760–769.PubMed Cassoni, P., Senetta, R., Castellano, I., Ortolan, E., Bosco, M., Magnani, I., et al. (2007). Caveolin-1 expression is variably displayed in astroglial-derived tumors and absent in oligodendrogliomas: Concrete premises for a new reliable diagnostic marker in gliomas. American Journal of Surgical Pathology, 31(5), 760–769.PubMed
152.
go back to reference Bender, F. C., Reymond, M. A., Bron, C., & Quest, A. F. (2000). Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Research, 60(20), 5870–5878.PubMed Bender, F. C., Reymond, M. A., Bron, C., & Quest, A. F. (2000). Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Research, 60(20), 5870–5878.PubMed
153.
go back to reference Fine, S. W., Lisanti, M. P., Galbiati, F., & Li, M. (2001). Elevated expression of caveolin-1 in adenocarcinoma of the colon. American Journal of Clinical Pathology, 115(5), 719–724.PubMed Fine, S. W., Lisanti, M. P., Galbiati, F., & Li, M. (2001). Elevated expression of caveolin-1 in adenocarcinoma of the colon. American Journal of Clinical Pathology, 115(5), 719–724.PubMed
154.
go back to reference Patlolla, J. M., Swamy, M. V., Raju, J., & Rao, C. V. (2004). Overexpression of caveolin-1 in experimental colon adenocarcinomas and human colon cancer cell lines. Oncology Reports, 11(5), 957–963.PubMed Patlolla, J. M., Swamy, M. V., Raju, J., & Rao, C. V. (2004). Overexpression of caveolin-1 in experimental colon adenocarcinomas and human colon cancer cell lines. Oncology Reports, 11(5), 957–963.PubMed
155.
go back to reference Carrion, R., Morgan, B. E., Tannenbaum, M., Salup, R., & Morgan, M. B. (2003). Caveolin expression in adult renal tumors. Urologic Oncology, 21(3), 191–196.PubMed Carrion, R., Morgan, B. E., Tannenbaum, M., Salup, R., & Morgan, M. B. (2003). Caveolin expression in adult renal tumors. Urologic Oncology, 21(3), 191–196.PubMed
156.
go back to reference Hung, K. F., Lin, S. C., Liu, C. J., Chang, C. S., Chang, K. W., & Kao, S. Y. (2003). The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. Journal of Oral Pathology & Medicine, 32(8), 461–467. Hung, K. F., Lin, S. C., Liu, C. J., Chang, C. S., Chang, K. W., & Kao, S. Y. (2003). The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. Journal of Oral Pathology & Medicine, 32(8), 461–467.
157.
go back to reference Pflug, B. R., Reiter, R. E., & Nelson, J. B. (1999). Caveolin expression is decreased following androgen deprivation in human prostate cancer cell lines. The Prostate, 40(4), 269–273.PubMed Pflug, B. R., Reiter, R. E., & Nelson, J. B. (1999). Caveolin expression is decreased following androgen deprivation in human prostate cancer cell lines. The Prostate, 40(4), 269–273.PubMed
158.
go back to reference Van den Eynden, G. G., Van Laere, S. J., Van der Auwera, I., Merajver, S. D., Van Marck, E. A., van Dam, P., et al. (2006). Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Research and Treatment, 95(3), 219–228.PubMed Van den Eynden, G. G., Van Laere, S. J., Van der Auwera, I., Merajver, S. D., Van Marck, E. A., van Dam, P., et al. (2006). Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Research and Treatment, 95(3), 219–228.PubMed
159.
go back to reference Nestl, A., Von Stein, O. D., Zatloukal, K., Thies, W. G., Herrlich, P., Hofmann, M., et al. (2001). Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Research, 61(4), 1569–1577.PubMed Nestl, A., Von Stein, O. D., Zatloukal, K., Thies, W. G., Herrlich, P., Hofmann, M., et al. (2001). Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Research, 61(4), 1569–1577.PubMed
160.
go back to reference Zhou, H., Jia, L., Wang, S., Wang, H., Chu, H., Hu, Y., et al. (2006). Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability. Biochemical and Biophysical Research Communications, 345(1), 486–494.PubMed Zhou, H., Jia, L., Wang, S., Wang, H., Chu, H., Hu, Y., et al. (2006). Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability. Biochemical and Biophysical Research Communications, 345(1), 486–494.PubMed
161.
go back to reference Tahir, S. A., Yang, G., Ebara, S., Timme, T. L., Satoh, T., Li, L., et al. (2001). Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Research, 61(10), 3882–3885.PubMed Tahir, S. A., Yang, G., Ebara, S., Timme, T. L., Satoh, T., Li, L., et al. (2001). Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Research, 61(10), 3882–3885.PubMed
162.
go back to reference Tsao, S. C., Su, Y. C., Wang, S. L., & Chai, C. Y. (2007). Use of caveolin-1, thyroid transcription factor-1, and cytokeratins 7 and 20 in discriminating between primary and secondary pulmonary adenocarcinoma from breast or colonic origin. Kaohsiung Journal of Medical Sciences, 23(7), 325–331.PubMedCrossRef Tsao, S. C., Su, Y. C., Wang, S. L., & Chai, C. Y. (2007). Use of caveolin-1, thyroid transcription factor-1, and cytokeratins 7 and 20 in discriminating between primary and secondary pulmonary adenocarcinoma from breast or colonic origin. Kaohsiung Journal of Medical Sciences, 23(7), 325–331.PubMedCrossRef
163.
go back to reference Ravid, D., Maor, S., Werner, H., & Liscovitch, M. (2005). Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene, 24(8), 1338–1347.PubMed Ravid, D., Maor, S., Werner, H., & Liscovitch, M. (2005). Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene, 24(8), 1338–1347.PubMed
164.
go back to reference Belanger, M. M., Roussel, E., & Couet, J. (2003). Up-regulation of caveolin expression by cytotoxic agents in drug-sensitive cancer cells. Anticancer Drugs, 14(4), 281–287.PubMed Belanger, M. M., Roussel, E., & Couet, J. (2003). Up-regulation of caveolin expression by cytotoxic agents in drug-sensitive cancer cells. Anticancer Drugs, 14(4), 281–287.PubMed
165.
go back to reference Ravid, D., Maor, S., Werner, H., & Liscovitch, M. (2006). Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Advances in Enzyme Regulation, 46, 163–175.PubMed Ravid, D., Maor, S., Werner, H., & Liscovitch, M. (2006). Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Advances in Enzyme Regulation, 46, 163–175.PubMed
166.
go back to reference Okamoto, T., Schlegel, A., Scherer, P. E., & Lisanti, M. P. (1998). Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. Journal of Biological Chemistry, 273(10), 5419–5422.PubMed Okamoto, T., Schlegel, A., Scherer, P. E., & Lisanti, M. P. (1998). Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. Journal of Biological Chemistry, 273(10), 5419–5422.PubMed
167.
go back to reference Couet, J., Sargiacomo, M., & Lisanti, M. P. (1997). Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. Journal of Biological Chemistry, 272(48), 30429–30438.PubMed Couet, J., Sargiacomo, M., & Lisanti, M. P. (1997). Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. Journal of Biological Chemistry, 272(48), 30429–30438.PubMed
168.
go back to reference Yamamoto, M., Toya, Y., Jensen, R. A., & Ishikawa, Y. (1999). Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Experimental Cell Research, 247(2), 380–388.PubMed Yamamoto, M., Toya, Y., Jensen, R. A., & Ishikawa, Y. (1999). Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Experimental Cell Research, 247(2), 380–388.PubMed
169.
go back to reference Razani, B., Zhang, X. L., Bitzer, M., von Gersdorff, G., Bottinger, E. P., & Lisanti, M. P. (2001). Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. Journal of Biological Chemistry, 276(9), 6727–6738.PubMed Razani, B., Zhang, X. L., Bitzer, M., von Gersdorff, G., Bottinger, E. P., & Lisanti, M. P. (2001). Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. Journal of Biological Chemistry, 276(9), 6727–6738.PubMed
170.
go back to reference Bilderback, T. R., Gazula, V. R., Lisanti, M. P., & Dobrowsky, R. T. (1999). Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. Journal of Biological Chemistry, 274(1), 257–263.PubMed Bilderback, T. R., Gazula, V. R., Lisanti, M. P., & Dobrowsky, R. T. (1999). Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. Journal of Biological Chemistry, 274(1), 257–263.PubMed
171.
go back to reference Matveev, S. V., & Smart, E. J. (2002). Heterologous desensitization of EGF receptors and PDGF receptors by sequestration in caveolae. American Journal of Physiology. Cell Physiology, 282(4), C935–946.PubMed Matveev, S. V., & Smart, E. J. (2002). Heterologous desensitization of EGF receptors and PDGF receptors by sequestration in caveolae. American Journal of Physiology. Cell Physiology, 282(4), C935–946.PubMed
172.
go back to reference Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421.PubMed Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421.PubMed
173.
go back to reference Mineo, C., James, G. L., Smart, E. J., & Anderson, R. G. (1996). Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. Journal of Biological Chemistry, 271(20), 11930–11935.PubMed Mineo, C., James, G. L., Smart, E. J., & Anderson, R. G. (1996). Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. Journal of Biological Chemistry, 271(20), 11930–11935.PubMed
174.
go back to reference Ringerike, T., Blystad, F. D., Levy, F. O., Madshus, I. H., & Stang, E. (2002). Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. Journal of Cell Science, 115(Pt 6), 1331–1340.PubMed Ringerike, T., Blystad, F. D., Levy, F. O., Madshus, I. H., & Stang, E. (2002). Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. Journal of Cell Science, 115(Pt 6), 1331–1340.PubMed
175.
go back to reference Puri, C., Tosoni, D., Comai, R., Rabellino, A., Segat, D., Caneva, F., et al. (2005). Relationships between EGFR signaling-competent and endocytosis-competent membrane microdomains. Molecular Biology of the Cell, 16(6), 2704–2718.PubMed Puri, C., Tosoni, D., Comai, R., Rabellino, A., Segat, D., Caneva, F., et al. (2005). Relationships between EGFR signaling-competent and endocytosis-competent membrane microdomains. Molecular Biology of the Cell, 16(6), 2704–2718.PubMed
176.
go back to reference Park, W.-Y., Cho, K.-A., Park, J.-S., Kim, D.-I., & Park, S. C. (2001). Attenuation of EGF signaling in Senescent cells by Caveolin. Annals of the New York Academy of Sciences, 928(1), 79–84.PubMedCrossRef Park, W.-Y., Cho, K.-A., Park, J.-S., Kim, D.-I., & Park, S. C. (2001). Attenuation of EGF signaling in Senescent cells by Caveolin. Annals of the New York Academy of Sciences, 928(1), 79–84.PubMedCrossRef
177.
go back to reference Sigismund, S., Woelk, T., Puri, C., Maspero, E., Tacchetti, C., Transidico, P., et al. (2005). Clathrin-independent endocytosis of ubiquitinated cargos. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2760–2765.PubMed Sigismund, S., Woelk, T., Puri, C., Maspero, E., Tacchetti, C., Transidico, P., et al. (2005). Clathrin-independent endocytosis of ubiquitinated cargos. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2760–2765.PubMed
178.
go back to reference Kirkham, M., Fujita, A., Chadda, R., Nixon, S. J., Kurzchalia, T. V., Sharma, D. K., et al. (2005). Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology, 168(3), 465–476.PubMed Kirkham, M., Fujita, A., Chadda, R., Nixon, S. J., Kurzchalia, T. V., Sharma, D. K., et al. (2005). Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology, 168(3), 465–476.PubMed
179.
go back to reference Lajoie, P., & Nabi, I. R. (2007). Regulation of raft-dependent endocytosis. Journal of Cellular and Molecular Medicine, 11(4), 644–653.PubMed Lajoie, P., & Nabi, I. R. (2007). Regulation of raft-dependent endocytosis. Journal of Cellular and Molecular Medicine, 11(4), 644–653.PubMed
180.
go back to reference Hernandez-Deviez, D. J., Howes, M. T., Laval, S. H., Bushby, K., Hancock, J. F., & Parton, R. G. (2008). Caveolin regulates endocytosis of the muscle repair protein, dysferlin. Journal of Biological Chemistry, 283(10), 6476–6488.PubMed Hernandez-Deviez, D. J., Howes, M. T., Laval, S. H., Bushby, K., Hancock, J. F., & Parton, R. G. (2008). Caveolin regulates endocytosis of the muscle repair protein, dysferlin. Journal of Biological Chemistry, 283(10), 6476–6488.PubMed
181.
go back to reference Park, J. S., Park, W. Y., Cho, K. A., Kim, D. I., Jhun, B. H., Kim, S. R., et al. (2001). Down-regulation of amphiphysin-1 is responsible for reduced receptor-mediated endocytosis in the senescent cells. FASEB Journal, 15(9), 1625–1627.PubMed Park, J. S., Park, W. Y., Cho, K. A., Kim, D. I., Jhun, B. H., Kim, S. R., et al. (2001). Down-regulation of amphiphysin-1 is responsible for reduced receptor-mediated endocytosis in the senescent cells. FASEB Journal, 15(9), 1625–1627.PubMed
182.
go back to reference Abulrob, A., Giuseppin, S., Andrade, M. F., McDermid, A., Moreno, M., & Stanimirovic, D. (2004). Interactions of EGFR and caveolin-1 in human glioblastoma cells: Evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene, 23(41), 6967–6979.PubMed Abulrob, A., Giuseppin, S., Andrade, M. F., McDermid, A., Moreno, M., & Stanimirovic, D. (2004). Interactions of EGFR and caveolin-1 in human glioblastoma cells: Evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene, 23(41), 6967–6979.PubMed
183.
go back to reference Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4(6), 499–515.PubMed Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4(6), 499–515.PubMed
184.
go back to reference Kim, Y. N., Dam, P., & Bertics, P. J. (2002). Caveolin-1 phosphorylation in human squamous and epidermoid carcinoma cells: Dependence on ErbB1 expression and Src activation. Experimental Cell Research, 280(1), 134–147.PubMed Kim, Y. N., Dam, P., & Bertics, P. J. (2002). Caveolin-1 phosphorylation in human squamous and epidermoid carcinoma cells: Dependence on ErbB1 expression and Src activation. Experimental Cell Research, 280(1), 134–147.PubMed
185.
go back to reference Kim, Y. N., Wiepz, G. J., Guadarrama, A. G., & Bertics, P. J. (2000). Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. Journal of Biological Chemistry, 275(11), 7481–7491.PubMed Kim, Y. N., Wiepz, G. J., Guadarrama, A. G., & Bertics, P. J. (2000). Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. Journal of Biological Chemistry, 275(11), 7481–7491.PubMed
186.
go back to reference Zhang, B., Peng, F., Wu, D., Ingram, A. J., Gao, B., & Krepinsky, J. C. (2007). Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cellular Signalling, 19(8), 1690–1700.PubMed Zhang, B., Peng, F., Wu, D., Ingram, A. J., Gao, B., & Krepinsky, J. C. (2007). Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cellular Signalling, 19(8), 1690–1700.PubMed
187.
go back to reference Jiang, L. Q., Feng, X., Zhou, W., Knyazev, P. G., Ullrich, A., & Chen, Z. (2006). Csk-binding protein (Cbp) negatively regulates epidermal growth factor-induced cell transformation by controlling Src activation. Oncogene, 25(40), 5495–5506.PubMed Jiang, L. Q., Feng, X., Zhou, W., Knyazev, P. G., Ullrich, A., & Chen, Z. (2006). Csk-binding protein (Cbp) negatively regulates epidermal growth factor-induced cell transformation by controlling Src activation. Oncogene, 25(40), 5495–5506.PubMed
188.
go back to reference Wang, X. Q., Sun, P., & Paller, A. S. (2002). Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. Journal of Biological Chemistry, 277(49), 47028–47034.PubMed Wang, X. Q., Sun, P., & Paller, A. S. (2002). Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. Journal of Biological Chemistry, 277(49), 47028–47034.PubMed
189.
go back to reference Olivares-Reyes, J. A., Shah, B. H., Hernandez-Aranda, J., Garcia-Caballero, A., Farshori, M. P., Garcia-Sainz, J. A., et al. (2005). Agonist-induced interactions between angiotensin AT1 and epidermal growth factor receptors. Molecular Pharmacology, 68(2), 356–364.PubMed Olivares-Reyes, J. A., Shah, B. H., Hernandez-Aranda, J., Garcia-Caballero, A., Farshori, M. P., Garcia-Sainz, J. A., et al. (2005). Agonist-induced interactions between angiotensin AT1 and epidermal growth factor receptors. Molecular Pharmacology, 68(2), 356–364.PubMed
190.
go back to reference Ushio-Fukai, M., Hilenski, L., Santanam, N., Becker, P. L., Ma, Y., Griendling, K. K., et al. (2001). Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: Role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. Journal of Biological Chemistry, 276(51), 48269–48275.PubMed Ushio-Fukai, M., Hilenski, L., Santanam, N., Becker, P. L., Ma, Y., Griendling, K. K., et al. (2001). Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: Role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. Journal of Biological Chemistry, 276(51), 48269–48275.PubMed
191.
go back to reference Yamamoto, M., Toya, Y., Schwencke, C., Lisanti, M. P., Myers Jr., M. G., & Ishikawa, Y. (1998). Caveolin is an activator of insulin receptor signaling. Journal of Biological Chemistry, 273(41), 26962–26968.PubMed Yamamoto, M., Toya, Y., Schwencke, C., Lisanti, M. P., Myers Jr., M. G., & Ishikawa, Y. (1998). Caveolin is an activator of insulin receptor signaling. Journal of Biological Chemistry, 273(41), 26962–26968.PubMed
192.
go back to reference Wharton, J., Meshulam, T., Vallega, G., & Pilch, P. (2005). Dissociation of insulin receptor expression and signaling from caveolin-1 expression. Journal of Biological Chemistry, 280(14), 13483–13486.PubMed Wharton, J., Meshulam, T., Vallega, G., & Pilch, P. (2005). Dissociation of insulin receptor expression and signaling from caveolin-1 expression. Journal of Biological Chemistry, 280(14), 13483–13486.PubMed
193.
go back to reference Oh, Y. S., Cho, K. A., Ryu, S. J., Khil, L. Y., Jun, H. S., Yoon, J. W., et al. (2006). Regulation of insulin response in skeletal muscle cell by caveolin status. Journal of Cellular Biochemistry, 99(3), 747–758.PubMed Oh, Y. S., Cho, K. A., Ryu, S. J., Khil, L. Y., Jun, H. S., Yoon, J. W., et al. (2006). Regulation of insulin response in skeletal muscle cell by caveolin status. Journal of Cellular Biochemistry, 99(3), 747–758.PubMed
194.
go back to reference Lu, X., Kambe, F., Cao, X., Yoshida, T., Ohmori, S., Murakami, K., et al. (2006). DHCR24-knockout embryonic fibroblasts are susceptible to serum withdrawal-induced apoptosis because of dysfunction of caveolae and insulin-Akt-Bad signaling. Endocrinology, 147(6), 3123–3132.PubMed Lu, X., Kambe, F., Cao, X., Yoshida, T., Ohmori, S., Murakami, K., et al. (2006). DHCR24-knockout embryonic fibroblasts are susceptible to serum withdrawal-induced apoptosis because of dysfunction of caveolae and insulin-Akt-Bad signaling. Endocrinology, 147(6), 3123–3132.PubMed
195.
go back to reference Mastick, C. C., Brady, M. J., & Saltiel, A. R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. Journal of Cell Biology, 129(6), 1523–1531.PubMed Mastick, C. C., Brady, M. J., & Saltiel, A. R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. Journal of Cell Biology, 129(6), 1523–1531.PubMed
196.
go back to reference Mastick, C. C., & Saltiel, A. R. (1997). Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. Journal of Biological Chemistry, 272(33), 20706–20714.PubMed Mastick, C. C., & Saltiel, A. R. (1997). Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. Journal of Biological Chemistry, 272(33), 20706–20714.PubMed
197.
go back to reference Kimura, A., Mora, S., Shigematsu, S., Pessin, J. E., & Saltiel, A. R. (2002). The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. Journal of Biological Chemistry, 277(33), 30153–30158.PubMed Kimura, A., Mora, S., Shigematsu, S., Pessin, J. E., & Saltiel, A. R. (2002). The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. Journal of Biological Chemistry, 277(33), 30153–30158.PubMed
198.
go back to reference Cao, H., Courchesne, W. E., & Mastick, C. C. (2002). A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: Recruitment of C-terminal Src kinase. Journal of Biological Chemistry, 277(11), 8771–8774.PubMed Cao, H., Courchesne, W. E., & Mastick, C. C. (2002). A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: Recruitment of C-terminal Src kinase. Journal of Biological Chemistry, 277(11), 8771–8774.PubMed
199.
go back to reference Cohen, A. W., Razani, B., Wang, X. B., Combs, T. P., Williams, T. M., Scherer, P. E., et al. (2003). Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. American Journal of Physiology. Cell Physiology, 285(1), C222–235.PubMed Cohen, A. W., Razani, B., Wang, X. B., Combs, T. P., Williams, T. M., Scherer, P. E., et al. (2003). Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. American Journal of Physiology. Cell Physiology, 285(1), C222–235.PubMed
200.
go back to reference Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., et al. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB Journal, 13(14), 1961–1971.PubMed Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., et al. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB Journal, 13(14), 1961–1971.PubMed
201.
go back to reference Karlsson, M., Thorn, H., Danielsson, A., Stenkula, K. G., Ost, A., Gustavsson, J., et al. (2004). Colocalization of insulin receptor and insulin receptor substrate-1 to caveolae in primary human adipocytes. Cholesterol depletion blocks insulin signalling for metabolic and mitogenic control. European Journal of Biochemistry, 271(12), 2471–2479.PubMed Karlsson, M., Thorn, H., Danielsson, A., Stenkula, K. G., Ost, A., Gustavsson, J., et al. (2004). Colocalization of insulin receptor and insulin receptor substrate-1 to caveolae in primary human adipocytes. Cholesterol depletion blocks insulin signalling for metabolic and mitogenic control. European Journal of Biochemistry, 271(12), 2471–2479.PubMed
202.
go back to reference Souto, R. P., Vallega, G., Wharton, J., Vinten, J., Tranum-Jensen, J., & Pilch, P. F. (2003). Immunopurification and characterization of rat adipocyte caveolae suggest their dissociation from insulin signaling. Journal of Biological Chemistry, 278(20), 18321–18329.PubMed Souto, R. P., Vallega, G., Wharton, J., Vinten, J., Tranum-Jensen, J., & Pilch, P. F. (2003). Immunopurification and characterization of rat adipocyte caveolae suggest their dissociation from insulin signaling. Journal of Biological Chemistry, 278(20), 18321–18329.PubMed
203.
go back to reference Nystrom, F. H., Chen, H., Cong, L. N., Li, Y., & Quon, M. J. (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Molecular Endocrinology, 13(12), 2013–2024.PubMed Nystrom, F. H., Chen, H., Cong, L. N., Li, Y., & Quon, M. J. (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Molecular Endocrinology, 13(12), 2013–2024.PubMed
204.
go back to reference Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., et al. (2007). Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13678–13683.PubMed Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., et al. (2007). Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13678–13683.PubMed
205.
go back to reference Bauer, P. M. (2005). Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 204–209.PubMed Bauer, P. M. (2005). Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 204–209.PubMed
206.
go back to reference Gonzalez, E., Nagiel, A., Lin, A. J., Golan, D. E., & Michel, T. (2004). Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. Journal of Biological Chemistry, 279(39), 40659–40669.PubMed Gonzalez, E., Nagiel, A., Lin, A. J., Golan, D. E., & Michel, T. (2004). Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. Journal of Biological Chemistry, 279(39), 40659–40669.PubMed
207.
go back to reference Razani, B., Engelman, J. A., Wang, X. B., Schubert, W., Zhang, X. L., Marks, C. B., et al. (2001). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. Journal of Biological Chemistry, 276(41), 38121–38138.PubMed Razani, B., Engelman, J. A., Wang, X. B., Schubert, W., Zhang, X. L., Marks, C. B., et al. (2001). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. Journal of Biological Chemistry, 276(41), 38121–38138.PubMed
208.
go back to reference Galbiati, F., Volonte, D., Liu, J., Capozza, F., Frank, P. G., Zhu, L., et al. (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Molecular Biology of the Cell, 12(8), 2229–2244.PubMed Galbiati, F., Volonte, D., Liu, J., Capozza, F., Frank, P. G., Zhu, L., et al. (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Molecular Biology of the Cell, 12(8), 2229–2244.PubMed
209.
go back to reference Volonte, D., Zhang, K., Lisanti, M. P., & Galbiati, F. (2002). Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Molecular Biology of the Cell, 13(7), 2502–2517.PubMed Volonte, D., Zhang, K., Lisanti, M. P., & Galbiati, F. (2002). Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Molecular Biology of the Cell, 13(7), 2502–2517.PubMed
210.
go back to reference Cho, K. A., Ryu, S. J., Park, J. S., Jang, I. S., Ahn, J. S., Kim, K. T., et al. (2003). Senescent phenotype can be reversed by reduction of caveolin status. Journal of Biological Chemistry, 278(30), 27789–27795.PubMed Cho, K. A., Ryu, S. J., Park, J. S., Jang, I. S., Ahn, J. S., Kim, K. T., et al. (2003). Senescent phenotype can be reversed by reduction of caveolin status. Journal of Biological Chemistry, 278(30), 27789–27795.PubMed
211.
go back to reference Scheel, J., Srinivasan, J., Honnert, U., Henske, A., & Kurzchalia, T. V. (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nature Cell Biology, 1(2), 127–129.PubMed Scheel, J., Srinivasan, J., Honnert, U., Henske, A., & Kurzchalia, T. V. (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nature Cell Biology, 1(2), 127–129.PubMed
212.
go back to reference Hulit, J., Bash, T., Fu, M., Galbiati, F., Albanese, C., Sage, D. R., et al. (2000). The cyclin D1 gene is transcriptionally repressed by caveolin-1. Journal of Biological Chemistry, 275(28), 21203–21209.PubMed Hulit, J., Bash, T., Fu, M., Galbiati, F., Albanese, C., Sage, D. R., et al. (2000). The cyclin D1 gene is transcriptionally repressed by caveolin-1. Journal of Biological Chemistry, 275(28), 21203–21209.PubMed
213.
go back to reference Galbiati, F., Volonte, D., Brown, A. M., Weinstein, D. E., Ben-Ze’ev, A., Pestell, R. G., et al. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. Journal of Biological Chemistry, 275(30), 23368–23377.PubMed Galbiati, F., Volonte, D., Brown, A. M., Weinstein, D. E., Ben-Ze’ev, A., Pestell, R. G., et al. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. Journal of Biological Chemistry, 275(30), 23368–23377.PubMed
214.
go back to reference Liu, P., Ying, Y., & Anderson, R. G. (1997). Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13666–13670.PubMed Liu, P., Ying, Y., & Anderson, R. G. (1997). Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13666–13670.PubMed
215.
go back to reference Liu, P., Ying, Y., Ko, Y. G., & Anderson, R. G. (1996). Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. Journal of Biological Chemistry, 271(17), 10299–10303.PubMed Liu, P., Ying, Y., Ko, Y. G., & Anderson, R. G. (1996). Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. Journal of Biological Chemistry, 271(17), 10299–10303.PubMed
216.
go back to reference Smart, E. J., Ying, Y. S., Mineo, C., & Anderson, R. G. (1995). A detergent-free method for purifying caveolae membrane from tissue culture cells. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10104–10108.PubMed Smart, E. J., Ying, Y. S., Mineo, C., & Anderson, R. G. (1995). A detergent-free method for purifying caveolae membrane from tissue culture cells. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10104–10108.PubMed
217.
go back to reference Zhang, W., Razani, B., Altschuler, Y., Bouzahzah, B., Mostov, K. E., Pestell, R. G., et al. (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. Journal of Biological Chemistry, 275(27), 20717–20725.PubMed Zhang, W., Razani, B., Altschuler, Y., Bouzahzah, B., Mostov, K. E., Pestell, R. G., et al. (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. Journal of Biological Chemistry, 275(27), 20717–20725.PubMed
218.
go back to reference Engelman, J. A., Chu, C., Lin, A., Jo, H., Ikezu, T., Okamoto, T., et al. (1998). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Letters, 428(3), 205–211.PubMed Engelman, J. A., Chu, C., Lin, A., Jo, H., Ikezu, T., Okamoto, T., et al. (1998). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Letters, 428(3), 205–211.PubMed
219.
go back to reference Cohen, A. W., Park, D. S., Woodman, S. E., Williams, T. M., Chandra, M., Shirani, J., et al. (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. American Journal of Physiology. Cell Physiology, 284(2), C457–474.PubMed Cohen, A. W., Park, D. S., Woodman, S. E., Williams, T. M., Chandra, M., Shirani, J., et al. (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. American Journal of Physiology. Cell Physiology, 284(2), C457–474.PubMed
220.
go back to reference Engelman, J. A., Zhang, X. L., Razani, B., Pestell, R. G., & Lisanti, M. P. (1999). p42/44 MAP kinase-dependent and –independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. Journal of Biological Chemistry, 274(45), 32333–32341.PubMed Engelman, J. A., Zhang, X. L., Razani, B., Pestell, R. G., & Lisanti, M. P. (1999). p42/44 MAP kinase-dependent and –independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. Journal of Biological Chemistry, 274(45), 32333–32341.PubMed
221.
go back to reference Liu, P., & Anderson, R. G. (1995). Compartmentalized production of ceramide at the cell surface. Journal of Biological Chemistry, 270(45), 27179–27185.PubMed Liu, P., & Anderson, R. G. (1995). Compartmentalized production of ceramide at the cell surface. Journal of Biological Chemistry, 270(45), 27179–27185.PubMed
222.
go back to reference Bilderback, T. R., Grigsby, R. J., & Dobrowsky, R. T. (1997). Association of p75(NTR) with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. Journal of Biological Chemistry, 272(16), 10922–10927.PubMed Bilderback, T. R., Grigsby, R. J., & Dobrowsky, R. T. (1997). Association of p75(NTR) with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. Journal of Biological Chemistry, 272(16), 10922–10927.PubMed
223.
go back to reference Veldman, R. J., Maestre, N., Aduib, O. M., Medin, J. A., Salvayre, R., & Levade, T. (2001). A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: Potential implications in tumour necrosis factor signalling. Biochemical Journal, 355(Pt 3), 859–868.PubMed Veldman, R. J., Maestre, N., Aduib, O. M., Medin, J. A., Salvayre, R., & Levade, T. (2001). A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: Potential implications in tumour necrosis factor signalling. Biochemical Journal, 355(Pt 3), 859–868.PubMed
224.
go back to reference Ko, Y. G., Lee, J. S., Kang, Y. S., Ahn, J. H., & Seo, J. S. (1999). TNF-alpha-mediated apoptosis is initiated in caveolae-like domains. Journal of Immunology, 162(12), 7217–7223. Ko, Y. G., Lee, J. S., Kang, Y. S., Ahn, J. H., & Seo, J. S. (1999). TNF-alpha-mediated apoptosis is initiated in caveolae-like domains. Journal of Immunology, 162(12), 7217–7223.
225.
go back to reference Czarny, M., Liu, J., Oh, P., & Schnitzer, J. E. (2003). Transient mechanoactivation of neutral sphingomyelinase in caveolae to generate ceramide. Journal of Biological Chemistry, 278(7), 4424–4430.PubMed Czarny, M., Liu, J., Oh, P., & Schnitzer, J. E. (2003). Transient mechanoactivation of neutral sphingomyelinase in caveolae to generate ceramide. Journal of Biological Chemistry, 278(7), 4424–4430.PubMed
226.
go back to reference Czarny, M., & Schnitzer, J. E. (2004). Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. American Journal of Physiology Heart and Circulatory Physiology, 287(3), H1344–1352.PubMed Czarny, M., & Schnitzer, J. E. (2004). Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. American Journal of Physiology Heart and Circulatory Physiology, 287(3), H1344–1352.PubMed
227.
go back to reference Zundel, W., Swiersz, L. M., & Giaccia, A. (2000). Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Molecular and Cellular Biology, 20(5), 1507–1514.PubMed Zundel, W., Swiersz, L. M., & Giaccia, A. (2000). Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Molecular and Cellular Biology, 20(5), 1507–1514.PubMed
228.
go back to reference Zhuang, L., Kim, J., Adam, R. M., Solomon, K. R., & Freeman, M. R. (2005). Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. Journal of Clinical Investigation, 115(4), 959–968.PubMed Zhuang, L., Kim, J., Adam, R. M., Solomon, K. R., & Freeman, M. R. (2005). Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. Journal of Clinical Investigation, 115(4), 959–968.PubMed
229.
go back to reference Liu, J., Lee, P., Galbiati, F., Kitsis, R. N., & Lisanti, M. P. (2001). Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation. American Journal of Physiology. Cell Physiology, 280(4), C823–835.PubMed Liu, J., Lee, P., Galbiati, F., Kitsis, R. N., & Lisanti, M. P. (2001). Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation. American Journal of Physiology. Cell Physiology, 280(4), C823–835.PubMed
230.
go back to reference Shack, S., Wang, X. T., Kokkonen, G. C., Gorospe, M., Longo, D. L., & Holbrook, N. J. (2003). Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt pathway increases arsenite cytotoxicity. Molecular and Cellular Biology, 23(7), 2407–2414.PubMed Shack, S., Wang, X. T., Kokkonen, G. C., Gorospe, M., Longo, D. L., & Holbrook, N. J. (2003). Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt pathway increases arsenite cytotoxicity. Molecular and Cellular Biology, 23(7), 2407–2414.PubMed
231.
go back to reference Lin, M. I., Yu, J., Murata, T., & Sessa, W. C. (2007). Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Research, 67(6), 2849–2856.PubMed Lin, M. I., Yu, J., Murata, T., & Sessa, W. C. (2007). Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Research, 67(6), 2849–2856.PubMed
232.
go back to reference Shajahan, A. N., Wang, A., Decker, M., Minshall, R. D., Liu, M. C., & Clarke, R. (2007). Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. Journal of Biological Chemistry, 282(8), 5934–5943.PubMed Shajahan, A. N., Wang, A., Decker, M., Minshall, R. D., Liu, M. C., & Clarke, R. (2007). Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. Journal of Biological Chemistry, 282(8), 5934–5943.PubMed
233.
go back to reference Podar, K., Tai, Y. T., Cole, C. E., Hideshima, T., Sattler, M., Hamblin, A., et al. (2003). Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. Journal of Biological Chemistry, 278(8), 5794–5801.PubMed Podar, K., Tai, Y. T., Cole, C. E., Hideshima, T., Sattler, M., Hamblin, A., et al. (2003). Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. Journal of Biological Chemistry, 278(8), 5794–5801.PubMed
234.
go back to reference Li, L., Ren, C. H., Tahir, S. A., Ren, C., & Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Molecular and Cellular Biology, 23(24), 9389–9404.PubMed Li, L., Ren, C. H., Tahir, S. A., Ren, C., & Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Molecular and Cellular Biology, 23(24), 9389–9404.PubMed
235.
go back to reference Ayala, G. E., Dai, H., Tahir, S. A., Li, R., Timme, T., Ittmann, M., et al. (2006). Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Research, 66(10), 5159–5164.PubMed Ayala, G. E., Dai, H., Tahir, S. A., Li, R., Timme, T., Ittmann, M., et al. (2006). Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Research, 66(10), 5159–5164.PubMed
236.
go back to reference Timme, T. L., Goltsov, A., Tahir, S., Li, L., Wang, J., Ren, C., et al. (2000). Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene, 19(29), 3256–3265.PubMed Timme, T. L., Goltsov, A., Tahir, S., Li, L., Wang, J., Ren, C., et al. (2000). Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene, 19(29), 3256–3265.PubMed
237.
go back to reference Glait, C., Tencer, L., Ravid, D., Sarfstein, R., Liscovitch, M., & Werner, H. (2006). Caveolin-1 up-regulates IGF-I receptor gene transcription in breast cancer cells via Sp1- and p53-dependent pathways. Experimental Cell Research, 312(19), 3899–3908.PubMed Glait, C., Tencer, L., Ravid, D., Sarfstein, R., Liscovitch, M., & Werner, H. (2006). Caveolin-1 up-regulates IGF-I receptor gene transcription in breast cancer cells via Sp1- and p53-dependent pathways. Experimental Cell Research, 312(19), 3899–3908.PubMed
238.
go back to reference Shaul, P. W., & Anderson, R. G. (1998). Role of plasmalemmal caveolae in signal transduction. American Journal of Physiology, 275(5 Pt 1), L843–851.PubMed Shaul, P. W., & Anderson, R. G. (1998). Role of plasmalemmal caveolae in signal transduction. American Journal of Physiology, 275(5 Pt 1), L843–851.PubMed
239.
go back to reference Isshiki, M., Ando, J., Korenaga, R., Kogo, H., Fujimoto, T., Fujita, T., et al. (1998). Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5009–5014.PubMed Isshiki, M., Ando, J., Korenaga, R., Kogo, H., Fujimoto, T., Fujita, T., et al. (1998). Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5009–5014.PubMed
240.
go back to reference Isshiki, M., Ando, J., Yamamoto, K., Fujita, T., Ying, Y., & Anderson, R. G. (2002). Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. Journal of Cell Science, 115(Pt 3), 475–484.PubMed Isshiki, M., Ando, J., Yamamoto, K., Fujita, T., Ying, Y., & Anderson, R. G. (2002). Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. Journal of Cell Science, 115(Pt 3), 475–484.PubMed
241.
go back to reference Parat, M. O., Anand-Apte, B., & Fox, P. L. (2003). Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Molecular Biology of the Cell, 14(8), 3156–3168.PubMed Parat, M. O., Anand-Apte, B., & Fox, P. L. (2003). Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Molecular Biology of the Cell, 14(8), 3156–3168.PubMed
242.
go back to reference Lentini, D., Guzzi, F., Pimpinelli, F., Zaninetti, R., Cassetti, A., Coco, S., et al. (2007). Polarization of caveolins and caveolae during migration of immortalized neurons. Journal of Neurochemistry, 104(2), 514–523. Lentini, D., Guzzi, F., Pimpinelli, F., Zaninetti, R., Cassetti, A., Coco, S., et al. (2007). Polarization of caveolins and caveolae during migration of immortalized neurons. Journal of Neurochemistry, 104(2), 514–523.
243.
go back to reference Santilman, V., Baran, J., Anand-Apte, B., Evans, R. M., & Parat, M. O. (2007). Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments. Angiogenesis, 10(4), 297–305.PubMed Santilman, V., Baran, J., Anand-Apte, B., Evans, R. M., & Parat, M. O. (2007). Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments. Angiogenesis, 10(4), 297–305.PubMed
244.
go back to reference Sun, X. H., Flynn, D. C., Castranova, V., Millecchia, L. L., Beardsley, A. R., & Liu, J. (2007). Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. Journal of Biological Chemistry, 282(10), 7232–7241.PubMed Sun, X. H., Flynn, D. C., Castranova, V., Millecchia, L. L., Beardsley, A. R., & Liu, J. (2007). Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. Journal of Biological Chemistry, 282(10), 7232–7241.PubMed
245.
go back to reference Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R., & Geiger, B. (2007). Functional atlas of the integrin adhesome. Nature Cell Biology, 9(8), 858–867.PubMed Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R., & Geiger, B. (2007). Functional atlas of the integrin adhesome. Nature Cell Biology, 9(8), 858–867.PubMed
246.
go back to reference Radel, C., Carlile-Klusacek, M., & Rizzo, V. (2007). Participation of caveolae in beta1 integrin-mediated mechanotransduction. Biochemical and Biophysical Research Communications, 358(2), 626–631.PubMed Radel, C., Carlile-Klusacek, M., & Rizzo, V. (2007). Participation of caveolae in beta1 integrin-mediated mechanotransduction. Biochemical and Biophysical Research Communications, 358(2), 626–631.PubMed
247.
go back to reference Cordes, N., Frick, S., Brunner, T. B., Pilarsky, C., Grutzmann, R., Sipos, B., et al. (2007). Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene, 26(48), 6851–6862.PubMed Cordes, N., Frick, S., Brunner, T. B., Pilarsky, C., Grutzmann, R., Sipos, B., et al. (2007). Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene, 26(48), 6851–6862.PubMed
248.
go back to reference Swaney, J. S., Patel, H. H., Yokoyama, U., Head, B. P., Roth, D. M., & Insel, P. A. (2006). Focal adhesions in (myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. Journal of Biological Chemistry, 281(25), 17173–17179.PubMed Swaney, J. S., Patel, H. H., Yokoyama, U., Head, B. P., Roth, D. M., & Insel, P. A. (2006). Focal adhesions in (myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. Journal of Biological Chemistry, 281(25), 17173–17179.PubMed
249.
go back to reference Grande-Garcia, A., Echarri, A., de Rooij, J., Alderson, N. B., Waterman-Storer, C. M., Valdivielso, J. M., et al. (2007). Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. Journal of Cell Biology, 177(4), 683–694.PubMed Grande-Garcia, A., Echarri, A., de Rooij, J., Alderson, N. B., Waterman-Storer, C. M., Valdivielso, J. M., et al. (2007). Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. Journal of Cell Biology, 177(4), 683–694.PubMed
250.
go back to reference Ikeda, S., Ushio-Fukai, M., Zuo, L., Tojo, T., Dikalov, S., Patrushev, N. A., et al. (2005). Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circulation Research, 96(4), 467–475.PubMed Ikeda, S., Ushio-Fukai, M., Zuo, L., Tojo, T., Dikalov, S., Patrushev, N. A., et al. (2005). Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circulation Research, 96(4), 467–475.PubMed
251.
go back to reference Podar, K., Shringarpure, R., Tai, Y. T., Simoncini, M., Sattler, M., Ishitsuka, K., et al. (2004). Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Research, 64(20), 7500–7506.PubMed Podar, K., Shringarpure, R., Tai, Y. T., Simoncini, M., Sattler, M., Ishitsuka, K., et al. (2004). Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Research, 64(20), 7500–7506.PubMed
252.
go back to reference Bailey, K. M., & Liu, J. (2008). Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. Journal of Biological Chemistry, M709329200. Bailey, K. M., & Liu, J. (2008). Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. Journal of Biological Chemistry, M709329200.
253.
go back to reference Lin, M., DiVito, M. M., Merajver, S. D., Boyanapalli, M., & van Golen, K. L. (2005). Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Molecular Cancer, 4(1), 21.PubMed Lin, M., DiVito, M. M., Merajver, S. D., Boyanapalli, M., & van Golen, K. L. (2005). Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Molecular Cancer, 4(1), 21.PubMed
254.
go back to reference Orlichenko, L., Huang, B., Krueger, E., & McNiven, M. A. (2006). Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. Journal of Biological Chemistry, 281(8), 4570–4579.PubMed Orlichenko, L., Huang, B., Krueger, E., & McNiven, M. A. (2006). Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. Journal of Biological Chemistry, 281(8), 4570–4579.PubMed
255.
go back to reference Aoki, T., Nomura, R., & Fujimoto, T. (1999). Tyrosine phosphorylation of caveolin-1 in the endothelium. Experimental Cell Research, 253(2), 629–636.PubMed Aoki, T., Nomura, R., & Fujimoto, T. (1999). Tyrosine phosphorylation of caveolin-1 in the endothelium. Experimental Cell Research, 253(2), 629–636.PubMed
256.
go back to reference del Pozo, M. A., Alderson, N. B., Kiosses, W. B., Chiang, H. H., Anderson, R. G., & Schwartz, M. A. (2004). Integrins regulate Rac targeting by internalization of membrane domains. Science, 303(5659), 839–842.PubMed del Pozo, M. A., Alderson, N. B., Kiosses, W. B., Chiang, H. H., Anderson, R. G., & Schwartz, M. A. (2004). Integrins regulate Rac targeting by internalization of membrane domains. Science, 303(5659), 839–842.PubMed
257.
go back to reference Del Pozo, M. A., & Schwartz, M. A. (2007). Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology, 17(5), 246–250.PubMed Del Pozo, M. A., & Schwartz, M. A. (2007). Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology, 17(5), 246–250.PubMed
258.
go back to reference Demetriou, M., Granovsky, M., Quaggin, S., & Dennis, J. W. (2001). Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature, 409(6821), 733–739.PubMed Demetriou, M., Granovsky, M., Quaggin, S., & Dennis, J. W. (2001). Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature, 409(6821), 733–739.PubMed
259.
go back to reference Partridge, E. A., Le Roy, C., Di Guglielmo, G. M., Pawling, J., Cheung, P., Granovsky, M., et al. (2004). Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science, 306(5693), 120–124.PubMed Partridge, E. A., Le Roy, C., Di Guglielmo, G. M., Pawling, J., Cheung, P., Granovsky, M., et al. (2004). Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science, 306(5693), 120–124.PubMed
260.
go back to reference Lau, K. S., Partridge, E. A., Grigorian, A., Silvescu, C. I., Reinhold, V. N., Demetriou, M., et al. (2007). Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell, 129(1), 123–134.PubMed Lau, K. S., Partridge, E. A., Grigorian, A., Silvescu, C. I., Reinhold, V. N., Demetriou, M., et al. (2007). Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell, 129(1), 123–134.PubMed
261.
go back to reference Dennis, J. W., Pawling, J., Cheung, P., Partridge, E., & Demetriou, M. (2002). UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (Mgat5) deficient mice. Biochimica et Biophysica Acta, 1573(3), 414–422.PubMed Dennis, J. W., Pawling, J., Cheung, P., Partridge, E., & Demetriou, M. (2002). UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (Mgat5) deficient mice. Biochimica et Biophysica Acta, 1573(3), 414–422.PubMed
262.
go back to reference Takenaka, Y., Fukumori, T., & Raz, A. (2004). Galectin-3 and metastasis. Glycoconjugate Journal, 19(7–9), 543–549.PubMed Takenaka, Y., Fukumori, T., & Raz, A. (2004). Galectin-3 and metastasis. Glycoconjugate Journal, 19(7–9), 543–549.PubMed
263.
go back to reference Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Bresalier, R., et al. (2002). Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus Pectin. Journal of the National Cancer Institute, 94(24), 1854–1862.PubMed Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Bresalier, R., et al. (2002). Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus Pectin. Journal of the National Cancer Institute, 94(24), 1854–1862.PubMed
264.
go back to reference Pienta, K. J., Naik, H., Akhtar, A., Yamazaki, K., Replogle, T. S., Lehr, J., et al. (1995). Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. Journal of the National Cancer Institute, 87(5), 348–353.PubMed Pienta, K. J., Naik, H., Akhtar, A., Yamazaki, K., Replogle, T. S., Lehr, J., et al. (1995). Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. Journal of the National Cancer Institute, 87(5), 348–353.PubMed
265.
go back to reference Dewever, J., Frerart, F., Bouzin, C., Baudelet, C., Ansiaux, R., Sonveaux, P., et al. (2007). Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. American Journal of Pathology, 171(5), 1619–1628.PubMed Dewever, J., Frerart, F., Bouzin, C., Baudelet, C., Ansiaux, R., Sonveaux, P., et al. (2007). Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. American Journal of Pathology, 171(5), 1619–1628.PubMed
266.
go back to reference Yang, G., Addai, J., Wheeler, T. M., Frolov, A., Miles, B. J., Kadmon, D., et al. (2007). Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Human Pathology, 38(11), 1688–1695.PubMed Yang, G., Addai, J., Wheeler, T. M., Frolov, A., Miles, B. J., Kadmon, D., et al. (2007). Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Human Pathology, 38(11), 1688–1695.PubMed
267.
go back to reference Bartz, R., Zhou, J., Hsieh, J. T., Ying, Y., Li, W., & Liu, P. (2007). Caveolin-1 secreting LNCaP cells induce tumor growth of caveolin-1 negative LNCaP cells in vivo. International Journal of Cancer, 122(3), 520–525. Bartz, R., Zhou, J., Hsieh, J. T., Ying, Y., Li, W., & Liu, P. (2007). Caveolin-1 secreting LNCaP cells induce tumor growth of caveolin-1 negative LNCaP cells in vivo. International Journal of Cancer, 122(3), 520–525.
268.
go back to reference Brouet, A., DeWever, J., Martinive, P., Havaux, X., Bouzin, C., Sonveaux, P., et al. (2005). Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB Journal, 19(6), 602–604.PubMed Brouet, A., DeWever, J., Martinive, P., Havaux, X., Bouzin, C., Sonveaux, P., et al. (2005). Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB Journal, 19(6), 602–604.PubMed
269.
go back to reference Oh, P., Borgstrom, P., Witkiewicz, H., Li, Y., Borgstrom, B. J., Chrastina, A., et al. (2007). Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nature Biotechnology, 25(3), 327–337.PubMed Oh, P., Borgstrom, P., Witkiewicz, H., Li, Y., Borgstrom, B. J., Chrastina, A., et al. (2007). Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nature Biotechnology, 25(3), 327–337.PubMed
270.
go back to reference Oh, P., Li, Y., Yu, J., Durr, E., Krasinska, K. M., Carver, L. A., et al. (2004). Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature, 429(6992), 629–635.PubMed Oh, P., Li, Y., Yu, J., Durr, E., Krasinska, K. M., Carver, L. A., et al. (2004). Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature, 429(6992), 629–635.PubMed
271.
go back to reference Gratton, J. P., Lin, M. I., Yu, J., Weiss, E. D., Jiang, Z. L., Fairchild, T. A., et al. (2003). Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell, 4(1), 31–39.PubMed Gratton, J. P., Lin, M. I., Yu, J., Weiss, E. D., Jiang, Z. L., Fairchild, T. A., et al. (2003). Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell, 4(1), 31–39.PubMed
272.
go back to reference Podar, K., & Anderson, K. C. (2006). Caveolin-1 as a potential new therapeutic target in multiple myeloma. Cancer Letters, 233(1), 10–15.PubMed Podar, K., & Anderson, K. C. (2006). Caveolin-1 as a potential new therapeutic target in multiple myeloma. Cancer Letters, 233(1), 10–15.PubMed
273.
go back to reference Pramudji, C., Shimura, S., Ebara, S., Yang, G., Wang, J., Ren, C., et al. (2001). In situ prostate cancer gene therapy using a novel adenoviral vector regulated by the caveolin-1 promoter. Clinical Cancer Research, 7(12), 4272–4279.PubMed Pramudji, C., Shimura, S., Ebara, S., Yang, G., Wang, J., Ren, C., et al. (2001). In situ prostate cancer gene therapy using a novel adenoviral vector regulated by the caveolin-1 promoter. Clinical Cancer Research, 7(12), 4272–4279.PubMed
Metadata
Title
Caveolin-1 in tumor progression: the good, the bad and the ugly
Authors
Jacky G. Goetz
Patrick Lajoie
Sam M. Wiseman
Ivan R. Nabi
Publication date
01-12-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9160-9

Other articles of this Issue 4/2008

Cancer and Metastasis Reviews 4/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine