Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2008

01-12-2008

Imaging of integrin αvβ3 expression

Authors: Ambros J. Beer, Markus Schwaiger

Published in: Cancer and Metastasis Reviews | Issue 4/2008

Login to get access

Abstract

The integrin αvβ3 plays an important role in angiogenesis and tumor metastasis. It is expressed on activated endothelial cells as well as some tumor cells. Therefore it is a promising imaging target as a potential surrogate parameter of angiogenic activity. Molecular imaging of αvβ3 expression could potentially facilitate response evaluation of antiangiogenic drugs (e. g. bevacizumab) or aid in selecting and monitoring patients receiving humanized monoclonal antibody therapies directed against αvβ3 (EMD121974). Therefore many different approaches for imaging of αvβ3 expression have been studied in the recent years, including positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance imaging (MRI), optical imaging and ultrasound using targeted microbubbles. While optical imaging techniques lend themselves for preclinical studies, PET and SPECT using the αvβ3 specific tracers [18F]galacto-RGD and [99mTc]NC100692 are the only techniques up to now which have been successfully used in patients. The various advantages and disadvantages of several imaging techniques will be discussed in this article.
Literature
1.
go back to reference Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology, 12, 697–715.PubMed Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology, 12, 697–715.PubMed
2.
go back to reference Hood, J. D., & Cheresh, D. A. (2002). Role of integrins in cell invasion and migration. Nature Reviews Cancer, 2, 91–100.PubMed Hood, J. D., & Cheresh, D. A. (2002). Role of integrins in cell invasion and migration. Nature Reviews Cancer, 2, 91–100.PubMed
3.
go back to reference Xiong, J. P., Stehle, T., Zhang, R., et al. (2002). Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg–Gly–Asp ligand. Science, 296, 151–155.PubMed Xiong, J. P., Stehle, T., Zhang, R., et al. (2002). Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg–Gly–Asp ligand. Science, 296, 151–155.PubMed
4.
go back to reference Cai, W., & Chen, X. (2006). Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anti-Cancer Agents in Medicinal Chemistry, 6, 407–428.PubMed Cai, W., & Chen, X. (2006). Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anti-Cancer Agents in Medicinal Chemistry, 6, 407–428.PubMed
5.
go back to reference Hynes, R. O. (2002). A reevaluation of integrins as regulators of angiogenesis. Nature Medicine, 8, 918–921.PubMed Hynes, R. O. (2002). A reevaluation of integrins as regulators of angiogenesis. Nature Medicine, 8, 918–921.PubMed
6.
go back to reference Kerbel, R. S. (2006). Antiangiogenic therapy: A universal chemosensitization strategy for cancer? Science, 312, 1171–1175.PubMed Kerbel, R. S. (2006). Antiangiogenic therapy: A universal chemosensitization strategy for cancer? Science, 312, 1171–1175.PubMed
7.
go back to reference Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–2342.PubMed Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–2342.PubMed
8.
go back to reference Nabors, L. B., Mikkelsen, T., Rosenfeld, S. S., Hochberg, F., Akella, N. S., Fisher, J. D., et al. (2007). Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. Journal of Clinical Oncology, 25, 1651–1657.PubMed Nabors, L. B., Mikkelsen, T., Rosenfeld, S. S., Hochberg, F., Akella, N. S., Fisher, J. D., et al. (2007). Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. Journal of Clinical Oncology, 25, 1651–1657.PubMed
9.
go back to reference Jaffe, C. C. (2006). Measures of response: RECIST, WHO, and new alternatives. Journal of Clinical Oncology, 24, 3245–3251.PubMed Jaffe, C. C. (2006). Measures of response: RECIST, WHO, and new alternatives. Journal of Clinical Oncology, 24, 3245–3251.PubMed
10.
go back to reference Tortora, G., Melisi, D., & Ciardiello, F. (2004). Angiogenesis: A target for cancer therapy. Current Pharmaceutical Design, 10, 11–26.PubMed Tortora, G., Melisi, D., & Ciardiello, F. (2004). Angiogenesis: A target for cancer therapy. Current Pharmaceutical Design, 10, 11–26.PubMed
11.
go back to reference Galbraith, S. M. (2003). Antivascular cancer treatments: imaging biomarkers in pharmaceutical drug development. British Journal of Radiology, 76, 83–86. Galbraith, S. M. (2003). Antivascular cancer treatments: imaging biomarkers in pharmaceutical drug development. British Journal of Radiology, 76, 83–86.
12.
go back to reference Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. New England Journal of Medicine, 285, 1182–1186.PubMed Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. New England Journal of Medicine, 285, 1182–1186.PubMed
13.
go back to reference Ribatti, D., Vacca, A., & Dammacco, F. (1999). The role of the vascular phase in solid tumor growth: a historical review. Neoplasia, 1, 293–302.PubMed Ribatti, D., Vacca, A., & Dammacco, F. (1999). The role of the vascular phase in solid tumor growth: a historical review. Neoplasia, 1, 293–302.PubMed
14.
go back to reference Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386, 671–674.PubMed Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386, 671–674.PubMed
15.
go back to reference Ellis, L. M., Liu, W., Fan, F., Jung, Y. D., Reinmuth, N., Stoeltzing, O., et al. (2002). Synopsis of angiogenesis inhibitors in oncology. Oncology, 16, 14–22.PubMed Ellis, L. M., Liu, W., Fan, F., Jung, Y. D., Reinmuth, N., Stoeltzing, O., et al. (2002). Synopsis of angiogenesis inhibitors in oncology. Oncology, 16, 14–22.PubMed
16.
go back to reference Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257.PubMed Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257.PubMed
17.
go back to reference Hagedorn, M., & Bikfalvi, A. (2000). Target molecules for anti-angiogenic therapy: From basic research to clinical trials. Critical Reviews in Oncology/Hematology, 34, 89–110.PubMed Hagedorn, M., & Bikfalvi, A. (2000). Target molecules for anti-angiogenic therapy: From basic research to clinical trials. Critical Reviews in Oncology/Hematology, 34, 89–110.PubMed
18.
go back to reference Kuwano, M., Fukushi, J., Okamoto, M., Nishie, A., Goto, H., Ishibashi, T., et al. (2001). Angiogenesis factors. Internal Medicine, 40, 565–572.PubMed Kuwano, M., Fukushi, J., Okamoto, M., Nishie, A., Goto, H., Ishibashi, T., et al. (2001). Angiogenesis factors. Internal Medicine, 40, 565–572.PubMed
19.
go back to reference Rundhaug, J. E. (2005). Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine, 9, 267–285.PubMed Rundhaug, J. E. (2005). Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine, 9, 267–285.PubMed
20.
go back to reference Eliceiri, B. P., & Cheresh, D. A. (2000). Role of alpha v integrins during angiogenesis. Cancer Journal From Scientific American, 6, 245–249. Eliceiri, B. P., & Cheresh, D. A. (2000). Role of alpha v integrins during angiogenesis. Cancer Journal From Scientific American, 6, 245–249.
21.
go back to reference Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407, 242–248.PubMed Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407, 242–248.PubMed
22.
go back to reference Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389–395.PubMed Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389–395.PubMed
23.
go back to reference Auguste, P., Lemiere, S., & Larrieu-Lahargue, F. (2005). Molecular mechanisms of tumor vascularization. Critical Reviews in Oncology/Hematology, 54(1), 53–61.PubMed Auguste, P., Lemiere, S., & Larrieu-Lahargue, F. (2005). Molecular mechanisms of tumor vascularization. Critical Reviews in Oncology/Hematology, 54(1), 53–61.PubMed
24.
go back to reference Weber, W. A. (2006). Positron emission tomography as an imaging biomarker. Journal of Clinical Oncology, 24(20), 3282–3292.PubMed Weber, W. A. (2006). Positron emission tomography as an imaging biomarker. Journal of Clinical Oncology, 24(20), 3282–3292.PubMed
25.
go back to reference Jaffer, F. A., & Weissleder, R. (2005). Molecular imaging in the clinical arena. JAMA, 293, 855–862.PubMed Jaffer, F. A., & Weissleder, R. (2005). Molecular imaging in the clinical arena. JAMA, 293, 855–862.PubMed
26.
go back to reference Matsumoto, K., Kitamura, K., Mizuta, T., et al. (2006). Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high sensitivity and high resolution PET camera evaluated with the NEMA NU 2-2001 standard. Journal of Nuclear Medicine, 47, 83–90.PubMed Matsumoto, K., Kitamura, K., Mizuta, T., et al. (2006). Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high sensitivity and high resolution PET camera evaluated with the NEMA NU 2-2001 standard. Journal of Nuclear Medicine, 47, 83–90.PubMed
27.
go back to reference Chatziioannou, A. F. (2005). Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proceedings of the American Thoracic Society, 2, 533–536.PubMed Chatziioannou, A. F. (2005). Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proceedings of the American Thoracic Society, 2, 533–536.PubMed
28.
go back to reference Haubner, R., Finsinger, D., & Kessler, H. (1997). Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angewandte Chemie International Edition in English, 36, 1374–1389. Haubner, R., Finsinger, D., & Kessler, H. (1997). Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angewandte Chemie International Edition in English, 36, 1374–1389.
29.
go back to reference Haubner, R., Wester, H. J., Reuning, U., et al. (1999). Radiolabeled αvβ3 integrin antagonists: A new class of tracers for tumor targeting. Journal of Nuclear Medicine, 40, 1061–1071.PubMed Haubner, R., Wester, H. J., Reuning, U., et al. (1999). Radiolabeled αvβ3 integrin antagonists: A new class of tracers for tumor targeting. Journal of Nuclear Medicine, 40, 1061–1071.PubMed
30.
go back to reference Haubner, R., Wester, H. J., Weber, W. A., et al. (2001). Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Research, 61, 1781–1785.PubMed Haubner, R., Wester, H. J., Weber, W. A., et al. (2001). Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Research, 61, 1781–1785.PubMed
31.
go back to reference Haubner, R. (2006). αvβ3-Integrin imaging: A new approach to characterise angiogenesis? European Journal of Nuclear Medicine and Molecular Imaging, 33, 54–63.PubMed Haubner, R. (2006). αvβ3-Integrin imaging: A new approach to characterise angiogenesis? European Journal of Nuclear Medicine and Molecular Imaging, 33, 54–63.PubMed
32.
go back to reference Harris, J. M., Martin, N. E., & Modi, M. (2001). PEGylation: A novel process for modifying pharmacokinetics. Clinical Pharmacokinetics, 40, 539–551.PubMed Harris, J. M., Martin, N. E., & Modi, M. (2001). PEGylation: A novel process for modifying pharmacokinetics. Clinical Pharmacokinetics, 40, 539–551.PubMed
33.
go back to reference Chen, X., Park, R., Shahinian, A. H., et al. (2004). Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nuclear Medicine and Biology, 31, 11–19.PubMed Chen, X., Park, R., Shahinian, A. H., et al. (2004). Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nuclear Medicine and Biology, 31, 11–19.PubMed
34.
go back to reference van Hagen, P. M., Breeman, W. A., Bernard, H. F., et al. (2000). Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. International Journal of Cancer, 90, 186–198. van Hagen, P. M., Breeman, W. A., Bernard, H. F., et al. (2000). Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. International Journal of Cancer, 90, 186–198.
35.
go back to reference Bach-Gansmo, T., Danielsson, R., Saracco, A., Wilczek, B., Bogsrud, T. V., Fangberget, A., et al. (2006). Integrin receptor imaging of breast cancer: A proof-of-concept study to evaluate 99mTc-NC100692. Journal of Nuclear Medicine, 47(9), 1434–1439.PubMed Bach-Gansmo, T., Danielsson, R., Saracco, A., Wilczek, B., Bogsrud, T. V., Fangberget, A., et al. (2006). Integrin receptor imaging of breast cancer: A proof-of-concept study to evaluate 99mTc-NC100692. Journal of Nuclear Medicine, 47(9), 1434–1439.PubMed
36.
go back to reference Cai, W., Wu, Y., Chen, K., Cao, Q., Tice, D. A., & Chen, X. (2006). In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Research, 66, 9673–9681.PubMed Cai, W., Wu, Y., Chen, K., Cao, Q., Tice, D. A., & Chen, X. (2006). In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Research, 66, 9673–9681.PubMed
37.
go back to reference Haubner, R., Wester, H. J., Burkhart, F., Senekowitsch-Schmidtke, R., Weber, W., Goodman, S. L., et al. (2001). Glycosylated RGD-containing peptides: Tracer for tumor targeting and angiogenesis imaging with improved biokinetics. Journal of Nuclear Medicine, 42, 326–336.PubMed Haubner, R., Wester, H. J., Burkhart, F., Senekowitsch-Schmidtke, R., Weber, W., Goodman, S. L., et al. (2001). Glycosylated RGD-containing peptides: Tracer for tumor targeting and angiogenesis imaging with improved biokinetics. Journal of Nuclear Medicine, 42, 326–336.PubMed
38.
go back to reference Haubner, R., Kuhnast, B., Mang, C., Weber, W. A., Kessler, H., Wester, H. J., et al. (2004). [18F]Galacto-RGD: Synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjugate Chemistry, 15, 61–69.PubMed Haubner, R., Kuhnast, B., Mang, C., Weber, W. A., Kessler, H., Wester, H. J., et al. (2004). [18F]Galacto-RGD: Synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjugate Chemistry, 15, 61–69.PubMed
39.
go back to reference Felding-Habermann, B., Mueller, B. M., Romerdahl, C. A., & Cheresh, D. A. (1992). Involvement of integrin av gene expression in human melanoma tumorigenicity. Journal of Clinical Investigation, 89, 2018–2022.PubMed Felding-Habermann, B., Mueller, B. M., Romerdahl, C. A., & Cheresh, D. A. (1992). Involvement of integrin av gene expression in human melanoma tumorigenicity. Journal of Clinical Investigation, 89, 2018–2022.PubMed
40.
go back to reference Haubner, R., Weber, W. A., Beer, A. J., Vabuliene, E., Reim, D., Sarbia, M., et al. (2005). Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Medicine, 2(3), e70.PubMed Haubner, R., Weber, W. A., Beer, A. J., Vabuliene, E., Reim, D., Sarbia, M., et al. (2005). Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Medicine, 2(3), e70.PubMed
41.
go back to reference Myoken, Y., Kayada, Y., Okamoto, T., Kan, M., Sato, G. H., & Sato, J. D. (1991). Vascular endothelial cell growth factor (VEGF) produced by A-431 human epidermoid carcinoma cells and identification of VEGF membrane binding sites. Proceedings of the National Academy of Sciences of the United States of America, 88, 5818–5823. Myoken, Y., Kayada, Y., Okamoto, T., Kan, M., Sato, G. H., & Sato, J. D. (1991). Vascular endothelial cell growth factor (VEGF) produced by A-431 human epidermoid carcinoma cells and identification of VEGF membrane binding sites. Proceedings of the National Academy of Sciences of the United States of America, 88, 5818–5823.
42.
go back to reference Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., & Hanahan, D. (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 284, 808–812.PubMed Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., & Hanahan, D. (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 284, 808–812.PubMed
43.
go back to reference Pichler, B., Braumueller, H., Haubner, R., Sakrauski, A. K., Kneilling, M., Senekowitsch-Schmidtke, R., et al. (2002). Monitoring of cellular immunotherapy in RIP1-Tag2 transgenic mice with radiolabelled RGD-peptides. Journal of Nuclear Medicine, 43, 122, (abstract). Pichler, B., Braumueller, H., Haubner, R., Sakrauski, A. K., Kneilling, M., Senekowitsch-Schmidtke, R., et al. (2002). Monitoring of cellular immunotherapy in RIP1-Tag2 transgenic mice with radiolabelled RGD-peptides. Journal of Nuclear Medicine, 43, 122, (abstract).
44.
go back to reference Boturyn, D., Coll, J. L., Garanger, E., Favrot, M. C., & Dumy, P. (2004). Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. Journal of the American Chemical Society, 126, 5730–5739.PubMed Boturyn, D., Coll, J. L., Garanger, E., Favrot, M. C., & Dumy, P. (2004). Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. Journal of the American Chemical Society, 126, 5730–5739.PubMed
45.
go back to reference Goel, A., Baranowska-Kortylewicz, J., Hinrichs, S. H., Wisecarver, J., Pavlinkova, G., Augustine, S., et al. (2001). 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: Novel imaging agents for rapid in vivo localization of human colon carcinoma. Journal of Nuclear Medicine, 42, 1519–1527.PubMed Goel, A., Baranowska-Kortylewicz, J., Hinrichs, S. H., Wisecarver, J., Pavlinkova, G., Augustine, S., et al. (2001). 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: Novel imaging agents for rapid in vivo localization of human colon carcinoma. Journal of Nuclear Medicine, 42, 1519–1527.PubMed
46.
go back to reference Chen, X., Tohme, M., Park, R., Hou, Y., Bading, J. R., & Conti, P. S. (2004). Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Molecular Imaging, 3, 96–104.PubMed Chen, X., Tohme, M., Park, R., Hou, Y., Bading, J. R., & Conti, P. S. (2004). Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Molecular Imaging, 3, 96–104.PubMed
47.
go back to reference Zhang, X., Xiong, Z., Wu, X., et al. (2006). Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. Journal of Nuclear Medicine, 47, 113–121.PubMed Zhang, X., Xiong, Z., Wu, X., et al. (2006). Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. Journal of Nuclear Medicine, 47, 113–121.PubMed
48.
go back to reference Chen, X., Park, R., Tohme, M., Shahinian, A. H., Bading, J. R., & Conti, P. S. (2004). MicroPET and autoradiographic imaging of breast cancer av-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjugate Chemistry, 15, 41–49.PubMed Chen, X., Park, R., Tohme, M., Shahinian, A. H., Bading, J. R., & Conti, P. S. (2004). MicroPET and autoradiographic imaging of breast cancer av-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjugate Chemistry, 15, 41–49.PubMed
49.
go back to reference Chen, X., Hou, Y., Tohme, M., et al. (2004). PEGylated Arg–Gly–Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. Journal of Nuclear Medicine, 45, 1776–1783.PubMed Chen, X., Hou, Y., Tohme, M., et al. (2004). PEGylated Arg–Gly–Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. Journal of Nuclear Medicine, 45, 1776–1783.PubMed
50.
go back to reference Chen, X., Liu, S., Hou, Y., et al. (2004). MicroPET imaging of breast cancer av-integrin expression with 64Cu-labeled dimeric RGD peptides. Molecular Imaging and Biology, 6, 350–359.PubMed Chen, X., Liu, S., Hou, Y., et al. (2004). MicroPET imaging of breast cancer av-integrin expression with 64Cu-labeled dimeric RGD peptides. Molecular Imaging and Biology, 6, 350–359.PubMed
51.
go back to reference Wu, Y., Zhang, X., Xiong, Z., et al. (2005). MicroPET imaging of glioma av-integrin expression using 64Cu-labeled tetrameric RGD peptide. Journal of Nuclear Medicine, 46, 1707–1718.PubMed Wu, Y., Zhang, X., Xiong, Z., et al. (2005). MicroPET imaging of glioma av-integrin expression using 64Cu-labeled tetrameric RGD peptide. Journal of Nuclear Medicine, 46, 1707–1718.PubMed
52.
go back to reference Thumshirn, G., Hersel, U., Goodman, S. L., & Kessler, H. (2003). Multimeric cyclic RGD peptides as potential tools for tumor targeting: Solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry, 9, 2717–2725.PubMed Thumshirn, G., Hersel, U., Goodman, S. L., & Kessler, H. (2003). Multimeric cyclic RGD peptides as potential tools for tumor targeting: Solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry, 9, 2717–2725.PubMed
53.
go back to reference Poethko, T., Schottelius, M., Thumshirn, G., Hersel, U., Herz, M., Henriksen, G., et al. (2004). Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. Journal of Nuclear Medicine, 45, 892–902.PubMed Poethko, T., Schottelius, M., Thumshirn, G., Hersel, U., Herz, M., Henriksen, G., et al. (2004). Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. Journal of Nuclear Medicine, 45, 892–902.PubMed
54.
go back to reference Poethko, T., Schottelius, M., Thumshirn, G., Herz, M., Haubner, R., Henriksen, G., et al. (2004). Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochimica Acta, 92, 317–327. Poethko, T., Schottelius, M., Thumshirn, G., Herz, M., Haubner, R., Henriksen, G., et al. (2004). Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochimica Acta, 92, 317–327.
55.
go back to reference Montet, X., Montet-Abou, K., Reynolds, F., et al. (2006). Nanoparticle imaging of integrins on tumor cells. Neoplasia, 8(3), 214–222.PubMed Montet, X., Montet-Abou, K., Reynolds, F., et al. (2006). Nanoparticle imaging of integrins on tumor cells. Neoplasia, 8(3), 214–222.PubMed
56.
go back to reference Hu, G., Lijowski, M., Zhang, H., et al. (2007). Imaging of Vx-2 rabbit tumors with αvβ3- integrin-targeted 111In nanoparticles. International Journal of Cancer, 120, 1951–1957. Hu, G., Lijowski, M., Zhang, H., et al. (2007). Imaging of Vx-2 rabbit tumors with αvβ3- integrin-targeted 111In nanoparticles. International Journal of Cancer, 120, 1951–1957.
57.
go back to reference Balasubramanian, K., & Burghard, M. (2005). Chemically functionalized carbon nanotubes. Small, 1, 180–192.PubMed Balasubramanian, K., & Burghard, M. (2005). Chemically functionalized carbon nanotubes. Small, 1, 180–192.PubMed
58.
go back to reference Lacerda, L., Bianco, A., Prato, M., & Kostarelos, K. (2006). Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Advanced Drug Delivery Reviews, 58, 1460–1470.PubMed Lacerda, L., Bianco, A., Prato, M., & Kostarelos, K. (2006). Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Advanced Drug Delivery Reviews, 58, 1460–1470.PubMed
59.
go back to reference Liu, Z., Cai, W., He, L., et al. (2007). In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology, 2, 47–52.PubMed Liu, Z., Cai, W., He, L., et al. (2007). In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology, 2, 47–52.PubMed
60.
go back to reference Singh, R., Pantarotto, D., Lacerda, L., et al. (2006). Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 103, 3357–3362.PubMed Singh, R., Pantarotto, D., Lacerda, L., et al. (2006). Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 103, 3357–3362.PubMed
61.
go back to reference McDevitt, M. R., Chattopadhyay, D., Kappel, B. J., et al. (2007). Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. Journal of Nuclear Medicine, 48, 1180–1189.PubMed McDevitt, M. R., Chattopadhyay, D., Kappel, B. J., et al. (2007). Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. Journal of Nuclear Medicine, 48, 1180–1189.PubMed
62.
go back to reference Caliceti, P., & Veronese, F. M. (2003). Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Advanced Drug Delivery Reviews, 55, 1261–1277.PubMed Caliceti, P., & Veronese, F. M. (2003). Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Advanced Drug Delivery Reviews, 55, 1261–1277.PubMed
63.
go back to reference Wu, A. M., & Senter, P. D. (2005). Arming antibodies: Prospects and challenges for immunoconjugates. Nature Biotechnology, 23, 1137–1146.PubMed Wu, A. M., & Senter, P. D. (2005). Arming antibodies: Prospects and challenges for immunoconjugates. Nature Biotechnology, 23, 1137–1146.PubMed
64.
go back to reference Introcaso, C. E., Hivnor, C., Cowper, S., & Werth, V. P. (2007). Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: A case series of nine patients and review of the literature. International Journal of Dermatology, 46(5), 447–452.PubMed Introcaso, C. E., Hivnor, C., Cowper, S., & Werth, V. P. (2007). Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: A case series of nine patients and review of the literature. International Journal of Dermatology, 46(5), 447–452.PubMed
65.
go back to reference Miller, J. C., Pien, H. H., Sahani, D., et al. (2005). Imaging angiogenesis: Applications and potential for drug development. Journal of the National Cancer Institute, 97(3), 172–187.PubMedCrossRef Miller, J. C., Pien, H. H., Sahani, D., et al. (2005). Imaging angiogenesis: Applications and potential for drug development. Journal of the National Cancer Institute, 97(3), 172–187.PubMedCrossRef
66.
go back to reference Spuentrup, E., & Botnar, R. M. (2006). Coronary magnetic resonance imaging: Visualization of vessel lumen and the vessel wall and molecular imaging of arteriotrombosis. European Radiology, 16, 1–14.PubMed Spuentrup, E., & Botnar, R. M. (2006). Coronary magnetic resonance imaging: Visualization of vessel lumen and the vessel wall and molecular imaging of arteriotrombosis. European Radiology, 16, 1–14.PubMed
67.
go back to reference Jaffer, F. A., & Weissleder, R. (2004). Seeing within: Molecular imaging of the cardiovascular system. Circulation Research, 94, 433–445.PubMed Jaffer, F. A., & Weissleder, R. (2004). Seeing within: Molecular imaging of the cardiovascular system. Circulation Research, 94, 433–445.PubMed
68.
go back to reference Sipkins, D. A., Cheresh, D. A., Kazemi, M. R., Nevin, L. M., Bednarski, M. D., & Li, K. C. (1998). Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nature Medicine, 4, 623–626.PubMed Sipkins, D. A., Cheresh, D. A., Kazemi, M. R., Nevin, L. M., Bednarski, M. D., & Li, K. C. (1998). Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nature Medicine, 4, 623–626.PubMed
69.
go back to reference Winter, P. M., Caruthers, S. D., Kassner, A., et al. (2003). Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging. Cancer Research, 63, 5838–5843.PubMed Winter, P. M., Caruthers, S. D., Kassner, A., et al. (2003). Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging. Cancer Research, 63, 5838–5843.PubMed
70.
go back to reference Schmieder, A. H., Winter, P. M., Caruthers, S. D., et al. (2005). Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles. Magnetic Resonance in Medicine, 53, 621–627.PubMed Schmieder, A. H., Winter, P. M., Caruthers, S. D., et al. (2005). Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles. Magnetic Resonance in Medicine, 53, 621–627.PubMed
71.
go back to reference Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of Biomedical Engineering, 34, 23–38.PubMed Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of Biomedical Engineering, 34, 23–38.PubMed
72.
go back to reference Zhang, C., Jugold, M., Woenne, E. C., et al. (2007). Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Research, 67, 1555–1562.PubMed Zhang, C., Jugold, M., Woenne, E. C., et al. (2007). Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Research, 67, 1555–1562.PubMed
73.
go back to reference Daldrup-Link, H. E., Simon, G. H., & Brasch, R. C. (2006). Imaging of tumor angiogenesis: Current approaches and future prospects. Current Pharmaceutical Design, 12, 2661–2672.PubMed Daldrup-Link, H. E., Simon, G. H., & Brasch, R. C. (2006). Imaging of tumor angiogenesis: Current approaches and future prospects. Current Pharmaceutical Design, 12, 2661–2672.PubMed
74.
go back to reference McDonald, D. M., & Choyke, P. L. (2003). Imaging of angiogenesis: From microscope to clinic. Nature Medicine, 9(6), 713–725.PubMed McDonald, D. M., & Choyke, P. L. (2003). Imaging of angiogenesis: From microscope to clinic. Nature Medicine, 9(6), 713–725.PubMed
75.
go back to reference Bloch, S. H., Dayton, P. A., & Ferrara, K. W. (2004). Targeted imaging using ultrasound contrast agents. Progress and opportunities for clinical and research applications. IEEE Engineering in Medicine and Biology Magazine, 23, 18–29.PubMed Bloch, S. H., Dayton, P. A., & Ferrara, K. W. (2004). Targeted imaging using ultrasound contrast agents. Progress and opportunities for clinical and research applications. IEEE Engineering in Medicine and Biology Magazine, 23, 18–29.PubMed
76.
go back to reference Kaufmann, B. A., & Lindner, J. R. (2007). Molecular imaging with targeted contrast ultrasound. Current Opinion in Biotechnology, 18, 11–16.PubMed Kaufmann, B. A., & Lindner, J. R. (2007). Molecular imaging with targeted contrast ultrasound. Current Opinion in Biotechnology, 18, 11–16.PubMed
77.
go back to reference Ellegala, D. B., Leong-Poi, H., Carpenter, J. E., et al. (2003). Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation, 108, 336–341.PubMed Ellegala, D. B., Leong-Poi, H., Carpenter, J. E., et al. (2003). Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation, 108, 336–341.PubMed
78.
go back to reference Kumar, C. C., Nie, H., Rogers, C. P., et al. (1997). Biochemical characterization of the binding of echistatin to integrin αvβ3 receptor. Journal of Pharmacology and Experimental Therapeutics, 283, 843–853.PubMed Kumar, C. C., Nie, H., Rogers, C. P., et al. (1997). Biochemical characterization of the binding of echistatin to integrin αvβ3 receptor. Journal of Pharmacology and Experimental Therapeutics, 283, 843–853.PubMed
79.
go back to reference Hughes, M. S., Marsh, J. N., Zhang, H., et al. (2006). Characterization of digital waveforms using thermodynamic analogs: Detection of contrast-targeted tissue in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 1609–1616.PubMed Hughes, M. S., Marsh, J. N., Zhang, H., et al. (2006). Characterization of digital waveforms using thermodynamic analogs: Detection of contrast-targeted tissue in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 1609–1616.PubMed
80.
go back to reference Marsh, J. N., Partlow, K. C., Abendschein, D. R., Scott, M. J., Lanza, G. M., & Wickline, S. A. (2007). Molecular imaging with targeted perfluorocarbon nanoparticles: Quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound in Medicine & Biology, 33(6), 950–958. Marsh, J. N., Partlow, K. C., Abendschein, D. R., Scott, M. J., Lanza, G. M., & Wickline, S. A. (2007). Molecular imaging with targeted perfluorocarbon nanoparticles: Quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound in Medicine & Biology, 33(6), 950–958.
81.
go back to reference Ntziachristos, V., Yodh, A., Schnall, M., et al. (2000). Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proceedings of the National Academy of Sciences of the United States of America, 97, 2767–2772.PubMed Ntziachristos, V., Yodh, A., Schnall, M., et al. (2000). Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proceedings of the National Academy of Sciences of the United States of America, 97, 2767–2772.PubMed
82.
go back to reference Cuccia, D. J., Bevilacqua, F., Durkin, A. J., et al. (2003). In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration. Applied Optics, 42, 2940–2950.PubMed Cuccia, D. J., Bevilacqua, F., Durkin, A. J., et al. (2003). In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration. Applied Optics, 42, 2940–2950.PubMed
83.
go back to reference Bremer, C., Bredow, S., Mahmood, U., et al. (2001). Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model. Radiology, 221, 523–529.PubMed Bremer, C., Bredow, S., Mahmood, U., et al. (2001). Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model. Radiology, 221, 523–529.PubMed
84.
go back to reference Chen, X., Conti, P. S., & Moats, R. A. (2004). In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Research, 64(21), 8009–8014.PubMed Chen, X., Conti, P. S., & Moats, R. A. (2004). In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Research, 64(21), 8009–8014.PubMed
85.
go back to reference Jin, Z. H., Josserand, V., Foillard, S., Boturyn, D., Dumy, P., Favrot, M. C., et al. (2007). In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Molecular Cancer, 6, 41.PubMed Jin, Z. H., Josserand, V., Foillard, S., Boturyn, D., Dumy, P., Favrot, M. C., et al. (2007). In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Molecular Cancer, 6, 41.PubMed
86.
go back to reference von Wallbrunn, A., Holtke, C., Zuhlsdorf, M., Heindel, W., Schafers, M., & Bremer, C. (2007). In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography. European Journal of Nuclear Medicine and Molecular Imaging, 34(5), 745–754, Epub 2006 Nov 28. von Wallbrunn, A., Holtke, C., Zuhlsdorf, M., Heindel, W., Schafers, M., & Bremer, C. (2007). In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography. European Journal of Nuclear Medicine and Molecular Imaging, 34(5), 745–754, Epub 2006 Nov 28.
87.
go back to reference Cai, W., Hsu, A. R., Li, Z. B., & Chen, X. (2007). Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Research Letters, 2, 265–281. Cai, W., Hsu, A. R., Li, Z. B., & Chen, X. (2007). Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Research Letters, 2, 265–281.
88.
go back to reference Michalet, X., Pinaud, F. F., Bentolila, L. A., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.PubMed Michalet, X., Pinaud, F. F., Bentolila, L. A., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.PubMed
89.
go back to reference Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.PubMed Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.PubMed
90.
go back to reference Cai, W., Shin, D. W., Chen, K., et al. (2006). Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters, 6, 669–676.PubMed Cai, W., Shin, D. W., Chen, K., et al. (2006). Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters, 6, 669–676.PubMed
91.
go back to reference Levenson, R. M. (2004). Spectral imaging and pathology: Seeing more. Laboratory Medicine, 35, 244–251. Levenson, R. M. (2004). Spectral imaging and pathology: Seeing more. Laboratory Medicine, 35, 244–251.
92.
go back to reference Mansfield, J. R., Gossage, K. W., Hoyt, C. C., & Levenson, R. M. (2005). Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. Journal of Biomedical Optics, 10, 41207.PubMed Mansfield, J. R., Gossage, K. W., Hoyt, C. C., & Levenson, R. M. (2005). Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. Journal of Biomedical Optics, 10, 41207.PubMed
93.
go back to reference Zimmer, J. P., Kim, S. W., Ohnishi, S., Tanaka, E., Frangioni, J. V., & Bawendi, M. G. (2006). Size series of small indium arsenide-zinc selenide core-shell nanocrystals and application to in vivo imaging. Journal of the American Chemical Society, 128, 2526–2527.PubMed Zimmer, J. P., Kim, S. W., Ohnishi, S., Tanaka, E., Frangioni, J. V., & Bawendi, M. G. (2006). Size series of small indium arsenide-zinc selenide core-shell nanocrystals and application to in vivo imaging. Journal of the American Chemical Society, 128, 2526–2527.PubMed
94.
go back to reference Pradhan, N., Battaglia, D. M., Liu, Y., & Peng, X. (2007). Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Letters, 7, 312–317.PubMed Pradhan, N., Battaglia, D. M., Liu, Y., & Peng, X. (2007). Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Letters, 7, 312–317.PubMed
95.
go back to reference Mulder, W. J., Koole, R., Brandwijk, R. J., et al. (2006). Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Letters, 6, 1–6.PubMed Mulder, W. J., Koole, R., Brandwijk, R. J., et al. (2006). Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Letters, 6, 1–6.PubMed
96.
go back to reference Beer, A. J., Haubner, R., Goebel, M., et al. (2005). Biodistribution and pharmacokinetics of the αvβ3 selective tracer 18F Galacto-RGD in cancer patients. Journal of Nuclear Medicine, 46, 1333–1341.PubMed Beer, A. J., Haubner, R., Goebel, M., et al. (2005). Biodistribution and pharmacokinetics of the αvβ3 selective tracer 18F Galacto-RGD in cancer patients. Journal of Nuclear Medicine, 46, 1333–1341.PubMed
97.
go back to reference Beer, A. J., Haubner, R., Wolf, I., et al. (2006). PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. Journal of Nuclear Medicine, 47, 763–769.PubMed Beer, A. J., Haubner, R., Wolf, I., et al. (2006). PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. Journal of Nuclear Medicine, 47, 763–769.PubMed
98.
go back to reference Stangier, I., Wester, H. J., Schwaiger, M., & Beer, A. J. (2007). Comparison of standardised uptake values and distribution volume for imaging of avz3 expression in breast cancer patients with [18F]Galacto-RGD PET. Journal of Nuclear Medicine, 48(S2), 406, (abstract). Stangier, I., Wester, H. J., Schwaiger, M., & Beer, A. J. (2007). Comparison of standardised uptake values and distribution volume for imaging of avz3 expression in breast cancer patients with [18F]Galacto-RGD PET. Journal of Nuclear Medicine, 48(S2), 406, (abstract).
99.
go back to reference Beer, A. J., Haubner, R., Sarbia, M., Goebel, M., Luderschmidt, S., Grosu, A. L., et al. (2006). Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clinical Cancer Research, 12(13), 3942–3949.PubMed Beer, A. J., Haubner, R., Sarbia, M., Goebel, M., Luderschmidt, S., Grosu, A. L., et al. (2006). Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clinical Cancer Research, 12(13), 3942–3949.PubMed
100.
go back to reference Beer, A. J., Grosu, A. L., Carlsen, J., Kolk, A., Sarbia, M., Stangier, I., et al. (2007). [18F]Galacto-RGD PET for imaging of αvβ3 expression on neovasculature in patients with squamous cell carcinoma of the head and neck. Clinical Cancer Research, 13, 6610–6616.PubMed Beer, A. J., Grosu, A. L., Carlsen, J., Kolk, A., Sarbia, M., Stangier, I., et al. (2007). [18F]Galacto-RGD PET for imaging of αvβ3 expression on neovasculature in patients with squamous cell carcinoma of the head and neck. Clinical Cancer Research, 13, 6610–6616.PubMed
101.
go back to reference Beer, A. J., Lorenzen, S., Metz, S., Wester, H. J., & Schwaiger, M. (2007). Integrin avz3 expression and glucose metabolism do not correlate in primary and metastatic lesions in cancer patients: A PET study using [18F]Galacto-RGD and [18F]FDG. Journal of Nuclear Medicine, 48(S2), 30, (abstract). Beer, A. J., Lorenzen, S., Metz, S., Wester, H. J., & Schwaiger, M. (2007). Integrin avz3 expression and glucose metabolism do not correlate in primary and metastatic lesions in cancer patients: A PET study using [18F]Galacto-RGD and [18F]FDG. Journal of Nuclear Medicine, 48(S2), 30, (abstract).
Metadata
Title
Imaging of integrin αvβ3 expression
Authors
Ambros J. Beer
Markus Schwaiger
Publication date
01-12-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9158-3

Other articles of this Issue 4/2008

Cancer and Metastasis Reviews 4/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine