Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2008

01-12-2008

Imaging of tumor glucose utilization with positron emission tomography

Authors: Andrea Buerkle, Wolfgang A. Weber

Published in: Cancer and Metastasis Reviews | Issue 4/2008

Login to get access

Abstract

In recent years, imaging of tumor glucose metabolism with positron emission tomography and fluorodeoxyglucose (FDG-PET) has become a routine test for detection, staging and restaging of malignant lymphomas and many solid tumors. FDG-PET is also increasingly used to monitor the effects of chemotherapy. The success of FDG-PET in oncologic imaging has generated considerable interest in understanding the molecular mechanisms underlying the markedly accelerated glucose use of almost all human cancers. Recent studies have indicated that there may be a close relation between the activation of oncogenic signaling pathways and cellular glucose utilization. For example deregulation of Akt, ras and MYC as well as loss of p53 function have been reported to confer increased glucose metabolic rates in cancer cells. These findings suggest that imaging of tumor glucose utilization may represent a marker for the activity of oncogenic pathways and metabolic changes during therapy may be used as a readout for the effectiveness of drugs targeting these pathways. However, the mechanisms for increased glucose metabolic activity of cancers cells are multifactorial and clinical studies will be necessary to determine in which context imaging of tumor glucose metabolism may be used for treatment monitoring.
Literature
1.
go back to reference Cheson, B. D., Pfistner, B., Juweid, M. E., Gascoyne, R. D., Specht, L., Horning, S. J., et al. (2007). Revised response criteria for malignant lymphoma. Journal of Clinical Oncology, 25, 579–586.PubMedCrossRef Cheson, B. D., Pfistner, B., Juweid, M. E., Gascoyne, R. D., Specht, L., Horning, S. J., et al. (2007). Revised response criteria for malignant lymphoma. Journal of Clinical Oncology, 25, 579–586.PubMedCrossRef
2.
go back to reference IMV (2006). 2005/06 PET market summary report. IMV Medical Information Division: Des Plaines. IMV (2006). 2005/06 PET market summary report. IMV Medical Information Division: Des Plaines.
3.
go back to reference Warburg, O., Posener, K., & Negelein, E. (1924). Ueber den Stoffwechsel von Tumoren. Biochemische Zeitschrift, 152, 319–344. Warburg, O., Posener, K., & Negelein, E. (1924). Ueber den Stoffwechsel von Tumoren. Biochemische Zeitschrift, 152, 319–344.
4.
go back to reference Czernin, J., Allen-Auerbach, M., & Schelbert, H. R. (2007). Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. Journal of Nuclear Medicine, 48(Suppl 1), 78S–88S.PubMed Czernin, J., Allen-Auerbach, M., & Schelbert, H. R. (2007). Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. Journal of Nuclear Medicine, 48(Suppl 1), 78S–88S.PubMed
5.
go back to reference Israel, O., & Kuten, A. (2007). Early detection of cancer recurrence: 18F-FDG PET/CT can make a difference in diagnosis and patient care. Journal of Nuclear Medicine, 48(Suppl 1), 28S–35S.PubMed Israel, O., & Kuten, A. (2007). Early detection of cancer recurrence: 18F-FDG PET/CT can make a difference in diagnosis and patient care. Journal of Nuclear Medicine, 48(Suppl 1), 28S–35S.PubMed
6.
go back to reference Bunyaviroch, T., & Coleman, R. E. (2006). PET evaluation of lung cancer. Journal of Nuclear Medicine, 47, 451–469.PubMed Bunyaviroch, T., & Coleman, R. E. (2006). PET evaluation of lung cancer. Journal of Nuclear Medicine, 47, 451–469.PubMed
7.
go back to reference Seam, P., Juweid, M. E., & Cheson, B. D. (2007). The role of FDG-PET scans in patients with lymphoma. Blood, 110, 3507–3516.PubMedCrossRef Seam, P., Juweid, M. E., & Cheson, B. D. (2007). The role of FDG-PET scans in patients with lymphoma. Blood, 110, 3507–3516.PubMedCrossRef
8.
go back to reference Weber, W. A. (2005). Use of PET for monitoring cancer therapy and for predicting outcome. Journal of Nuclear Medicine, 46, 983–995.PubMed Weber, W. A. (2005). Use of PET for monitoring cancer therapy and for predicting outcome. Journal of Nuclear Medicine, 46, 983–995.PubMed
9.
go back to reference Rich, P. R. (2003). The molecular machinery of Keilin’s respiratory chain. Biochemical Society Transactions, 31, 1095–1105.PubMedCrossRef Rich, P. R. (2003). The molecular machinery of Keilin’s respiratory chain. Biochemical Society Transactions, 31, 1095–1105.PubMedCrossRef
10.
go back to reference Van Schaftingen, E., Jett, M. F., Hue, L., & Hers, H. G. (1981). Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proceedings of the National Academy of Sciences of the United States of America, 78, 3483–3486.PubMedCrossRef Van Schaftingen, E., Jett, M. F., Hue, L., & Hers, H. G. (1981). Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proceedings of the National Academy of Sciences of the United States of America, 78, 3483–3486.PubMedCrossRef
11.
go back to reference Telang, S., Yalcinm, A., Clem, A. L., Bucala, R., Lane, A. N., Eaton, J. W., et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 25, 7225–7234.PubMedCrossRef Telang, S., Yalcinm, A., Clem, A. L., Bucala, R., Lane, A. N., Eaton, J. W., et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 25, 7225–7234.PubMedCrossRef
12.
go back to reference Huang, S. C. (2000). Anatomy of SUV. Standardized uptake value. Nuclear Medicine and Biology, 27, 643–646.PubMedCrossRef Huang, S. C. (2000). Anatomy of SUV. Standardized uptake value. Nuclear Medicine and Biology, 27, 643–646.PubMedCrossRef
13.
go back to reference Weber, W. A., Petersen, V., Schmidt, B., Tyndale-Hines, L., Link, T., Peschel, C., et al. (2003). Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. Journal of Clinical Oncology, 21, 2651–2657.PubMedCrossRef Weber, W. A., Petersen, V., Schmidt, B., Tyndale-Hines, L., Link, T., Peschel, C., et al. (2003). Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. Journal of Clinical Oncology, 21, 2651–2657.PubMedCrossRef
14.
go back to reference Vesselle, H., Schmidt, R. A., Pugsley, J. M., Li, M., Kohlmyer, S. G., Vallires, E., et al. (2000). Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clinical Cancer Research, 6, 3837–3844.PubMed Vesselle, H., Schmidt, R. A., Pugsley, J. M., Li, M., Kohlmyer, S. G., Vallires, E., et al. (2000). Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clinical Cancer Research, 6, 3837–3844.PubMed
15.
go back to reference Buck, A., Halter, G., Schirrmeister, H., Kotzerke, J., Wurziger, I., Glatting, G., et al. (2003). Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. Journal of Nuclear Medicine, 44, 1432–1434. Buck, A., Halter, G., Schirrmeister, H., Kotzerke, J., Wurziger, I., Glatting, G., et al. (2003). Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. Journal of Nuclear Medicine, 44, 1432–1434.
16.
go back to reference van Baardwijk, A., Dooms, C., van Suylen, R. J., Verbeken, E., Hochstenbag, M., Dehing-Oberije, C., et al. (2007). The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. European Journal of Cancer, 43, 1392–1398.PubMedCrossRef van Baardwijk, A., Dooms, C., van Suylen, R. J., Verbeken, E., Hochstenbag, M., Dehing-Oberije, C., et al. (2007). The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. European Journal of Cancer, 43, 1392–1398.PubMedCrossRef
17.
go back to reference Yap, C. S., Czernin, J., Fishbein, M. C., Cameron, R. B., Schiepers, C., Phelps, M. E., et al. (2006). Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest, 129, 393–401.PubMedCrossRef Yap, C. S., Czernin, J., Fishbein, M. C., Cameron, R. B., Schiepers, C., Phelps, M. E., et al. (2006). Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest, 129, 393–401.PubMedCrossRef
18.
go back to reference Di Chiro, G. (1987). Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Investigative Radiology, 22, 360–371.PubMedCrossRef Di Chiro, G. (1987). Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Investigative Radiology, 22, 360–371.PubMedCrossRef
19.
go back to reference Folpe, A. L., Lyles, R. H., Sprouse, J. T., Conrad 3rd, E. U., & Eary, J. F. (2000). (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clinical Cancer Research, 6, 1279–1287.PubMed Folpe, A. L., Lyles, R. H., Sprouse, J. T., Conrad 3rd, E. U., & Eary, J. F. (2000). (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clinical Cancer Research, 6, 1279–1287.PubMed
20.
go back to reference Kole, A. C., Nieweg, O. E., Hoekstra, H. J., van Horn, J. R., Koops, H. S., & Vaalburg, W. (1998). Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. Journal of Nuclear Medicine, 39, 810–815.PubMed Kole, A. C., Nieweg, O. E., Hoekstra, H. J., van Horn, J. R., Koops, H. S., & Vaalburg, W. (1998). Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. Journal of Nuclear Medicine, 39, 810–815.PubMed
21.
go back to reference Fulham, M. J., Melisi, J. W., Nishimiya, J., Dwyer, A. J., & Di Chiro, G. (1993). Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology, 189, 221–225.PubMed Fulham, M. J., Melisi, J. W., Nishimiya, J., Dwyer, A. J., & Di Chiro, G. (1993). Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology, 189, 221–225.PubMed
22.
go back to reference Bos, R., van Der Hoeven, J. J., van Der Wall, E., van Der Groep, P., van Diest, P. J., Comans, E. F., et al. (2002). Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. Journal of Clinical Oncology, 20, 379–387.PubMedCrossRef Bos, R., van Der Hoeven, J. J., van Der Wall, E., van Der Groep, P., van Diest, P. J., Comans, E. F., et al. (2002). Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. Journal of Clinical Oncology, 20, 379–387.PubMedCrossRef
23.
go back to reference Westerterp, M., Sloof, G. W., Hoekstra, O. S., Ten Kate, F. J., Meijer, G. A., Reitsma, J. B., et al. (2008). (18)FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. Journal of Cancer Research and Clinical Oncology, 134, 227–236.PubMedCrossRef Westerterp, M., Sloof, G. W., Hoekstra, O. S., Ten Kate, F. J., Meijer, G. A., Reitsma, J. B., et al. (2008). (18)FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. Journal of Cancer Research and Clinical Oncology, 134, 227–236.PubMedCrossRef
24.
go back to reference Yen, T. C., See, L. C., Lai, C. H., Yah-Huei, C. W., Ng, K. K., Ma, S. Y., et al. (2004). 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. Journal of Nuclear Medicine, 45, 22–29.PubMed Yen, T. C., See, L. C., Lai, C. H., Yah-Huei, C. W., Ng, K. K., Ma, S. Y., et al. (2004). 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. Journal of Nuclear Medicine, 45, 22–29.PubMed
25.
go back to reference Tohma, T., Okazumi, S., Makino, H., Cho, A., Mochiduki, R., Shuto, K., et al. (2005). Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepato-Gastroenterology, 52, 486–490.PubMed Tohma, T., Okazumi, S., Makino, H., Cho, A., Mochiduki, R., Shuto, K., et al. (2005). Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepato-Gastroenterology, 52, 486–490.PubMed
26.
go back to reference Yamada, K., Brink, I., Bisse, E., Epting, T., & Engelhardt, R. (2005). Factors influencing [F-18] 2-fluoro-2-deoxy-d-glucose (F-18 FDG) uptake in melanoma cells: the role of proliferation rate, viability, glucose transporter expression and hexokinase activity. Journal of Dermatology, 32, 316–334.PubMed Yamada, K., Brink, I., Bisse, E., Epting, T., & Engelhardt, R. (2005). Factors influencing [F-18] 2-fluoro-2-deoxy-d-glucose (F-18 FDG) uptake in melanoma cells: the role of proliferation rate, viability, glucose transporter expression and hexokinase activity. Journal of Dermatology, 32, 316–334.PubMed
27.
go back to reference Mamede, M., Higashi, T., Kitaichi, M., Ishizu, K., Ishimori, T., Nakamoto, Y., et al. (2005). [18F]FDG uptake and PCNA, glut-1, and hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia, 7, 369–379.PubMedCrossRef Mamede, M., Higashi, T., Kitaichi, M., Ishizu, K., Ishimori, T., Nakamoto, Y., et al. (2005). [18F]FDG uptake and PCNA, glut-1, and hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia, 7, 369–379.PubMedCrossRef
28.
go back to reference de Geus-Oei, L. F., van Krieken, J. H., Aliredjo, R. P., Krabbe, P. F., Frielink, C., Verhagen, A. F., et al. (2007). Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer, 55, 79–87.PubMedCrossRef de Geus-Oei, L. F., van Krieken, J. H., Aliredjo, R. P., Krabbe, P. F., Frielink, C., Verhagen, A. F., et al. (2007). Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer, 55, 79–87.PubMedCrossRef
29.
go back to reference Aloj, L., Caraco, C., Jagoda, E., Eckelman, W. C., & Neumann, R. D. (1999). Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Research, 59, 4709–4714.PubMed Aloj, L., Caraco, C., Jagoda, E., Eckelman, W. C., & Neumann, R. D. (1999). Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Research, 59, 4709–4714.PubMed
30.
go back to reference Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nature Reviews Cancer, 8, 56–61.PubMedCrossRef Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nature Reviews Cancer, 8, 56–61.PubMedCrossRef
31.
go back to reference Kim, J. W., Gao, P., & Dang, C. V. (2007). Effects of hypoxia on tumor metabolism. Cancer and Metastasis Reviews, 26, 291–298.PubMedCrossRef Kim, J. W., Gao, P., & Dang, C. V. (2007). Effects of hypoxia on tumor metabolism. Cancer and Metastasis Reviews, 26, 291–298.PubMedCrossRef
32.
go back to reference Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., et al. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11, 407–420.PubMedCrossRef Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., et al. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11, 407–420.PubMedCrossRef
33.
go back to reference Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3, 177–185.PubMedCrossRef Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3, 177–185.PubMedCrossRef
34.
go back to reference Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269, 23757–23763.PubMed Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269, 23757–23763.PubMed
35.
go back to reference Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.PubMedCrossRef Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.PubMedCrossRef
36.
go back to reference Riddle, S. R., Ahmad, A., Ahmad, S., Deeb, S. S., Malkki, M., Schneider, B. K., et al. (2000). Hypoxia induces hexokinase II gene expression in human lung cell line A549. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L407–L416.PubMed Riddle, S. R., Ahmad, A., Ahmad, S., Deeb, S. S., Malkki, M., Schneider, B. K., et al. (2000). Hypoxia induces hexokinase II gene expression in human lung cell line A549. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L407–L416.PubMed
37.
go back to reference Burgman, P., Odonoghue, J. A., Humm, J. L., & Ling, C. C. (2001). Hypoxia-induced increase in FDG uptake in MCF7 cells. Journal of Nuclear Medicine, 42, 170–175.PubMed Burgman, P., Odonoghue, J. A., Humm, J. L., & Ling, C. C. (2001). Hypoxia-induced increase in FDG uptake in MCF7 cells. Journal of Nuclear Medicine, 42, 170–175.PubMed
38.
go back to reference Clavo, A. C., Brown, R. S., & Wahl, R. L. (1995). Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. Journal of Nuclear Medicine, 36, 1625–1632.PubMed Clavo, A. C., Brown, R. S., & Wahl, R. L. (1995). Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. Journal of Nuclear Medicine, 36, 1625–1632.PubMed
39.
go back to reference Cherk, M. H., Foo, S. S., Poon, A. M., Knight, S. R., Murone, C., Papenfuss, A. T., et al. (2006). Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. Journal of Nuclear Medicine, 47, 1921–1926.PubMed Cherk, M. H., Foo, S. S., Poon, A. M., Knight, S. R., Murone, C., Papenfuss, A. T., et al. (2006). Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. Journal of Nuclear Medicine, 47, 1921–1926.PubMed
40.
go back to reference Rajendran, J. G., Mankoff, D. A., O'Sullivan, F., Peterson, L. M., Schwartz, D. L., Conrad, E. U., et al. (2004). Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clinical Cancer Research, 10, 2245–2252.PubMedCrossRef Rajendran, J. G., Mankoff, D. A., O'Sullivan, F., Peterson, L. M., Schwartz, D. L., Conrad, E. U., et al. (2004). Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clinical Cancer Research, 10, 2245–2252.PubMedCrossRef
41.
go back to reference Rajendran, J. G., Wilson, D. C., Conrad, E. U., Peterson, L. M., Bruckner, J. D., Rasey, J. S., et al. (2003). [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. European Journal of Nuclear Medicine and Molecular Imaging, 30, 695–704.PubMed Rajendran, J. G., Wilson, D. C., Conrad, E. U., Peterson, L. M., Bruckner, J. D., Rasey, J. S., et al. (2003). [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. European Journal of Nuclear Medicine and Molecular Imaging, 30, 695–704.PubMed
42.
go back to reference Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., et al. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 6658–6663.PubMedCrossRef Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., et al. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 6658–6663.PubMedCrossRef
43.
go back to reference Kim, J. W., & Dang, C. V. (2006). Cancer’s molecular sweet tooth and the Warburg effect. Cancer Research, 66, 8927–8930.PubMedCrossRef Kim, J. W., & Dang, C. V. (2006). Cancer’s molecular sweet tooth and the Warburg effect. Cancer Research, 66, 8927–8930.PubMedCrossRef
44.
45.
go back to reference Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes and Development, 14, 34–44.PubMed Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes and Development, 14, 34–44.PubMed
46.
go back to reference Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. Genes and Development, 14, 391–396.PubMed Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. Genes and Development, 14, 391–396.PubMed
47.
go back to reference Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Research, 60, 1541–1545.PubMed Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Research, 60, 1541–1545.PubMed
48.
go back to reference Jiang, B. H., Agani, F., Passaniti, A., & Semenza, G. L. (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Research, 57, 5328–5335.PubMed Jiang, B. H., Agani, F., Passaniti, A., & Semenza, G. L. (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Research, 57, 5328–5335.PubMed
49.
go back to reference Fukuda, R., Hirota, K., Fan, F., Jung, Y. D., Ellis, L. M., & Semenza, G. L. (2002). Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. Journal of Biological Chemistry, 277, 38205–38211.PubMedCrossRef Fukuda, R., Hirota, K., Fan, F., Jung, Y. D., Ellis, L. M., & Semenza, G. L. (2002). Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. Journal of Biological Chemistry, 277, 38205–38211.PubMedCrossRef
50.
go back to reference Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C., & Semenza, G. L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21, 3995–4004.PubMedCrossRef Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C., & Semenza, G. L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21, 3995–4004.PubMedCrossRef
51.
go back to reference Liu, X. H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J. F., et al. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. Journal of Biological Chemistry, 277, 50081–50086.PubMedCrossRef Liu, X. H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J. F., et al. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. Journal of Biological Chemistry, 277, 50081–50086.PubMedCrossRef
52.
go back to reference Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., & Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. Journal of Biological Chemistry, 276, 9519–9525.PubMedCrossRef Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., & Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. Journal of Biological Chemistry, 276, 9519–9525.PubMedCrossRef
53.
go back to reference Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G., & Kloog, Y. (2005). Ras inhibition in glioblastoma downregulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Research, 65, 999–1006.PubMed Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G., & Kloog, Y. (2005). Ras inhibition in glioblastoma downregulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Research, 65, 999–1006.PubMed
54.
go back to reference Chesney, J. (2006). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 535–539.PubMedCrossRef Chesney, J. (2006). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 535–539.PubMedCrossRef
55.
go back to reference Zdychova, J., & Komers, R. (2005). Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiological Research, 54, 1–16.PubMed Zdychova, J., & Komers, R. (2005). Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiological Research, 54, 1–16.PubMed
56.
go back to reference Thompson, J. E., & Thompson, C. B. (2004). Putting the rap on Akt. Journal of Clinical Oncology, 22, 4217–4226.PubMedCrossRef Thompson, J. E., & Thompson, C. B. (2004). Putting the rap on Akt. Journal of Clinical Oncology, 22, 4217–4226.PubMedCrossRef
57.
go back to reference Plas, D. R., & Thompson, C. B. (2005). Akt-dependent transformation: there is more to growth than just surviving. Oncogene, 24, 7435–7442.PubMedCrossRef Plas, D. R., & Thompson, C. B. (2005). Akt-dependent transformation: there is more to growth than just surviving. Oncogene, 24, 7435–7442.PubMedCrossRef
58.
go back to reference Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., et al. (2004). Hexokinase–mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Molecular Cell, 16, 819–830.PubMedCrossRef Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., et al. (2004). Hexokinase–mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Molecular Cell, 16, 819–830.PubMedCrossRef
59.
go back to reference Pastorino, J. G., Hoek, J. B., & Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Research, 65, 10545–10554.PubMedCrossRef Pastorino, J. G., Hoek, J. B., & Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Research, 65, 10545–10554.PubMedCrossRef
60.
go back to reference Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R., et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Research, 64, 3892–3899.PubMedCrossRef Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R., et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Research, 64, 3892–3899.PubMedCrossRef
61.
go back to reference Majumder, P. K., Febbo, P. G., Bikoff, R., Berger, R., Xue, Q., McMahon, L. M., et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine, 10, 594–601.PubMedCrossRef Majumder, P. K., Febbo, P. G., Bikoff, R., Berger, R., Xue, Q., McMahon, L. M., et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine, 10, 594–601.PubMedCrossRef
62.
go back to reference Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. Science, 312, 1650–1653.PubMedCrossRef Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. Science, 312, 1650–1653.PubMedCrossRef
63.
go back to reference Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Research, 65, 177–185.PubMed Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Research, 65, 177–185.PubMed
64.
go back to reference Levine, A. J., Feng, Z., Mak, T. W., You, H., & Jin, S. (2006). Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes and Development, 20, 267–275.PubMedCrossRef Levine, A. J., Feng, Z., Mak, T. W., You, H., & Jin, S. (2006). Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes and Development, 20, 267–275.PubMedCrossRef
65.
go back to reference Smith, T. A., Sharma, R. I., Thompson, A. M., & Paulin, F. E. (2006). Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. Journal of Nuclear Medicine, 47, 1525–1530.PubMed Smith, T. A., Sharma, R. I., Thompson, A. M., & Paulin, F. E. (2006). Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. Journal of Nuclear Medicine, 47, 1525–1530.PubMed
66.
go back to reference Riedl, C. C., Akhurst, T., Larson, S., Stanziale, S. F., Tuorto, S., Bhargava, A., et al. (2007). 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. Journal of Nuclear Medicine, 48, 771–775.PubMedCrossRef Riedl, C. C., Akhurst, T., Larson, S., Stanziale, S. F., Tuorto, S., Bhargava, A., et al. (2007). 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. Journal of Nuclear Medicine, 48, 771–775.PubMedCrossRef
67.
go back to reference Gottlieb, E., & Tomlinson, I. P. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews Cancer, 5, 857–866.PubMedCrossRef Gottlieb, E., & Tomlinson, I. P. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews Cancer, 5, 857–866.PubMedCrossRef
68.
go back to reference Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287, 848–851.PubMedCrossRef Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287, 848–851.PubMedCrossRef
69.
go back to reference Niemann, S., & Muller, U. (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genetics, 26, 268–270.PubMedCrossRef Niemann, S., & Muller, U. (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genetics, 26, 268–270.PubMedCrossRef
70.
go back to reference Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., et al. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genetics, 30, 406–410.PubMedCrossRef Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., et al. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genetics, 30, 406–410.PubMedCrossRef
71.
go back to reference Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77–85.PubMedCrossRef Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77–85.PubMedCrossRef
72.
go back to reference Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11, 37–51.PubMedCrossRef Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11, 37–51.PubMedCrossRef
73.
go back to reference Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.PubMedCrossRef Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.PubMedCrossRef
74.
go back to reference Thomas, G. V., Tran, C., Mellinghoff, I. K., Welsbie, D. S., Chan, E., Fueger, B., et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Medicine, 12, 122–127.PubMedCrossRef Thomas, G. V., Tran, C., Mellinghoff, I. K., Welsbie, D. S., Chan, E., Fueger, B., et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Medicine, 12, 122–127.PubMedCrossRef
75.
go back to reference Majhail, N. S., Urbain, J. L., Albani, J. M., Kanvinde, M. H., Rice, T. W., Novick, A. C., et al. (2003). F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. Journal of Clinical Oncology, 21, 3995–4000.PubMedCrossRef Majhail, N. S., Urbain, J. L., Albani, J. M., Kanvinde, M. H., Rice, T. W., Novick, A. C., et al. (2003). F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. Journal of Clinical Oncology, 21, 3995–4000.PubMedCrossRef
76.
go back to reference Van den Abbeele, A. D., & Badawi, R. D. (2002). Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). European Journal of Cancer, 38(Suppl 5), S60–S65.PubMed Van den Abbeele, A. D., & Badawi, R. D. (2002). Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). European Journal of Cancer, 38(Suppl 5), S60–S65.PubMed
77.
go back to reference Stroobants, S., Goeminne, J., Seegers, M., Dimitrijevic, S., Dupont, P., Nuyts, J., et al. (2003). 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). European Journal of Cancer, 39, 2012–2020.PubMedCrossRef Stroobants, S., Goeminne, J., Seegers, M., Dimitrijevic, S., Dupont, P., Nuyts, J., et al. (2003). 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). European Journal of Cancer, 39, 2012–2020.PubMedCrossRef
78.
go back to reference Cullinane, C., Dorow, D. S., Kansara, M., Conus, N., Binns, D., Hicks, R. J., et al. (2005). An in vivo tumor model exploiting metabolic response as a biomarker for targeted drug development. Cancer Research, 65, 9633–9636.PubMedCrossRef Cullinane, C., Dorow, D. S., Kansara, M., Conus, N., Binns, D., Hicks, R. J., et al. (2005). An in vivo tumor model exploiting metabolic response as a biomarker for targeted drug development. Cancer Research, 65, 9633–9636.PubMedCrossRef
79.
go back to reference Su, H., Bodenstein, C., Dumont, R. A., Seimbille, Y., Dubinett, S., Phelps, M. E., et al. (2006). Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clinical Cancer Research, 12, 5659–5667.PubMedCrossRef Su, H., Bodenstein, C., Dumont, R. A., Seimbille, Y., Dubinett, S., Phelps, M. E., et al. (2006). Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clinical Cancer Research, 12, 5659–5667.PubMedCrossRef
80.
go back to reference Gatenby, R. A., & Gillies, R. J. (2007). Glycolysis in cancer: a potential target for therapy. International Journal of Biochemistry and Cell Biology, 39, 1358–1366.PubMedCrossRef Gatenby, R. A., & Gillies, R. J. (2007). Glycolysis in cancer: a potential target for therapy. International Journal of Biochemistry and Cell Biology, 39, 1358–1366.PubMedCrossRef
Metadata
Title
Imaging of tumor glucose utilization with positron emission tomography
Authors
Andrea Buerkle
Wolfgang A. Weber
Publication date
01-12-2008
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2008
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9151-x

Other articles of this Issue 4/2008

Cancer and Metastasis Reviews 4/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine