Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 9/2019

01-09-2019 | Original Paper

Simultaneous evaluation of plaque stability and ischemic potential of coronary lesions in a fluid–structure interaction analysis

Authors: Xinlei Wu, Clemens von Birgelen, Su Zhang, Daixin Ding, Jiayue Huang, Shengxian Tu

Published in: The International Journal of Cardiovascular Imaging | Issue 9/2019

Login to get access

Abstract

The measurement of fractional flow reserve (FFR) and superficial wall stress (SWS) identifies inducible myocardial ischemia and plaque vulnerability, respectively. A simultaneous evaluation of both FFR and SWS is still lacking, while it may have a major impact on therapy. A new computational model of one-way fluid–structure interaction (FSI) was implemented and used to perform a total of 54 analyses in virtual coronary lesion models, based on plaque compositions, arterial remodeling patterns, and stenosis morphologies under physiological conditions. Due to a greater lumen dilation and more induced strain, FFR in the lipid-rich lesions (0.81 ± 0.15) was higher than that in fibrous lesions (0.79 ± 0.16, P = 0.001) and calcified lesions (0.79 ± 0.16, P = 0.001). Four types of lesions were further defined, based on the combination of cutoff values for FFR (0.80) and maximum relative SWS (30 kPa): The level of risk increased from (1) plaques with mild-to-moderate stenosis but negative remodeling for lipid-rich (Type A: non-ischemic, stable) to (2) lipid-rich plaques with mild-to-moderate stenosis and without-to-positive remodeling (Type B: non-ischemic, unstable) or plaques with severe stenosis but negative remodeling for lipid-rich (Type C: ischemic, stable) to (3) lipid-rich plaques with severe stenosis and without-to-positive remodeling (Type D: ischemic, unstable). The analysis of FSI to simultaneously evaluate inducible myocardial ischemia and plaque stability may be useful to identify coronary lesions at a high risk and to ultimately optimize treatment. Further research is warranted to assess whether a more aggressive treatment may improve the prognosis of patients with non-ischemic, intermediate, and unstable lesions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241CrossRefPubMed Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241CrossRefPubMed
2.
go back to reference Van De Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JAE, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 7(8):439–452CrossRef Van De Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JAE, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 7(8):439–452CrossRef
3.
go back to reference Pijls NHJ, Tanaka N, Fearon WF (2013) Functional assessment of coronary stenoses: can we live without it? Eur Heart J 34(18):1335–1344CrossRefPubMed Pijls NHJ, Tanaka N, Fearon WF (2013) Functional assessment of coronary stenoses: can we live without it? Eur Heart J 34(18):1335–1344CrossRefPubMed
4.
go back to reference Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P, Comaniciu D (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52CrossRefPubMed Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P, Comaniciu D (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52CrossRefPubMed
5.
go back to reference Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W, Reiber JHC (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count. JACC Cardiovasc Interv 7(7):768–777CrossRefPubMed Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W, Reiber JHC (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count. JACC Cardiovasc Interv 7(7):768–777CrossRefPubMed
6.
go back to reference Wu X, von Birgelen C, Li Z, Zhang S, Huang J, Liang F, Li Y, Wijns W, Tu S (2018) Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo. Int J Cardiovasc Imaging 34(2):1–13 Wu X, von Birgelen C, Li Z, Zhang S, Huang J, Liang F, Li Y, Wijns W, Tu S (2018) Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo. Int J Cardiovasc Imaging 34(2):1–13
7.
go back to reference Kwak BR, Baeck M, Bochaton-Piallat M-L, Caligiuri G, Daemens MJAP, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35(43):3013–3020CrossRefPubMedPubMedCentral Kwak BR, Baeck M, Bochaton-Piallat M-L, Caligiuri G, Daemens MJAP, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35(43):3013–3020CrossRefPubMedPubMedCentral
8.
go back to reference Ohayon J, Finet G, Le Floc’h S, Cloutier G, Gharib AM, Heroux J, Pettigrew RI (2014) Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling. Ann Biomed Eng 42(2):269–279CrossRefPubMed Ohayon J, Finet G, Le Floc’h S, Cloutier G, Gharib AM, Heroux J, Pettigrew RI (2014) Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling. Ann Biomed Eng 42(2):269–279CrossRefPubMed
9.
go back to reference Brown AJ, Teng Z, Calvert PA, Rajani NK, Hennessy O, Nerlekar N, Obaid DR, Costopoulos C, Huang Y, Hoole SP, Goddard M, West NEJ, Gillard JH, Bennett MR (2016) Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging. Circ Cardiovasc Imaging 9(6):e004172CrossRefPubMed Brown AJ, Teng Z, Calvert PA, Rajani NK, Hennessy O, Nerlekar N, Obaid DR, Costopoulos C, Huang Y, Hoole SP, Goddard M, West NEJ, Gillard JH, Bennett MR (2016) Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging. Circ Cardiovasc Imaging 9(6):e004172CrossRefPubMed
10.
go back to reference Holzapfela GA, Mulvihillb JJ, Cunnaneb EM, Walshb MT (2014) Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech 47(4):859–869CrossRef Holzapfela GA, Mulvihillb JJ, Cunnaneb EM, Walshb MT (2014) Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech 47(4):859–869CrossRef
11.
go back to reference Akyildiz AC, Speelman L, Gijsen FJH (2014) Mechanical properties of human atherosclerotic intima tissue. J Biomech 47(4):773–783CrossRefPubMed Akyildiz AC, Speelman L, Gijsen FJH (2014) Mechanical properties of human atherosclerotic intima tissue. J Biomech 47(4):773–783CrossRefPubMed
12.
go back to reference Thondapu V, Bourantas CV, Foin N, Jang I-K, Serruys PW, Barlis P (2016) Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J 38(2):81–92 Thondapu V, Bourantas CV, Foin N, Jang I-K, Serruys PW, Barlis P (2016) Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J 38(2):81–92
13.
go back to reference Wu X, von Birgelen C, Muramatsu T, Li Y, Holm NR, Reiber JHC, Tu S (2017) A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture. EuroIntervention 13(9):1099–1103CrossRef Wu X, von Birgelen C, Muramatsu T, Li Y, Holm NR, Reiber JHC, Tu S (2017) A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture. EuroIntervention 13(9):1099–1103CrossRef
14.
go back to reference Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Kim WY (2008) Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J Biomech 41(8):1651–1658CrossRefPubMed Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Kim WY (2008) Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J Biomech 41(8):1651–1658CrossRefPubMed
15.
go back to reference Teng Zhongzhao, Canton Gador, Yuan Chun, Ferguson Marina, Yang Chun, Huang Xueying, Zheng Jie, Woodard Pamela K, Tang Dalin (2010) 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: an in vivo MRI-based 3D FSI study. J Biomech Eng-Trans ASME 132(3):031007CrossRef Teng Zhongzhao, Canton Gador, Yuan Chun, Ferguson Marina, Yang Chun, Huang Xueying, Zheng Jie, Woodard Pamela K, Tang Dalin (2010) 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: an in vivo MRI-based 3D FSI study. J Biomech Eng-Trans ASME 132(3):031007CrossRef
16.
go back to reference Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, Billiar K, Bach R, Ku DN (2009) 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J Biomech Eng-Trans ASME 131(6):061010CrossRef Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, Billiar K, Bach R, Ku DN (2009) 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J Biomech Eng-Trans ASME 131(6):061010CrossRef
17.
go back to reference Marques KMJ, Spruijt HJ, Boer C, Westerhof N, Visser CA, Visser FC (2002) The diastolic flow-pressure gradient relation in coronary stenoses in humans. J Am Coll Cardiol 39(10):1630–1636CrossRefPubMed Marques KMJ, Spruijt HJ, Boer C, Westerhof N, Visser CA, Visser FC (2002) The diastolic flow-pressure gradient relation in coronary stenoses in humans. J Am Coll Cardiol 39(10):1630–1636CrossRefPubMed
18.
go back to reference Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. A J Physiol-Heart Circ Physiol 293(3):H1987–H1996CrossRef Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. A J Physiol-Heart Circ Physiol 293(3):H1987–H1996CrossRef
19.
go back to reference Wolf K, Bayrasy P, Brodbeck C, Kalmykov I, Oeckerath A, Wirth N (2017) MpCCI neutral interfaces for multiphysics simulations. Springer, New YorkCrossRef Wolf K, Bayrasy P, Brodbeck C, Kalmykov I, Oeckerath A, Wirth N (2017) MpCCI neutral interfaces for multiphysics simulations. Springer, New YorkCrossRef
20.
go back to reference Young DF, Cholvin NR, Kirkeeide RL, Roth AC (1977) Hemodynamics of arterial stenoses at elevated flow rates. Circ Res 41(1):99–107CrossRefPubMed Young DF, Cholvin NR, Kirkeeide RL, Roth AC (1977) Hemodynamics of arterial stenoses at elevated flow rates. Circ Res 41(1):99–107CrossRefPubMed
21.
go back to reference Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NEJ, Gillard JH, Teng Z, Bennett MR (2017) Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging 10:1472CrossRefPubMedPubMedCentral Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NEJ, Gillard JH, Teng Z, Bennett MR (2017) Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging 10:1472CrossRefPubMedPubMedCentral
22.
go back to reference Chu M, von Birgelen C, Li Y, Westra J, Yang J, Holm NR, Reiber JHC, Wijns W, Tu S (2018) Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve. Atherosclerosis 273:136–144CrossRefPubMed Chu M, von Birgelen C, Li Y, Westra J, Yang J, Holm NR, Reiber JHC, Wijns W, Tu S (2018) Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve. Atherosclerosis 273:136–144CrossRefPubMed
23.
go back to reference Stroud JS, Berger SA, Saloner D (2000) Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J Biomech 33(4):443–455CrossRefPubMed Stroud JS, Berger SA, Saloner D (2000) Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J Biomech 33(4):443–455CrossRefPubMed
24.
go back to reference Pijls NHJ, Sels J-W (2012) Functional measurement of coronary stenosis. J Am Coll Cardiol 59(12):1045–1057CrossRefPubMed Pijls NHJ, Sels J-W (2012) Functional measurement of coronary stenosis. J Am Coll Cardiol 59(12):1045–1057CrossRefPubMed
25.
go back to reference Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, vant Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, Maccarthy PA, Fearon WF (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224CrossRefPubMed Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, vant Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, Maccarthy PA, Fearon WF (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224CrossRefPubMed
26.
go back to reference De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, Jagic N, Möbius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF (2012) Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001CrossRefPubMed De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, Jagic N, Möbius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF (2012) Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001CrossRefPubMed
27.
go back to reference Mosher P, Ross J, Mcfate PA, Shaw RF (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14(3):250–259CrossRefPubMed Mosher P, Ross J, Mcfate PA, Shaw RF (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14(3):250–259CrossRefPubMed
29.
go back to reference Choi G, Lee JM, Kim HJ, Park JB, Sankaran S, Otake H, Doh JH, Nam CW, Shin ES, Taylor CA (2015) Coronary artery axial plaque stress and its relationship with lesion geometry: application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc Imaging 8(10):1156–1166CrossRefPubMed Choi G, Lee JM, Kim HJ, Park JB, Sankaran S, Otake H, Doh JH, Nam CW, Shin ES, Taylor CA (2015) Coronary artery axial plaque stress and its relationship with lesion geometry: application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc Imaging 8(10):1156–1166CrossRefPubMed
Metadata
Title
Simultaneous evaluation of plaque stability and ischemic potential of coronary lesions in a fluid–structure interaction analysis
Authors
Xinlei Wu
Clemens von Birgelen
Su Zhang
Daixin Ding
Jiayue Huang
Shengxian Tu
Publication date
01-09-2019
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 9/2019
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-019-01611-y

Other articles of this Issue 9/2019

The International Journal of Cardiovascular Imaging 9/2019 Go to the issue