Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 3/2014

01-03-2014 | Original Paper

Myocardial perfusion MRI shows impaired perfusion of the mouse hypertrophic left ventricle

Authors: Bastiaan J. van Nierop, Bram F. Coolen, Noortje A. Bax, Wouter J. R. Dijk, Elza D. van Deel, Dirk J. Duncker, Klaas Nicolay, Gustav J. Strijkers

Published in: The International Journal of Cardiovascular Imaging | Issue 3/2014

Login to get access

Abstract

There is growing consensus that myocardial perfusion deficits play a pivotal role in the transition from compensated to overt decompensated hypertrophy. The purpose of this study was to systematically study myocardial perfusion deficits in the highly relevant model of pressure overload induced hypertrophy and heart failure by transverse aortic constriction (TAC), which was not done thus far. Regional left ventricular (LV) myocardial perfusion (mL/min/g) was assessed in healthy mice (n = 6) and mice with TAC (n = 14). A dual-bolus first-pass perfusion MRI technique was employed to longitudinally quantify myocardial perfusion values between 1 and 10 weeks after surgery. LV function and morphology were quantified from cinematographic MRI. Myocardial rest perfusion values in both groups did not change significantly over time, in line with the essentially constant global LV function and mass. Myocardial perfusion was significantly decreased in TAC mice (4.2 ± 0.9 mL/min/g) in comparison to controls (7.6 ± 1.8 mL/min/g) (P = 0.001). No regional differences in perfusion were observed within the LV wall. Importantly, increased LV volumes and mass, and decreased ejection fraction correlated with decreased myocardial perfusion (P < 0.001, in all cases). Total LV blood flow was decreased in TAC mice (0.5 ± 0.1 mL/min, P < 0.001) in comparison to control mice (0.7 ± 0.2 mL/min). Myocardial perfusion in TAC mice was significantly reduced as compared to healthy controls. Perfusion was proportional to LV volume and mass, and related to decreased LV ejection fraction. Furthermore, this study demonstrates the potential of quantitative first-pass contrast-enhanced MRI for the study of perfusion deficits in the diseased mouse heart.
Appendix
Available only for authorised users
Literature
1.
go back to reference Denolin H, Kuhn H, Krayenbuehl HP et al (1983) The definition of heart failure. Eur Heart J 4(7):445–448PubMed Denolin H, Kuhn H, Krayenbuehl HP et al (1983) The definition of heart failure. Eur Heart J 4(7):445–448PubMed
2.
go back to reference Juenger J, Schellberg D, Kraemer S et al (2002) Health related quality of life in patients with congestive heart failure: comparison with other chronic diseases and relation to functional variables. Heart 87(3):235–241PubMedCentralPubMedCrossRef Juenger J, Schellberg D, Kraemer S et al (2002) Health related quality of life in patients with congestive heart failure: comparison with other chronic diseases and relation to functional variables. Heart 87(3):235–241PubMedCentralPubMedCrossRef
3.
go back to reference de Couto G, Ouzounian M, Liu PP (2010) Early detection of myocardial dysfunction and heart failure. Nat Rev Cardiol 7(6):334–344PubMedCrossRef de Couto G, Ouzounian M, Liu PP (2010) Early detection of myocardial dysfunction and heart failure. Nat Rev Cardiol 7(6):334–344PubMedCrossRef
4.
go back to reference Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215PubMedCrossRef Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215PubMedCrossRef
7.
go back to reference Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMedCrossRef Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMedCrossRef
8.
9.
go back to reference Shiojima I, Sato K, Izumiya Y et al (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115(8):2108–2118PubMedCentralPubMedCrossRef Shiojima I, Sato K, Izumiya Y et al (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115(8):2108–2118PubMedCentralPubMedCrossRef
10.
go back to reference Vatner SF, Hittinger L (1993) Coronary vascular mechanisms involved in decompensation from hypertrophy to heart failure. J Am Coll Cardiol 22(4 Suppl A):34A–40APubMedCrossRef Vatner SF, Hittinger L (1993) Coronary vascular mechanisms involved in decompensation from hypertrophy to heart failure. J Am Coll Cardiol 22(4 Suppl A):34A–40APubMedCrossRef
11.
go back to reference Mathiassen ON, Buus NH, Sihm I et al (2007) Small artery structure is an independent predictor of cardiovascular events in essential hypertension. J Hypertens 25(5):1021–1026PubMedCrossRef Mathiassen ON, Buus NH, Sihm I et al (2007) Small artery structure is an independent predictor of cardiovascular events in essential hypertension. J Hypertens 25(5):1021–1026PubMedCrossRef
12.
go back to reference Levy BI, Schiffrin EL, Mourad JJ et al (2008) Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 118(9):968–976PubMedCrossRef Levy BI, Schiffrin EL, Mourad JJ et al (2008) Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 118(9):968–976PubMedCrossRef
13.
go back to reference Dai Z, Aoki T, Fukumoto Y et al (2012) Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J Cardiol 60(5):416–421PubMedCrossRef Dai Z, Aoki T, Fukumoto Y et al (2012) Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J Cardiol 60(5):416–421PubMedCrossRef
14.
go back to reference Hoenig MR, Bianchi C, Rosenzweig A et al (2008) The cardiac microvasculature in hypertension, cardiac hypertrophy and diastolic heart failure. Curr Vasc Pharmacol 6(4):292–300PubMedCrossRef Hoenig MR, Bianchi C, Rosenzweig A et al (2008) The cardiac microvasculature in hypertension, cardiac hypertrophy and diastolic heart failure. Curr Vasc Pharmacol 6(4):292–300PubMedCrossRef
15.
go back to reference Cecchi F, Olivotto I, Gistri R et al (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349(11):1027–1035PubMedCrossRef Cecchi F, Olivotto I, Gistri R et al (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349(11):1027–1035PubMedCrossRef
16.
go back to reference Nakajima H, Onishi K, Kurita T et al (2010) Hypertension impairs myocardial blood perfusion reserve in subjects without regional myocardial ischemia. Hypertens Res 33(11):1144–1149PubMedCrossRef Nakajima H, Onishi K, Kurita T et al (2010) Hypertension impairs myocardial blood perfusion reserve in subjects without regional myocardial ischemia. Hypertens Res 33(11):1144–1149PubMedCrossRef
17.
go back to reference Hartley CJ, Reddy AK, Madala S et al (2008) Doppler estimation of reduced coronary flow reserve in mice with pressure overload cardiac hypertrophy. Ultrasound Med Biol 34(6):892–901PubMedCentralPubMedCrossRef Hartley CJ, Reddy AK, Madala S et al (2008) Doppler estimation of reduced coronary flow reserve in mice with pressure overload cardiac hypertrophy. Ultrasound Med Biol 34(6):892–901PubMedCentralPubMedCrossRef
18.
go back to reference Givvimani S, Munjal C, Gargoum R et al (2011) Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. J Appl Physiol 110(4):1093–1100PubMedCentralPubMedCrossRef Givvimani S, Munjal C, Gargoum R et al (2011) Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. J Appl Physiol 110(4):1093–1100PubMedCentralPubMedCrossRef
19.
go back to reference Oudit GY, Kassiri Z, Zhou J et al (2008) Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc Res 78(3):505–514PubMedCrossRef Oudit GY, Kassiri Z, Zhou J et al (2008) Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc Res 78(3):505–514PubMedCrossRef
20.
go back to reference van Deel ED, de Boer M, Kuster DW et al (2011) Exercise training does not improve cardiac function in compensated or decompensated left ventricular hypertrophy induced by aortic stenosis. J Mol Cell Cardiol 50(6):1017–1025PubMedCrossRef van Deel ED, de Boer M, Kuster DW et al (2011) Exercise training does not improve cardiac function in compensated or decompensated left ventricular hypertrophy induced by aortic stenosis. J Mol Cell Cardiol 50(6):1017–1025PubMedCrossRef
21.
go back to reference Streif JUG, Nahrendorf M, Hiller K-H et al (2005) In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med 53(3):584–592PubMedCrossRef Streif JUG, Nahrendorf M, Hiller K-H et al (2005) In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med 53(3):584–592PubMedCrossRef
22.
go back to reference Jacquier A, Kober F, Bun S et al (2011) Quantification of myocardial blood flow and flow reserve in rats using arterial spin labeling MRI: comparison with a fluorescent microsphere technique. NMR Biomed 24(9):1047–1053PubMedCrossRef Jacquier A, Kober F, Bun S et al (2011) Quantification of myocardial blood flow and flow reserve in rats using arterial spin labeling MRI: comparison with a fluorescent microsphere technique. NMR Biomed 24(9):1047–1053PubMedCrossRef
23.
go back to reference Decking UKM, Pai VM, Bennett E et al (2004) High-resolution imaging reveals a limit in spatial resolution of blood flow measurements by microspheres. Am J Physiol Heart Circ Physiol 287(3):H1132–H1140PubMedCrossRef Decking UKM, Pai VM, Bennett E et al (2004) High-resolution imaging reveals a limit in spatial resolution of blood flow measurements by microspheres. Am J Physiol Heart Circ Physiol 287(3):H1132–H1140PubMedCrossRef
24.
go back to reference Coolen BF, Moonen RPM, Paulis LEM et al (2010) Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med 64(6):1658–1663PubMedCrossRef Coolen BF, Moonen RPM, Paulis LEM et al (2010) Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med 64(6):1658–1663PubMedCrossRef
25.
go back to reference Makowski M, Jansen C, Webb I et al (2010) First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magn Reson Med 64(6):1592–1598PubMedCentralPubMedCrossRef Makowski M, Jansen C, Webb I et al (2010) First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magn Reson Med 64(6):1592–1598PubMedCentralPubMedCrossRef
26.
go back to reference van Nierop BJ, Coolen BF, Dijk WJR et al (2012) Quantitative first-pass perfusion MRI of the mouse myocardium. Magn Reson Med 69(6):1735–1744PubMedCrossRef van Nierop BJ, Coolen BF, Dijk WJR et al (2012) Quantitative first-pass perfusion MRI of the mouse myocardium. Magn Reson Med 69(6):1735–1744PubMedCrossRef
27.
go back to reference Rockman HA, Ross RS, Harris AN et al (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA 88(18):8277–8281PubMedCentralPubMedCrossRef Rockman HA, Ross RS, Harris AN et al (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA 88(18):8277–8281PubMedCentralPubMedCrossRef
28.
go back to reference van Nierop BJ, van Assen H, van Deel ED et al (2013) Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI. PLoS One 8(2):e55424PubMedCentralPubMedCrossRef van Nierop BJ, van Assen H, van Deel ED et al (2013) Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI. PLoS One 8(2):e55424PubMedCentralPubMedCrossRef
29.
go back to reference Köstler H, Ritter C, Lipp M et al (2004) Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 52(2):296–299PubMedCrossRef Köstler H, Ritter C, Lipp M et al (2004) Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 52(2):296–299PubMedCrossRef
30.
go back to reference Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25(1):73–84PubMedCrossRef Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25(1):73–84PubMedCrossRef
31.
go back to reference Valentinuzzi ME, Geddes LA, Baker LE (1969) A simple mathematical derivation of the Stewart–Hamilton formula for the determination of cardiac output. Med Biol Eng 7(3):277–282PubMedCrossRef Valentinuzzi ME, Geddes LA, Baker LE (1969) A simple mathematical derivation of the Stewart–Hamilton formula for the determination of cardiac output. Med Biol Eng 7(3):277–282PubMedCrossRef
32.
go back to reference Kawecka-Jaszcz K, Czarnecka D, Olszanecka A et al (2008) Myocardial perfusion in hypertensive patients with normal coronary angiograms. J Hypertens 26(8):1686–1694PubMedCrossRef Kawecka-Jaszcz K, Czarnecka D, Olszanecka A et al (2008) Myocardial perfusion in hypertensive patients with normal coronary angiograms. J Hypertens 26(8):1686–1694PubMedCrossRef
33.
go back to reference Izumiya Y, Shiojima I, Sato K et al (2006) Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 47(5):887–893PubMedCentralPubMedCrossRef Izumiya Y, Shiojima I, Sato K et al (2006) Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 47(5):887–893PubMedCentralPubMedCrossRef
34.
go back to reference Duncker DJ, de Beer VJ, Merkus D (2008) Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction. Med Biol Eng Comput 46(5):485–497PubMedCentralPubMedCrossRef Duncker DJ, de Beer VJ, Merkus D (2008) Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction. Med Biol Eng Comput 46(5):485–497PubMedCentralPubMedCrossRef
35.
go back to reference Bache RJ (1988) Effects of hypertrophy on the coronary circulation. Prog Cardiovasc Dis 30(6):403–440PubMedCrossRef Bache RJ (1988) Effects of hypertrophy on the coronary circulation. Prog Cardiovasc Dis 30(6):403–440PubMedCrossRef
36.
go back to reference Kober F, Iltis I, Cozzone PJ et al (2004) Cine-MRI assessment of cardiac function in mice anesthetized with ketamine/xylazine and isoflurane. Magn Reson Mater Phys Biol Med 17(3–6):157–161CrossRef Kober F, Iltis I, Cozzone PJ et al (2004) Cine-MRI assessment of cardiac function in mice anesthetized with ketamine/xylazine and isoflurane. Magn Reson Mater Phys Biol Med 17(3–6):157–161CrossRef
37.
go back to reference You J, Wu J, Ge J et al (2012) Comparison between adenosine and isoflurane for assessing the coronary flow reserve in mouse models of left ventricular pressure and volume overload. Am J Physiol Heart Circ Physiol 303(10):H1199–H1207PubMedCrossRef You J, Wu J, Ge J et al (2012) Comparison between adenosine and isoflurane for assessing the coronary flow reserve in mouse models of left ventricular pressure and volume overload. Am J Physiol Heart Circ Physiol 303(10):H1199–H1207PubMedCrossRef
38.
go back to reference Braunwald E (1971) Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 27(4):416–432PubMedCrossRef Braunwald E (1971) Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 27(4):416–432PubMedCrossRef
39.
go back to reference Soler R, Rodríguez E, Monserrat L et al (2006) Magnetic resonance imaging of delayed enhancement in hypertrophic cardiomyopathy: relationship with left ventricular perfusion and contractile function. J Comput Assist Tomogr 30(3):412–420PubMedCrossRef Soler R, Rodríguez E, Monserrat L et al (2006) Magnetic resonance imaging of delayed enhancement in hypertrophic cardiomyopathy: relationship with left ventricular perfusion and contractile function. J Comput Assist Tomogr 30(3):412–420PubMedCrossRef
40.
go back to reference Gould KL, Carabello BA (2003) Why angina in aortic stenosis with normal coronary arteriograms? Circulation 107(25):3121–3123PubMedCrossRef Gould KL, Carabello BA (2003) Why angina in aortic stenosis with normal coronary arteriograms? Circulation 107(25):3121–3123PubMedCrossRef
41.
go back to reference Gao X-M, Kiriazis H, Moore X-L et al (2005) Regression of pressure overload-induced left ventricular hypertrophy in mice. Am J Physiol Heart Circ Physiol 288(6):H2702–H2707PubMedCrossRef Gao X-M, Kiriazis H, Moore X-L et al (2005) Regression of pressure overload-induced left ventricular hypertrophy in mice. Am J Physiol Heart Circ Physiol 288(6):H2702–H2707PubMedCrossRef
42.
go back to reference Kober F, Iltis I, Cozzone PJ et al (2005) Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med 53(3):601–606PubMedCrossRef Kober F, Iltis I, Cozzone PJ et al (2005) Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med 53(3):601–606PubMedCrossRef
Metadata
Title
Myocardial perfusion MRI shows impaired perfusion of the mouse hypertrophic left ventricle
Authors
Bastiaan J. van Nierop
Bram F. Coolen
Noortje A. Bax
Wouter J. R. Dijk
Elza D. van Deel
Dirk J. Duncker
Klaas Nicolay
Gustav J. Strijkers
Publication date
01-03-2014
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 3/2014
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-014-0369-0

Other articles of this Issue 3/2014

The International Journal of Cardiovascular Imaging 3/2014 Go to the issue