Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2016

01-05-2016 | Preclinical study

Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown

Authors: Su-Hyeong Kim, Eun-Ryeong Hahm, Julie A. Arlotti, Suman K. Samanta, Michelle B. Moura, Stephen H. Thorne, Yongli Shuai, Carolyn J. Anderson, Alexander G. White, Anna Lokshin, Joomin Lee, Shivendra V. Singh

Published in: Breast Cancer Research and Treatment | Issue 1/2016

Login to get access

Abstract

The present study offers novel insights into the molecular circuitry of accelerated in vivo tumor growth by Notch2 knockdown in triple-negative breast cancer (TNBC) cells. Therapeutic vulnerability of Notch2-altered growth to a small molecule (withaferin A, WA) is also demonstrated. MDA-MB-231 and SUM159 cells were used for the xenograft studies. A variety of technologies were deployed to elucidate the mechanisms underlying tumor growth augmentation by Notch2 knockdown and its reversal by WA, including Fluorescence Molecular Tomography for measurement of tumor angiogenesis in live mice, Seahorse Flux analyzer for ex vivo measurement of tumor metabolism, proteomics, and Luminex-based cytokine profiling. Stable knockdown of Notch2 resulted in accelerated in vivo tumor growth in both cells reflected by tumor volume and/or latency. For example, the wet tumor weight from mice bearing Notch2 knockdown MDA-MB-231 cells was about 7.1-fold higher compared with control (P < 0.0001). Accelerated tumor growth by Notch2 knockdown was highly sensitive to inhibition by a promising steroidal lactone (WA) derived from a medicinal plant. Molecular underpinnings for tumor growth intensification by Notch2 knockdown included compensatory increase in Notch1 activation, increased cellular proliferation and/or angiogenesis, and increased plasma or tumor levels of growth stimulatory cytokines. WA administration reversed many of these effects providing explanation for its remarkable anti-cancer efficacy. Notch2 functions as a tumor growth suppressor in TNBC and WA offers a novel therapeutic strategy for restoring this function.
Literature
1.
go back to reference Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138(17):3593–3612CrossRefPubMed Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138(17):3593–3612CrossRefPubMed
3.
go back to reference Arnett KL, Hass M, McArthur DG, Ilagan MX, Aster JC, Kopan R, Blacklow SC (2010) Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nat Struct Mol Biol 17(11):1312–1317CrossRefPubMedPubMedCentral Arnett KL, Hass M, McArthur DG, Ilagan MX, Aster JC, Kopan R, Blacklow SC (2010) Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nat Struct Mol Biol 17(11):1312–1317CrossRefPubMedPubMedCentral
4.
go back to reference Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767CrossRefPubMed Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767CrossRefPubMed
5.
go back to reference Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11(5):338–351CrossRefPubMed Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11(5):338–351CrossRefPubMed
6.
go back to reference Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661CrossRefPubMed Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661CrossRefPubMed
7.
go back to reference Previs RA, Coleman RL, Harris AL, Sood AK (2015) Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer. Clin Cancer Res 21(5):955–961CrossRefPubMedPubMedCentral Previs RA, Coleman RL, Harris AL, Sood AK (2015) Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer. Clin Cancer Res 21(5):955–961CrossRefPubMedPubMedCentral
8.
go back to reference Mazur PK, Grüner BM, Nakhai H, Sipos B, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT (2010) Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras G12D -induced skin carcinogenesis in vivo. PLoS One 5(10):e13578CrossRefPubMedPubMedCentral Mazur PK, Grüner BM, Nakhai H, Sipos B, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT (2010) Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras G12D -induced skin carcinogenesis in vivo. PLoS One 5(10):e13578CrossRefPubMedPubMedCentral
10.
go back to reference Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P (2006) Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 168(3):973–990CrossRefPubMedPubMedCentral Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P (2006) Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 168(3):973–990CrossRefPubMedPubMedCentral
11.
go back to reference Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70(2):709–718CrossRefPubMedPubMedCentral Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70(2):709–718CrossRefPubMedPubMedCentral
12.
go back to reference Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537CrossRefPubMed Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537CrossRefPubMed
13.
go back to reference Kim SH, Sehrawat A, Singh SV (2012) Notch2 activation by benzyl isothiocyanate impedes its inhibitory effect on breast cancer cell migration. Breast Cancer Res Treat 134(3):1067–1079CrossRefPubMedPubMedCentral Kim SH, Sehrawat A, Singh SV (2012) Notch2 activation by benzyl isothiocyanate impedes its inhibitory effect on breast cancer cell migration. Breast Cancer Res Treat 134(3):1067–1079CrossRefPubMedPubMedCentral
14.
go back to reference Sehrawat A, Sakao K, Singh SV (2014) Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells. Breast Cancer Res Treat 146(3):543–555CrossRefPubMedPubMedCentral Sehrawat A, Sakao K, Singh SV (2014) Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells. Breast Cancer Res Treat 146(3):543–555CrossRefPubMedPubMedCentral
15.
go back to reference Lee J, Sehrawat A, Singh SV (2012) Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast Cancer Res Treat 136(1):45–56CrossRefPubMedPubMedCentral Lee J, Sehrawat A, Singh SV (2012) Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast Cancer Res Treat 136(1):45–56CrossRefPubMedPubMedCentral
16.
go back to reference Chao CH, Chang CC, Wu MJ, Ko HW, Wang D, Hung MC, Yang JY, Chang CJ (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Investig 124(7):3093–3106CrossRefPubMedPubMedCentral Chao CH, Chang CC, Wu MJ, Ko HW, Wang D, Hung MC, Yang JY, Chang CJ (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Investig 124(7):3093–3106CrossRefPubMedPubMedCentral
17.
go back to reference O’Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ, León R, Toher J, Mouta-Bellum C, Friesel RE, Liaw L (2007) Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am J Pathol 171(3):1023–1036CrossRefPubMedPubMedCentral O’Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ, León R, Toher J, Mouta-Bellum C, Friesel RE, Liaw L (2007) Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am J Pathol 171(3):1023–1036CrossRefPubMedPubMedCentral
18.
go back to reference Parr C, Watkins G, Jiang WG (2004) The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med 14(5):779–786PubMed Parr C, Watkins G, Jiang WG (2004) The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med 14(5):779–786PubMed
19.
go back to reference Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): a review. Altern Med Rev 5(4):334–346PubMed Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): a review. Altern Med Rev 5(4):334–346PubMed
20.
go back to reference Hahm ER, Lee J, Kim SH, Sehrawat A, Arlotti JA, Shiva SS, Bhargava R, Singh SV (2013) Metabolic alterations in mammary cancer prevention by withaferin A in a clinically relevant mouse model. J Natl Cancer Inst 105(15):1111–1122CrossRefPubMedPubMedCentral Hahm ER, Lee J, Kim SH, Sehrawat A, Arlotti JA, Shiva SS, Bhargava R, Singh SV (2013) Metabolic alterations in mammary cancer prevention by withaferin A in a clinically relevant mouse model. J Natl Cancer Inst 105(15):1111–1122CrossRefPubMedPubMedCentral
21.
go back to reference Stan SD, Hahm ER, Warin R, Singh SV (2008) Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res 68(18):7661–7669CrossRefPubMedPubMedCentral Stan SD, Hahm ER, Warin R, Singh SV (2008) Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res 68(18):7661–7669CrossRefPubMedPubMedCentral
22.
go back to reference Singh SV, Kim SH, Sehrawat A, Arlotti JA, Hahm ER, Sakao K, Beumer JH, Jankowitz RC, Chandra-Kuntal K, Lee J, Powolny AA, Dhir R (2012) Biomarkers of phenethyl isothiocyanate-mediated mammary cancer chemoprevention in a clinically relevant mouse model. J Natl Cancer Inst 104(16):1228–1239CrossRefPubMedPubMedCentral Singh SV, Kim SH, Sehrawat A, Arlotti JA, Hahm ER, Sakao K, Beumer JH, Jankowitz RC, Chandra-Kuntal K, Lee J, Powolny AA, Dhir R (2012) Biomarkers of phenethyl isothiocyanate-mediated mammary cancer chemoprevention in a clinically relevant mouse model. J Natl Cancer Inst 104(16):1228–1239CrossRefPubMedPubMedCentral
23.
go back to reference Powolny AA, Bommareddy A, Hahm ER, Normolle DP, Beumer JH, Nelson JB, Singh SV (2011) Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst 103(7):571–584CrossRefPubMedPubMedCentral Powolny AA, Bommareddy A, Hahm ER, Normolle DP, Beumer JH, Nelson JB, Singh SV (2011) Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst 103(7):571–584CrossRefPubMedPubMedCentral
24.
go back to reference Beaino W, Anderson CJ (2014) PET imaging of very late antigen-4 in melanoma: comparison of 68Ga- and 64Cu-labeled NODAGA and CB-TE1A1P-LLP2A conjugates. J Nucl Med 55(11):1856–1863CrossRefPubMedPubMedCentral Beaino W, Anderson CJ (2014) PET imaging of very late antigen-4 in melanoma: comparison of 68Ga- and 64Cu-labeled NODAGA and CB-TE1A1P-LLP2A conjugates. J Nucl Med 55(11):1856–1863CrossRefPubMedPubMedCentral
25.
go back to reference Moura MB, Hahm ER, Van Houten B, Singh SV (2014) The use of seahorse extracellular flux analyzer in mechanistic studies of naturally occurring cancer chemopreventive agents. In: Bode AM, Dong Z (eds) Cancer prevention: dietary factors and pharmacology, methods in pharmacology and toxicology. Springer Science + Business Media, New York, pp 173–187CrossRef Moura MB, Hahm ER, Van Houten B, Singh SV (2014) The use of seahorse extracellular flux analyzer in mechanistic studies of naturally occurring cancer chemopreventive agents. In: Bode AM, Dong Z (eds) Cancer prevention: dietary factors and pharmacology, methods in pharmacology and toxicology. Springer Science + Business Media, New York, pp 173–187CrossRef
26.
go back to reference Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, Torres K, Langley RR, Lazar AJ, Hung MC, Lev D (2010) Vimentin is a novel anti-cancer therapeutic target; Insights from in vitro and in vivo mice xenograft studies. PLoS One 5(4):e10105CrossRefPubMedPubMedCentral Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, Torres K, Langley RR, Lazar AJ, Hung MC, Lev D (2010) Vimentin is a novel anti-cancer therapeutic target; Insights from in vitro and in vivo mice xenograft studies. PLoS One 5(4):e10105CrossRefPubMedPubMedCentral
27.
go back to reference Zang S, Chen F, Dai J, Guo D, Tse W, Qu X, Ma D, Ji C (2010) RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer. Oncol Rep 23(4):893–899PubMed Zang S, Chen F, Dai J, Guo D, Tse W, Qu X, Ma D, Ji C (2010) RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer. Oncol Rep 23(4):893–899PubMed
28.
go back to reference Simmons MJ, Serra R, Hermance N, Kelliher MA (2012) NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro. Breast Cancer Res 14(5):R126CrossRefPubMedPubMedCentral Simmons MJ, Serra R, Hermance N, Kelliher MA (2012) NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro. Breast Cancer Res 14(5):R126CrossRefPubMedPubMedCentral
29.
go back to reference Yuan X, Zhang M, Wu H, Xu H, Han N, Chu Q, Yu S, Chen Y, Wu K (2015) Expression of Notch1 correlates with breast cancer progression and prognosis. PLoS One 10(6):e0131689CrossRefPubMedPubMedCentral Yuan X, Zhang M, Wu H, Xu H, Han N, Chu Q, Yu S, Chen Y, Wu K (2015) Expression of Notch1 correlates with breast cancer progression and prognosis. PLoS One 10(6):e0131689CrossRefPubMedPubMedCentral
30.
go back to reference Hurvitz S, Mead M (2016) Triple-negative breast cancer: advancements in characterization and treatment approach. Curr Opin Obstet Gynecol 28(1):59–69PubMed Hurvitz S, Mead M (2016) Triple-negative breast cancer: advancements in characterization and treatment approach. Curr Opin Obstet Gynecol 28(1):59–69PubMed
32.
go back to reference Chavez KJ, Garimella SV, Lipkowitz S (2010) Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis 32(1–2):35–48PubMedPubMedCentral Chavez KJ, Garimella SV, Lipkowitz S (2010) Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis 32(1–2):35–48PubMedPubMedCentral
33.
34.
go back to reference Vyas AR, Singh SV (2014) Molecular targets and mechanisms of cancer prevention and treatment by withaferin A, a naturally occurring steroidal lactone. AAPS J 16(1):1–10CrossRefPubMedPubMedCentral Vyas AR, Singh SV (2014) Molecular targets and mechanisms of cancer prevention and treatment by withaferin A, a naturally occurring steroidal lactone. AAPS J 16(1):1–10CrossRefPubMedPubMedCentral
35.
go back to reference Zou J, Han Z, Zhou L, Cai C, Luo H, Huang Y, Liang Y, He H, Jiang F, Wang C, Zhong W (2015) Elevated expression of IMPDH2 is associated with progression of kidney and bladder cancer. Med Oncol 32(1):373CrossRefPubMed Zou J, Han Z, Zhou L, Cai C, Luo H, Huang Y, Liang Y, He H, Jiang F, Wang C, Zhong W (2015) Elevated expression of IMPDH2 is associated with progression of kidney and bladder cancer. Med Oncol 32(1):373CrossRefPubMed
36.
go back to reference Zhou L, Xia D, Zhu J, Chen Y, Chen G, Mo R, Zeng Y, Dai Q, He H, Liang Y, Jiang F, Zhong W (2014) Enhanced expression of IMPDH2 promotes metastasis and advanced tumor progression in patients with prostate cancer. Clin Transl Oncol 16(10):906–913CrossRefPubMed Zhou L, Xia D, Zhu J, Chen Y, Chen G, Mo R, Zeng Y, Dai Q, He H, Liang Y, Jiang F, Zhong W (2014) Enhanced expression of IMPDH2 promotes metastasis and advanced tumor progression in patients with prostate cancer. Clin Transl Oncol 16(10):906–913CrossRefPubMed
37.
go back to reference Ramos FS, Serino LT, Carvalho CM, Lima RS, Urban CA, Cavalli IJ, Ribeiro EM (2015) PDIA3 and PDIA6 gene expression as an aggressiveness marker in primary ductal breast cancer. Genet Mol Res 14(2):6960–6967CrossRefPubMed Ramos FS, Serino LT, Carvalho CM, Lima RS, Urban CA, Cavalli IJ, Ribeiro EM (2015) PDIA3 and PDIA6 gene expression as an aggressiveness marker in primary ductal breast cancer. Genet Mol Res 14(2):6960–6967CrossRefPubMed
38.
go back to reference Dethlefsen C, Højfeldt G, Hojman P (2013) The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 138(3):657–664CrossRefPubMed Dethlefsen C, Højfeldt G, Hojman P (2013) The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 138(3):657–664CrossRefPubMed
40.
go back to reference Divella R, Daniele A, Savino E, Palma F, Bellizzi A, Giotta F, Simone G, Lioce M, Quaranta M, Paradiso A, Mazzocca A (2013) Circulating levels of transforming growth factor-βeta (TGF-β) and chemokine (C-X-C motif) ligand-1 (CXCL1) as predictors of distant seeding of circulating tumor cells in patients with metastatic breast cancer. Anticancer Res 33(4):1491–1497PubMed Divella R, Daniele A, Savino E, Palma F, Bellizzi A, Giotta F, Simone G, Lioce M, Quaranta M, Paradiso A, Mazzocca A (2013) Circulating levels of transforming growth factor-βeta (TGF-β) and chemokine (C-X-C motif) ligand-1 (CXCL1) as predictors of distant seeding of circulating tumor cells in patients with metastatic breast cancer. Anticancer Res 33(4):1491–1497PubMed
41.
go back to reference Lin S, Gan Z, Han K, Yao Y, Min D (2015) Interleukin-6 as a prognostic marker for breast cancer: a meta-analysis. Tumori 101(5):535–541CrossRefPubMed Lin S, Gan Z, Han K, Yao Y, Min D (2015) Interleukin-6 as a prognostic marker for breast cancer: a meta-analysis. Tumori 101(5):535–541CrossRefPubMed
42.
go back to reference Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB, Brown PH (2013) Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res 73(11):3470–3480CrossRefPubMed Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB, Brown PH (2013) Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res 73(11):3470–3480CrossRefPubMed
43.
go back to reference Freund A, Chauveau C, Brouillet JP, Lucas A, Lacroix M, Licznar A, Vignon F, Lazennec G (2003) IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22(2):256–265CrossRefPubMedPubMedCentral Freund A, Chauveau C, Brouillet JP, Lucas A, Lacroix M, Licznar A, Vignon F, Lazennec G (2003) IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22(2):256–265CrossRefPubMedPubMedCentral
Metadata
Title
Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown
Authors
Su-Hyeong Kim
Eun-Ryeong Hahm
Julie A. Arlotti
Suman K. Samanta
Michelle B. Moura
Stephen H. Thorne
Yongli Shuai
Carolyn J. Anderson
Alexander G. White
Anna Lokshin
Joomin Lee
Shivendra V. Singh
Publication date
01-05-2016
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2016
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-016-3795-y

Other articles of this Issue 1/2016

Breast Cancer Research and Treatment 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine