Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2011

01-07-2011 | Epidemiology

Image-guided sampling reveals increased stroma and lower glandular complexity in mammographically dense breast tissue

Authors: Suling J. Lin, Jennifer Cawson, Prue Hill, Izhak Haviv, Mark Jenkins, John L. Hopper, Melissa C. Southey, Ian G. Campbell, Erik W. Thompson

Published in: Breast Cancer Research and Treatment | Issue 2/2011

Login to get access

Abstract

Mammographic density (MD) adjusted for age and body mass index (BMI) is a strong heritable breast cancer risk factor; however, its biological basis remains elusive. Previous studies assessed MD-associated histology using random sampling approaches, despite evidence that high and low MD areas exist within a breast and are negatively correlated with respect to one another. We have used an image-guided approach to sample high and low MD tissues from within individual breasts to examine the relationship between histology and degree of MD. Image-guided sampling was performed using two different methodologies on mastectomy tissues (n = 12): (1) sampling of high and low MD regions within a slice guided by bright (high MD) and dark (low MD) areas in a slice X-ray film; (2) sampling of high and low MD regions within a whole breast using a stereotactically guided vacuum-assisted core biopsy technique. Pairwise analysis accounting for potential confounders (i.e. age, BMI, menopausal status, etc.) provides appropriate power for analysis despite the small sample size. High MD tissues had higher stromal (P = 0.002) and lower fat (P = 0.002) compositions, but no evidence of difference in glandular areas (P = 0.084) compared to low MD tissues from the same breast. High MD regions had higher relative gland counts (P = 0.023), and a preponderance of Type I lobules in high MD compared to low MD regions was observed in 58% of subjects (n = 7), but did not achieve significance. These findings clarify the histologic nature of high MD tissue and support hypotheses regarding the biophysical impact of dense connective tissue on mammary malignancy. They also provide important terms of reference for ongoing analyses of the underlying genetics of MD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH (2003) Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res 5:R129–R135PubMedCrossRef Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH (2003) Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res 5:R129–R135PubMedCrossRef
2.
go back to reference Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68PubMedCrossRef Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68PubMedCrossRef
3.
go back to reference Bland KI, Kuhns JG, Buchanan JB, Dwyer PA, Heuser LF, O’Connor CA, Gray LA Sr, Polk HC Jr (1982) A clinicopathologic correlation of mammographic parenchymal patterns and associated risk factors for human mammary carcinoma. Ann Surg 195:582–594PubMedCrossRef Bland KI, Kuhns JG, Buchanan JB, Dwyer PA, Heuser LF, O’Connor CA, Gray LA Sr, Polk HC Jr (1982) A clinicopathologic correlation of mammographic parenchymal patterns and associated risk factors for human mammary carcinoma. Ann Surg 195:582–594PubMedCrossRef
4.
go back to reference Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7:1133–1144PubMed Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7:1133–1144PubMed
5.
go back to reference Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, Giles GG, Tritchler D, Chiarelli A, Yaffe MJ, Hopper JL (2002) Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347:886–894PubMedCrossRef Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, Giles GG, Tritchler D, Chiarelli A, Yaffe MJ, Hopper JL (2002) Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347:886–894PubMedCrossRef
6.
go back to reference Boyd NF, Martin LJ, Rommens JM, Paterson AD, Minkin S, Yaffe MJ, Stone J, Hopper JL (2009) Mammographic density: a heritable risk factor for breast cancer. Methods Mol Biol (Clifton, NJ) 472:343–360CrossRef Boyd NF, Martin LJ, Rommens JM, Paterson AD, Minkin S, Yaffe MJ, Stone J, Hopper JL (2009) Mammographic density: a heritable risk factor for breast cancer. Methods Mol Biol (Clifton, NJ) 472:343–360CrossRef
7.
go back to reference Bright RA, Morrison AS, Brisson J, Burstein NA, Sadowsky NS, Kopans DB, Meyer JE (1988) Relationship between mammographic and histologic features of breast tissue in women with benign biopsies. Cancer 61:266–271PubMedCrossRef Bright RA, Morrison AS, Brisson J, Burstein NA, Sadowsky NS, Kopans DB, Meyer JE (1988) Relationship between mammographic and histologic features of breast tissue in women with benign biopsies. Cancer 61:266–271PubMedCrossRef
8.
go back to reference Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM (2002) The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161:337–344PubMedCrossRef Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM (2002) The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161:337–344PubMedCrossRef
9.
go back to reference Chen Z, Wu AH, Gauderman WJ, Bernstein L, Ma H, Pike MC, Ursin G (2004) Does mammographic density reflect ethnic differences in breast cancer incidence rates? Am J Epidemiol 159:140–147PubMedCrossRef Chen Z, Wu AH, Gauderman WJ, Bernstein L, Ma H, Pike MC, Ursin G (2004) Does mammographic density reflect ethnic differences in breast cancer incidence rates? Am J Epidemiol 159:140–147PubMedCrossRef
10.
go back to reference Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto J, Fletcher O, Johnson N, Seal S, Stratton MR, Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eerola H, Kang D, Yoo KY, Noh DY, Ahn SH, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low YL, Bogdanova N, Schurmann P, Dork T, Tollenaar RA, Jacobi CE, Devilee P, Klijn JG, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MW, Couch FJ, Goode EL, Olson JE, Meijers-Heijboer H, van den Ouweland A, Uitterlinden A, Rivadeneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamann U, Ko YD, Spurdle AB, Beesley J, Chen X, Mannermaa A, Kosma VM, Kataja V, Hartikainen J, Day NE et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093PubMedCrossRef Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto J, Fletcher O, Johnson N, Seal S, Stratton MR, Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eerola H, Kang D, Yoo KY, Noh DY, Ahn SH, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low YL, Bogdanova N, Schurmann P, Dork T, Tollenaar RA, Jacobi CE, Devilee P, Klijn JG, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MW, Couch FJ, Goode EL, Olson JE, Meijers-Heijboer H, van den Ouweland A, Uitterlinden A, Rivadeneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamann U, Ko YD, Spurdle AB, Beesley J, Chen X, Mannermaa A, Kosma VM, Kataja V, Hartikainen J, Day NE et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093PubMedCrossRef
11.
go back to reference Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6:1–11PubMed Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6:1–11PubMed
12.
go back to reference Fisher ER, Palekar A, Kim WS, Redmond C (1978) The histopathology of mammographic patterns. Am J Clin Pathol 69:421–426PubMed Fisher ER, Palekar A, Kim WS, Redmond C (1978) The histopathology of mammographic patterns. Am J Clin Pathol 69:421–426PubMed
13.
go back to reference Ghajar CM, Bissell MJ (2008) Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem Cell Biol 130:1105–1118PubMedCrossRef Ghajar CM, Bissell MJ (2008) Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem Cell Biol 130:1105–1118PubMedCrossRef
14.
go back to reference Ghosh K, Hartmann LC, Reynolds C, Visscher DW, Brandt KR, Vierkant RA, Scott CG, Radisky DC, Sellers TA, Pankratz VS, Vachon CM (2010) Association between mammographic density and age-related lobular involution of the breast. J Clin Oncol 28:2207–2212PubMedCrossRef Ghosh K, Hartmann LC, Reynolds C, Visscher DW, Brandt KR, Vierkant RA, Scott CG, Radisky DC, Sellers TA, Pankratz VS, Vachon CM (2010) Association between mammographic density and age-related lobular involution of the breast. J Clin Oncol 28:2207–2212PubMedCrossRef
15.
go back to reference Gierach GL, Loud JT, Chow CK, Prindiville SA, Eng-Wong J, Soballe PW, Giambartolomei C, Mai PL, Galbo CE, Nichols K, Calzone KA, Vachon C, Gail MH, Greene MH (2010) Mammographic density does not differ between unaffected BRCA1/2 mutation carriers and women at low-to-average risk of breast cancer. Breast Cancer Res Treat 123:245–255PubMedCrossRef Gierach GL, Loud JT, Chow CK, Prindiville SA, Eng-Wong J, Soballe PW, Giambartolomei C, Mai PL, Galbo CE, Nichols K, Calzone KA, Vachon C, Gail MH, Greene MH (2010) Mammographic density does not differ between unaffected BRCA1/2 mutation carriers and women at low-to-average risk of breast cancer. Breast Cancer Res Treat 123:245–255PubMedCrossRef
16.
go back to reference Guo YP, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E, Khokha R, Boyd NF (2001) Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev 10:243–248PubMed Guo YP, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E, Khokha R, Boyd NF (2001) Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev 10:243–248PubMed
17.
go back to reference Harmes DC, DiRenzo J (2009) Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses? J Mammary Gland Biolo Neoplasia 14:19–27CrossRef Harmes DC, DiRenzo J (2009) Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses? J Mammary Gland Biolo Neoplasia 14:19–27CrossRef
18.
go back to reference Hawes D, Downey S, Pearce CL, Bartow S, Wan P, Pike MC, Wu AH (2006) Dense breast stromal tissue shows greatly increased concentration of breast epithelium but no increase in its proliferative activity. Breast Cancer Res 8:R24PubMedCrossRef Hawes D, Downey S, Pearce CL, Bartow S, Wan P, Pike MC, Wu AH (2006) Dense breast stromal tissue shows greatly increased concentration of breast epithelium but no increase in its proliferative activity. Breast Cancer Res 8:R24PubMedCrossRef
19.
go back to reference Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39:1987–1994PubMedCrossRef Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39:1987–1994PubMedCrossRef
20.
go back to reference Khan QJ, Kimler BF, O’Dea AP, Zalles CM, Sharma P, Fabian CJ (2007) Mammographic density does not correlate with Ki-67 expression or cytomorphology in benign breast cells obtained by random periareolar fine needle aspiration from women at high risk for breast cancer. Breast Cancer Res 9:R35PubMedCrossRef Khan QJ, Kimler BF, O’Dea AP, Zalles CM, Sharma P, Fabian CJ (2007) Mammographic density does not correlate with Ki-67 expression or cytomorphology in benign breast cells obtained by random periareolar fine needle aspiration from women at high risk for breast cancer. Breast Cancer Res 9:R35PubMedCrossRef
21.
go back to reference Kimata K, Sakakura T, Inaguma Y, Kato M, Nishizuka Y (1985) Participation of two different mesenchymes in the developing mouse mammary gland: synthesis of basement membrane components by fat pad precursor cells. J Embryol Exp Morphol 89:243–257PubMed Kimata K, Sakakura T, Inaguma Y, Kato M, Nishizuka Y (1985) Participation of two different mesenchymes in the developing mouse mammary gland: synthesis of basement membrane components by fat pad precursor cells. J Embryol Exp Morphol 89:243–257PubMed
22.
go back to reference Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, Martin L, Boyd N (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14:343–349PubMedCrossRef Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, Martin L, Boyd N (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14:343–349PubMedCrossRef
23.
go back to reference Maskarinec G, Nagata C, Shimizu H, Kashiki Y (2002) Comparison of mammographic densities and their determinants in women from Japan and Hawaii. Int J Cancer 102:29–33PubMedCrossRef Maskarinec G, Nagata C, Shimizu H, Kashiki Y (2002) Comparison of mammographic densities and their determinants in women from Japan and Hawaii. Int J Cancer 102:29–33PubMedCrossRef
24.
go back to reference McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169PubMedCrossRef McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169PubMedCrossRef
25.
go back to reference Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, Pankratz VS, Degnim AC, Vachon CM, Reynolds CA, Thompson RA, Melton LJ 3rd, Goode EL, Visscher DW (2006) Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 98:1600–1607PubMedCrossRef Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, Pankratz VS, Degnim AC, Vachon CM, Reynolds CA, Thompson RA, Melton LJ 3rd, Goode EL, Visscher DW (2006) Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 98:1600–1607PubMedCrossRef
26.
go back to reference Mitchell G, Antoniou AC, Warren R, Peock S, Brown J, Davies R, Mattison J, Cook M, Warsi I, Evans DG, Eccles D, Douglas F, Paterson J, Hodgson S, Izatt L, Cole T, Burgess L, Eeles R, Easton DF (2006) Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res 66:1866–1872PubMedCrossRef Mitchell G, Antoniou AC, Warren R, Peock S, Brown J, Davies R, Mattison J, Cook M, Warsi I, Evans DG, Eccles D, Douglas F, Paterson J, Hodgson S, Izatt L, Cole T, Burgess L, Eeles R, Easton DF (2006) Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res 66:1866–1872PubMedCrossRef
27.
go back to reference Naylor MJ, Ormandy CJ (2002) Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Dev Dyn 225:100–105PubMedCrossRef Naylor MJ, Ormandy CJ (2002) Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Dev Dyn 225:100–105PubMedCrossRef
28.
go back to reference Odefrey F, Stone J, Gurrin LC, Byrnes GB, Apicella C, Dite GS, Cawson JN, Giles GG, Treloar SA, English DR, Hopper JL, Southey MC (2010) Common genetic variants associated with breast cancer and mammographic density measures that predict disease. Cancer Res 70:1449–1458PubMedCrossRef Odefrey F, Stone J, Gurrin LC, Byrnes GB, Apicella C, Dite GS, Cawson JN, Giles GG, Treloar SA, English DR, Hopper JL, Southey MC (2010) Common genetic variants associated with breast cancer and mammographic density measures that predict disease. Cancer Res 70:1449–1458PubMedCrossRef
29.
go back to reference Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–342PubMedCrossRef Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–342PubMedCrossRef
30.
go back to reference Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254PubMedCrossRef Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254PubMedCrossRef
31.
go back to reference Provenzano PP, Inman DR, Eliceiri KW, Keely PJ (2009) Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28:4326–4343PubMedCrossRef Provenzano PP, Inman DR, Eliceiri KW, Keely PJ (2009) Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28:4326–4343PubMedCrossRef
32.
go back to reference Radisky DC, Hirai Y, Bissell MJ (2003) Delivering the message: epimorphin and mammary epithelial morphogenesis. Trends Cell Biol 13:426–434PubMedCrossRef Radisky DC, Hirai Y, Bissell MJ (2003) Delivering the message: epimorphin and mammary epithelial morphogenesis. Trends Cell Biol 13:426–434PubMedCrossRef
34.
go back to reference Russo IH, Russo J (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104:938–967PubMedCrossRef Russo IH, Russo J (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104:938–967PubMedCrossRef
35.
go back to reference Russo J, Russo IH (1997) Toward a unified concept of mammary carcinogenesis. Prog Clin Biol Res 396:1–16PubMed Russo J, Russo IH (1997) Toward a unified concept of mammary carcinogenesis. Prog Clin Biol Res 396:1–16PubMed
37.
go back to reference Russo J, Reina D, Frederick J, Russo IH (1988) Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro. Cancer Res 48:2837–2857PubMed Russo J, Reina D, Frederick J, Russo IH (1988) Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro. Cancer Res 48:2837–2857PubMed
38.
go back to reference Russo J, Rivera R, Russo IH (1992) Influence of age and parity on the development of the human breast. Breast Cancer Res Treat 23:211–218PubMedCrossRef Russo J, Rivera R, Russo IH (1992) Influence of age and parity on the development of the human breast. Breast Cancer Res Treat 23:211–218PubMedCrossRef
39.
go back to reference Russo J, Romero AL, Russo IH (1994) Architectural pattern of the normal and cancerous breast under the influence of parity. Cancer Epidemiol Biomarkers Prev 3:219–224PubMed Russo J, Romero AL, Russo IH (1994) Architectural pattern of the normal and cancerous breast under the influence of parity. Cancer Epidemiol Biomarkers Prev 3:219–224PubMed
40.
go back to reference Russo J, Lynch H, Russo IH (2001) Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast J 7:278–291PubMedCrossRef Russo J, Lynch H, Russo IH (2001) Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast J 7:278–291PubMedCrossRef
41.
go back to reference Russo J, Balogh GA, Chen J, Fernandez SV, Fernbaugh R, Heulings R, Mailo DA, Moral R, Russo PA, Sheriff F, Vanegas JE, Wang R, Russo IH (2006) The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Front Biosci 11:151–172PubMedCrossRef Russo J, Balogh GA, Chen J, Fernandez SV, Fernbaugh R, Heulings R, Mailo DA, Moral R, Russo PA, Sheriff F, Vanegas JE, Wang R, Russo IH (2006) The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Front Biosci 11:151–172PubMedCrossRef
42.
go back to reference Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev 3:832–844CrossRef Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev 3:832–844CrossRef
43.
go back to reference Stone J, Dite GS, Gunasekara A, English DR, McCredie MR, Giles GG, Cawson JN, Hegele RA, Chiarelli AM, Yaffe MJ, Boyd NF, Hopper JL (2006) The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol Biomarkers Prev 15:612–617PubMedCrossRef Stone J, Dite GS, Gunasekara A, English DR, McCredie MR, Giles GG, Cawson JN, Hegele RA, Chiarelli AM, Yaffe MJ, Boyd NF, Hopper JL (2006) The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol Biomarkers Prev 15:612–617PubMedCrossRef
44.
go back to reference Stone J, Warren RM, Pinney E, Warwick J, Cuzick J (2009) Determinants of percentage and area measures of mammographic density. Am J Epidemiol 170:1571–1578PubMedCrossRef Stone J, Warren RM, Pinney E, Warwick J, Cuzick J (2009) Determinants of percentage and area measures of mammographic density. Am J Epidemiol 170:1571–1578PubMedCrossRef
45.
go back to reference Tamimi RM, Cox D, Kraft P, Colditz GA, Hankinson SE, Hunter DJ (2008) Breast cancer susceptibility loci and mammographic density. Breast Cancer Res 10:R66PubMedCrossRef Tamimi RM, Cox D, Kraft P, Colditz GA, Hankinson SE, Hunter DJ (2008) Breast cancer susceptibility loci and mammographic density. Breast Cancer Res 10:R66PubMedCrossRef
46.
go back to reference Turashvili G, McKinney S, Martin L, Gelmon KA, Watson P, Boyd N, Aparicio S (2009) Columnar cell lesions, mammographic density and breast cancer risk. Breast Cancer Res Treat 115:561–571PubMedCrossRef Turashvili G, McKinney S, Martin L, Gelmon KA, Watson P, Boyd N, Aparicio S (2009) Columnar cell lesions, mammographic density and breast cancer risk. Breast Cancer Res Treat 115:561–571PubMedCrossRef
47.
go back to reference Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11:653–662PubMedCrossRef Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11:653–662PubMedCrossRef
48.
go back to reference Verheus M, Maskarinec G, Erber E, Steude JS, Killeen J, Hernandez BY, Cline JM (2009) Mammographic density and epithelial histopathologic markers. BMC cancer 9:182PubMedCrossRef Verheus M, Maskarinec G, Erber E, Steude JS, Killeen J, Hernandez BY, Cline JM (2009) Mammographic density and epithelial histopathologic markers. BMC cancer 9:182PubMedCrossRef
49.
go back to reference Vogel WF, Aszodi A, Alves F, Pawson T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21:2906–2917PubMedCrossRef Vogel WF, Aszodi A, Alves F, Pawson T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21:2906–2917PubMedCrossRef
50.
go back to reference Wolfe JN (1976) Breast patterns as an index of risk for developing breast cancer. AJR 126:1130–1137PubMed Wolfe JN (1976) Breast patterns as an index of risk for developing breast cancer. AJR 126:1130–1137PubMed
51.
52.
go back to reference Yaffe M, Boyd N (2005) Mammographic breast density and cancer risk: the radiological view. Gynecol Endocrinol 21(Suppl 1):6–11PubMedCrossRef Yaffe M, Boyd N (2005) Mammographic breast density and cancer risk: the radiological view. Gynecol Endocrinol 21(Suppl 1):6–11PubMedCrossRef
53.
go back to reference Zhu X, Asa SL, Ezzat S (2009) Histone-acetylated control of fibroblast growth factor receptor 2 intron 2 polymorphisms and isoform splicing in breast cancer. Mol Endocrinol 23:1397–1405PubMedCrossRef Zhu X, Asa SL, Ezzat S (2009) Histone-acetylated control of fibroblast growth factor receptor 2 intron 2 polymorphisms and isoform splicing in breast cancer. Mol Endocrinol 23:1397–1405PubMedCrossRef
54.
go back to reference Zhu X, Asa SL, Ezzat S (2010) Genetic and epigenetic mechanisms down-regulate FGF receptor 2 to induce melanoma-associated antigen a in breast cancer. Am J Pathol 176:2333–2343PubMedCrossRef Zhu X, Asa SL, Ezzat S (2010) Genetic and epigenetic mechanisms down-regulate FGF receptor 2 to induce melanoma-associated antigen a in breast cancer. Am J Pathol 176:2333–2343PubMedCrossRef
Metadata
Title
Image-guided sampling reveals increased stroma and lower glandular complexity in mammographically dense breast tissue
Authors
Suling J. Lin
Jennifer Cawson
Prue Hill
Izhak Haviv
Mark Jenkins
John L. Hopper
Melissa C. Southey
Ian G. Campbell
Erik W. Thompson
Publication date
01-07-2011
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2011
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-011-1346-0

Other articles of this Issue 2/2011

Breast Cancer Research and Treatment 2/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine