Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 6/2018

Open Access 01-11-2018 | Original Article

Fibroblast growth factor 21 as a biomarker for long-term complications in organic acidemias

Authors: F. Molema, E. H. Jacobs, W. Onkenhout, G. C. Schoonderwoerd, J. G. Langendonk, Monique Williams

Published in: Journal of Inherited Metabolic Disease | Issue 6/2018

Login to get access

Abstract

Background

There is increasing evidence that long-term complications in organic acidemias are caused by impaired mitochondrial metabolism. Currently, there is no specific biomarker to monitor mitochondrial dysfunction in organic acidemias. Serum fibroblast growth factor 21 (FGF-21) is a biomarker for mitochondrial disease and could be a candidate to monitor mitochondrial function in the deleterious course of disease.

Methods

Data of 17 patients with classical organic acidemias (11 propionic acidemia (PA), four methylmalonic acidemia (MMA) and two isovaleric acidemia (IVA) patients) were included. The clinical course was evaluated; metabolic decompensations and long-term complications were correlated with plasma FGF-21 levels. Cardiomyopathy, prolonged QT interval, renal failure, and optic neuropathy were defined as long-term complications.

Results

Patients ages ranged from 16 months up to 32 years. Serious long-term complications occurred in eight patients (five PA and three MMA patients). In MMA and PA patients plasma FGF-21 levels during stable metabolic periods were significantly higher in patients with long-term complications (Mdn = 2556.0 pg/ml) compared to patients without (Mdn = 287.0 pg/ml). A median plasma FGF-21 level above 1500 pg/ml during a stable metabolic period, measured before the occurrence of long-term complications, had a positive predictive value of 0.83 and a negative predictive value of 1.00 on long-term complications in MMA and PA patients.

Conclusion

This study demonstrates the potential role of FGF-21 as a biomarker for long-term complications in classical organic acidemias, attributed to mitochondrial dysfunction.
Appendix
Available only for authorised users
Literature
go back to reference Adibi SA (1976) Metabolism of branched-chain amino acids in altered nutrition. Metabolism 25:1287–1302CrossRefPubMed Adibi SA (1976) Metabolism of branched-chain amino acids in altered nutrition. Metabolism 25:1287–1302CrossRefPubMed
go back to reference Baruteau J, Hargreaves I, Krywawych S et al (2014) Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion 17:150–156CrossRefPubMed Baruteau J, Hargreaves I, Krywawych S et al (2014) Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion 17:150–156CrossRefPubMed
go back to reference Baumgartner D, Scholl-Burgi S, Sass JO et al (2007) Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia. J Pediatr 150:192–197. e1 Baumgartner D, Scholl-Burgi S, Sass JO et al (2007) Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia. J Pediatr 150:192–197. e1
go back to reference Baumgartner MR, Horster F, Dionisi-Vici C et al (2014) Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 9:130CrossRefPubMedPubMedCentral Baumgartner MR, Horster F, Dionisi-Vici C et al (2014) Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 9:130CrossRefPubMedPubMedCentral
go back to reference Davis RL, Liang C, Edema-Hildebrand F, Riley C, Needham M, Sue CM (2013) Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology 81:1819–1826CrossRefPubMed Davis RL, Liang C, Edema-Hildebrand F, Riley C, Needham M, Sue CM (2013) Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology 81:1819–1826CrossRefPubMed
go back to reference de Keyzer Y, Valayannopoulos V, Benoist JF et al (2009) Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 66:91–95CrossRefPubMed de Keyzer Y, Valayannopoulos V, Benoist JF et al (2009) Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 66:91–95CrossRefPubMed
go back to reference Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 356:2282–2292CrossRefPubMed Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 356:2282–2292CrossRefPubMed
go back to reference Erlich-Hadad T, Hadad R, Feldman A, Greif H, Lictenstein M, Lorberboum-Galski H (2017) TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells. J Cell Mol Med 22:1601–1613 Erlich-Hadad T, Hadad R, Feldman A, Greif H, Lictenstein M, Lorberboum-Galski H (2017) TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells. J Cell Mol Med 22:1601–1613
go back to reference Fragaki K, Cano A, Benoist JF et al (2011) Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic acidemia. Mitochondrion 11:533–536CrossRefPubMed Fragaki K, Cano A, Benoist JF et al (2011) Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic acidemia. Mitochondrion 11:533–536CrossRefPubMed
go back to reference Fraser JL, Venditti CP (2016) Methylmalonic and propionic acidemias: clinical management update. Curr Opin Pediatr 28:682–693 Fraser JL, Venditti CP (2016) Methylmalonic and propionic acidemias: clinical management update. Curr Opin Pediatr 28:682–693
go back to reference Gallego-Villar L, Perez B, Ugarte M, Desviat LR, Richard E (2014) Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun 452:457–461CrossRefPubMed Gallego-Villar L, Perez B, Ugarte M, Desviat LR, Richard E (2014) Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun 452:457–461CrossRefPubMed
go back to reference Gallego-Villar L, Rivera-Barahona A, Cuevas-Martin C et al (2016) In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: implications for the pathophysiology of this disorder. Free Radic Biol Med 96:1–12CrossRefPubMed Gallego-Villar L, Rivera-Barahona A, Cuevas-Martin C et al (2016) In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: implications for the pathophysiology of this disorder. Free Radic Biol Med 96:1–12CrossRefPubMed
go back to reference Harting I, Seitz A, Geb S et al (2008) Looking beyond the basal ganglia: the spectrum of MRI changes in methylmalonic acidaemia. J Inherit Metab Dis 31:368–378CrossRefPubMed Harting I, Seitz A, Geb S et al (2008) Looking beyond the basal ganglia: the spectrum of MRI changes in methylmalonic acidaemia. J Inherit Metab Dis 31:368–378CrossRefPubMed
go back to reference Hindricks J, Ebert T, Bachmann A et al (2014) Serum levels of fibroblast growth factor-21 are increased in chronic and acute renal dysfunction. Clin Endocrinol 80:918–924CrossRef Hindricks J, Ebert T, Bachmann A et al (2014) Serum levels of fibroblast growth factor-21 are increased in chronic and acute renal dysfunction. Clin Endocrinol 80:918–924CrossRef
go back to reference Ianchulev T, Kolin T, Moseley K, Sadun A (2003) Optic nerve atrophy in propionic acidemia. Ophthalmology 110:1850–1854CrossRefPubMed Ianchulev T, Kolin T, Moseley K, Sadun A (2003) Optic nerve atrophy in propionic acidemia. Ophthalmology 110:1850–1854CrossRefPubMed
go back to reference Ji K, Zheng J, Lv J et al (2015) Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1alpha pathway. Free Radic Biol Med 84:161–170CrossRefPubMed Ji K, Zheng J, Lv J et al (2015) Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1alpha pathway. Free Radic Biol Med 84:161–170CrossRefPubMed
go back to reference Joint FAO/WHO/UNU Expert Consultation (2007) Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. World Health Organization, Geneva Joint FAO/WHO/UNU Expert Consultation (2007) Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. World Health Organization, Geneva
go back to reference Kim KH, Lee MS (2014) FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diabetes Metab J 38:245–251CrossRefPubMedPubMedCentral Kim KH, Lee MS (2014) FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diabetes Metab J 38:245–251CrossRefPubMedPubMedCentral
go back to reference Kölker S, Schwab M, Horster F et al (2003) Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem 278:47388–47393CrossRefPubMed Kölker S, Schwab M, Horster F et al (2003) Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem 278:47388–47393CrossRefPubMed
go back to reference Kölker S, Garbade SF, Greenberg CR et al (2006a) Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res 59:840–847CrossRefPubMed Kölker S, Garbade SF, Greenberg CR et al (2006a) Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res 59:840–847CrossRefPubMed
go back to reference Kölker S, Sauer SW, Surtees RA, Leonard JV (2006b) The aetiology of neurological complications of organic acidaemias--a role for the blood-brain barrier. J Inherit Metab Dis 29:701–704; discussion 705–706 Kölker S, Sauer SW, Surtees RA, Leonard JV (2006b) The aetiology of neurological complications of organic acidaemias--a role for the blood-brain barrier. J Inherit Metab Dis 29:701–704; discussion 705–706
go back to reference Lehtonen JM, Forsstrom S, Bottani E et al (2016) FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 87:2290–2299 Lehtonen JM, Forsstrom S, Bottani E et al (2016) FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 87:2290–2299
go back to reference Manoli I, Sysol JR, Li L et al (2013) Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A 110:13552–13557CrossRefPubMedPubMedCentral Manoli I, Sysol JR, Li L et al (2013) Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A 110:13552–13557CrossRefPubMedPubMedCentral
go back to reference Marquard J, El Scheich T, Klee D et al (2011) Chronic pancreatitis in branched-chain organic acidurias--a case of methylmalonic aciduria and an overview of the literature. Eur J Pediatr 170:241–245CrossRefPubMed Marquard J, El Scheich T, Klee D et al (2011) Chronic pancreatitis in branched-chain organic acidurias--a case of methylmalonic aciduria and an overview of the literature. Eur J Pediatr 170:241–245CrossRefPubMed
go back to reference Martinez Alvarez L, Jameson E, Parry NR, Lloyd C, Ashworth JL (2016) Optic neuropathy in methylmalonic acidemia and propionic acidemia. Br J Ophthalmol 100:98–104CrossRefPubMed Martinez Alvarez L, Jameson E, Parry NR, Lloyd C, Ashworth JL (2016) Optic neuropathy in methylmalonic acidemia and propionic acidemia. Br J Ophthalmol 100:98–104CrossRefPubMed
go back to reference Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011) Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 43:39–46CrossRefPubMed Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011) Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 43:39–46CrossRefPubMed
go back to reference Mitochondrial Medicine Society's Committee on Diagnosis, Haas RH, Parikh S et al (2008) The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 94:16–37CrossRef Mitochondrial Medicine Society's Committee on Diagnosis, Haas RH, Parikh S et al (2008) The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 94:16–37CrossRef
go back to reference Montero R, Yubero D, Villarroya J et al (2016) GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS One 11:e0148709CrossRefPubMedPubMedCentral Montero R, Yubero D, Villarroya J et al (2016) GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS One 11:e0148709CrossRefPubMedPubMedCentral
go back to reference Pena L, Franks J, Chapman KA et al (2012) Natural history of propionic acidemia. Mol Genet Metab 105:5–9CrossRefPubMed Pena L, Franks J, Chapman KA et al (2012) Natural history of propionic acidemia. Mol Genet Metab 105:5–9CrossRefPubMed
go back to reference Rivera-Barahona A, Alonso-Barroso E, Perez B, Murphy MP, Richard E, Desviat LR (2017) Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. Mol Genet Metab 122:43–50CrossRefPubMed Rivera-Barahona A, Alonso-Barroso E, Perez B, Murphy MP, Richard E, Desviat LR (2017) Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. Mol Genet Metab 122:43–50CrossRefPubMed
go back to reference Schwab MA, Sauer SW, Okun JG et al (2006) Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 398:107–112CrossRefPubMedPubMedCentral Schwab MA, Sauer SW, Okun JG et al (2006) Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 398:107–112CrossRefPubMedPubMedCentral
go back to reference Suomalainen A (2013) Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. Expert Opin Med Diagn 7:313–317CrossRefPubMed Suomalainen A (2013) Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. Expert Opin Med Diagn 7:313–317CrossRefPubMed
go back to reference Suomalainen A, Elo JM, Pietilainen KH et al (2011) FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 10:806–818CrossRefPubMedPubMedCentral Suomalainen A, Elo JM, Pietilainen KH et al (2011) FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 10:806–818CrossRefPubMedPubMedCentral
go back to reference Sutton VR, Chapman KA, Gropman AL et al (2012) Chronic management and health supervision of individuals with propionic acidemia. Mol Genet Metab 105:26–33CrossRefPubMed Sutton VR, Chapman KA, Gropman AL et al (2012) Chronic management and health supervision of individuals with propionic acidemia. Mol Genet Metab 105:26–33CrossRefPubMed
go back to reference van der Meer SB, Poggi F, Spada M et al (1996) Clinical outcome and long-term management of 17 patients with propionic acidaemia. Eur J Pediatr 155:205–210CrossRefPubMed van der Meer SB, Poggi F, Spada M et al (1996) Clinical outcome and long-term management of 17 patients with propionic acidaemia. Eur J Pediatr 155:205–210CrossRefPubMed
go back to reference Wajner M, Goodman SI (2011) Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr 43:31–38CrossRefPubMed Wajner M, Goodman SI (2011) Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr 43:31–38CrossRefPubMed
go back to reference Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448CrossRefPubMed Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448CrossRefPubMed
go back to reference Wilnai Y, Enns GM, Niemi AK, Higgins J, Vogel H (2014) Abnormal hepatocellular mitochondria in methylmalonic acidemia. Ultrastruct Pathol 38:309–314CrossRefPubMed Wilnai Y, Enns GM, Niemi AK, Higgins J, Vogel H (2014) Abnormal hepatocellular mitochondria in methylmalonic acidemia. Ultrastruct Pathol 38:309–314CrossRefPubMed
go back to reference Yannicelli S, Acosta PB, Velazquez A et al (2003) Improved growth and nutrition status in children with methylmalonic or propionic acidemia fed an elemental medical food. Mol Genet Metab 80:181–188CrossRefPubMed Yannicelli S, Acosta PB, Velazquez A et al (2003) Improved growth and nutrition status in children with methylmalonic or propionic acidemia fed an elemental medical food. Mol Genet Metab 80:181–188CrossRefPubMed
go back to reference Zsengeller ZK, Aljinovic N, Teot LA et al (2014) Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol 29:2139–2146CrossRefPubMed Zsengeller ZK, Aljinovic N, Teot LA et al (2014) Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol 29:2139–2146CrossRefPubMed
Metadata
Title
Fibroblast growth factor 21 as a biomarker for long-term complications in organic acidemias
Authors
F. Molema
E. H. Jacobs
W. Onkenhout
G. C. Schoonderwoerd
J. G. Langendonk
Monique Williams
Publication date
01-11-2018
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 6/2018
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-018-0244-6

Other articles of this Issue 6/2018

Journal of Inherited Metabolic Disease 6/2018 Go to the issue