Skip to main content
Top
Published in: Angiogenesis 3/2021

01-08-2021 | Review Paper

TAK1 signaling is a potential therapeutic target for pathological angiogenesis

Authors: Linxin Zhu, Suraj Lama, Leilei Tu, Gregory J. Dusting, Jiang-Hui Wang, Guei-Sheung Liu

Published in: Angiogenesis | Issue 3/2021

Login to get access

Abstract

Angiogenesis plays a critical role in both physiological responses and disease pathogenesis. Excessive angiogenesis can promote neoplastic diseases and retinopathies, while inadequate angiogenesis can lead to aberrant perfusion and impaired wound healing. Transforming growth factor β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is a key modulator involved in a range of cellular functions including the immune responses, cell survival and death. TAK1 is activated in response to various stimuli such as proinflammatory cytokines, hypoxia, and oxidative stress. Emerging evidence has recently suggested that TAK1 is intimately involved in angiogenesis and mediates pathogenic processes related to angiogenesis. Several detailed mechanisms by which TAK1 regulates pathological angiogenesis have been clarified, and potential therapeutics targeting TAK1 have emerged. In this review, we summarize recent studies of TAK1 in angiogenesis and discuss the crosstalk between TAK1 and signaling pathways involved in pathological angiogenesis. We also discuss the approaches for selectively targeting TAK1 and highlight the rationales of therapeutic strategies based on TAK1 inhibition for the treatment of pathological angiogenesis.
Literature
1.
go back to reference Wilting J, Brand-Saberi B, Kurz H, Christ B (1995) Development of the embryonic vascular system. Cell Mol Biol Res 41(4):219–232PubMed Wilting J, Brand-Saberi B, Kurz H, Christ B (1995) Development of the embryonic vascular system. Cell Mol Biol Res 41(4):219–232PubMed
7.
go back to reference Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6(11):1087–1095PubMedCrossRef Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6(11):1087–1095PubMedCrossRef
16.
go back to reference Koziczak-Holbro M, Littlewood-Evans A, Pöllinger B, Kovarik J, Dawson J, Zenke G, Burkhart C, Müller M, Gram H (2009) The critical role of kinase activity of interleukin-1 receptor-associated kinase 4 in animal models of joint inflammation. Arthritis Rheum 60(6):1661–1671. https://doi.org/10.1002/art.24552PubMedCrossRef Koziczak-Holbro M, Littlewood-Evans A, Pöllinger B, Kovarik J, Dawson J, Zenke G, Burkhart C, Müller M, Gram H (2009) The critical role of kinase activity of interleukin-1 receptor-associated kinase 4 in animal models of joint inflammation. Arthritis Rheum 60(6):1661–1671. https://​doi.​org/​10.​1002/​art.​24552PubMedCrossRef
20.
go back to reference Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H (2005) Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem 280(8):7359–7368. https://doi.org/10.1074/jbc.M407537200PubMedCrossRef Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H (2005) Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem 280(8):7359–7368. https://​doi.​org/​10.​1074/​jbc.​M407537200PubMedCrossRef
23.
go back to reference Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204CrossRefPubMed Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204CrossRefPubMed
24.
go back to reference Munn LL (2017) Cancer and inflammation. Wiley Interdiscip Rev 9(2):e1370 Munn LL (2017) Cancer and inflammation. Wiley Interdiscip Rev 9(2):e1370
25.
go back to reference Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845PubMedCrossRef Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845PubMedCrossRef
34.
go back to reference Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, Ciciliano JC, Smas ME, Winokur D, Gilman AJ, Ulman MJ, Xega K, Contino G, Alagesan B, Brannigan BW, Milos PM, Ryan DP, Sequist LV, Bardeesy N, Ramaswamy S, Toner M, Maheswaran S, Haber DA (2012) RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487(7408):510–513. https://doi.org/10.1038/nature11217PubMedPubMedCentralCrossRef Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, Ciciliano JC, Smas ME, Winokur D, Gilman AJ, Ulman MJ, Xega K, Contino G, Alagesan B, Brannigan BW, Milos PM, Ryan DP, Sequist LV, Bardeesy N, Ramaswamy S, Toner M, Maheswaran S, Haber DA (2012) RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487(7408):510–513. https://​doi.​org/​10.​1038/​nature11217PubMedPubMedCentralCrossRef
56.
59.
go back to reference Zippel N, Malik RA, Fromel T, Popp R, Bess E, Strilic B, Wettschureck N, Fleming I, Fisslthaler B (2013) Transforming growth factor-beta-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-alpha1 and redox balance in endothelial cells. Arterioscler Thromb Vasc Biol 33(12):2792–2799. https://doi.org/10.1161/ATVBAHA.113.301848PubMedCrossRef Zippel N, Malik RA, Fromel T, Popp R, Bess E, Strilic B, Wettschureck N, Fleming I, Fisslthaler B (2013) Transforming growth factor-beta-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-alpha1 and redox balance in endothelial cells. Arterioscler Thromb Vasc Biol 33(12):2792–2799. https://​doi.​org/​10.​1161/​ATVBAHA.​113.​301848PubMedCrossRef
84.
go back to reference Izuta H, Chikaraishi Y, Adachi T, Shimazawa M, Sugiyama T, Ikeda T, Hara H (2009) Extracellular SOD and VEGF are increased in vitreous bodies from proliferative diabetic retinopathy patients. Mol Vis 15:2663–2672PubMedPubMedCentral Izuta H, Chikaraishi Y, Adachi T, Shimazawa M, Sugiyama T, Ikeda T, Hara H (2009) Extracellular SOD and VEGF are increased in vitreous bodies from proliferative diabetic retinopathy patients. Mol Vis 15:2663–2672PubMedPubMedCentral
85.
89.
go back to reference Acuña UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, EJ DEB, (2012) Effects of (5Z)-7-oxozeaenol on the oxidative pathway of cancer cells. Anticancer Res 32(7):2665–2671PubMedPubMedCentral Acuña UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, EJ DEB, (2012) Effects of (5Z)-7-oxozeaenol on the oxidative pathway of cancer cells. Anticancer Res 32(7):2665–2671PubMedPubMedCentral
95.
go back to reference Tan L, Nomanbhoy T, Gurbani D, Patricelli M, Hunter J, Geng J, Herhaus L, Zhang J, Pauls E, Ham Y, Choi HG, Xie T, Deng X, Buhrlage SJ, Sim T, Cohen P, Sapkota G, Westover KD, Gray NS (2015) Discovery of type II inhibitors of TGFbeta-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2). J Med Chem 58(1):183–196. https://doi.org/10.1021/jm500480kPubMedCrossRef Tan L, Nomanbhoy T, Gurbani D, Patricelli M, Hunter J, Geng J, Herhaus L, Zhang J, Pauls E, Ham Y, Choi HG, Xie T, Deng X, Buhrlage SJ, Sim T, Cohen P, Sapkota G, Westover KD, Gray NS (2015) Discovery of type II inhibitors of TGFbeta-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2). J Med Chem 58(1):183–196. https://​doi.​org/​10.​1021/​jm500480kPubMedCrossRef
100.
go back to reference Nagler A, Vredevoogd DW, Alon M, Cheng PF, Trabish S, Kalaora S, Arafeh R, Goldin V, Levesque MP, Peeper DS, Samuels Y (2020) A genome-wide CRISPR screen identifies FBXO42 involvement in resistance toward MEK inhibition in NRAS-mutant melanoma. Pigment Cell Melanoma Res 33(2):334–344. https://doi.org/10.1111/pcmr.12825PubMedCrossRef Nagler A, Vredevoogd DW, Alon M, Cheng PF, Trabish S, Kalaora S, Arafeh R, Goldin V, Levesque MP, Peeper DS, Samuels Y (2020) A genome-wide CRISPR screen identifies FBXO42 involvement in resistance toward MEK inhibition in NRAS-mutant melanoma. Pigment Cell Melanoma Res 33(2):334–344. https://​doi.​org/​10.​1111/​pcmr.​12825PubMedCrossRef
106.
go back to reference Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol 71(6):1703–1714. https://doi.org/10.1124/mol.107.034512PubMedCrossRef Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol 71(6):1703–1714. https://​doi.​org/​10.​1124/​mol.​107.​034512PubMedCrossRef
107.
go back to reference Ahn KS, Sethi G, Krishnan K, Aggarwal BB (2007) Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 282(1):809–820. https://doi.org/10.1074/jbc.M610028200PubMedCrossRef Ahn KS, Sethi G, Krishnan K, Aggarwal BB (2007) Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 282(1):809–820. https://​doi.​org/​10.​1074/​jbc.​M610028200PubMedCrossRef
109.
go back to reference Wang H, Chen Z, Li Y, Ji Q (2018) NG25, an inhibitor of transforming growth factor-β-activated kinase 1, ameliorates neuronal apoptosis in neonatal hypoxic-ischemic rats. Mol Med Rep 17(1):1710–1716PubMed Wang H, Chen Z, Li Y, Ji Q (2018) NG25, an inhibitor of transforming growth factor-β-activated kinase 1, ameliorates neuronal apoptosis in neonatal hypoxic-ischemic rats. Mol Med Rep 17(1):1710–1716PubMed
127.
go back to reference Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, Tian L, Gonzalez VE, Xu J, Jung IY, Melenhorst JJ, Plesa G, Shea J, Matlawski T, Cervini A, Gaymon AL, Desjardins S, Lamontagne A, Salas-Mckee J, Fesnak A, Siegel DL, Levine BL, Jadlowsky JK, Young RM, Chew A, Hwang WT, Hexner EO, Carreno BM, Nobles CL, Bushman FD, Parker KR, Qi Y, Satpathy AT, Chang HY, Zhao Y, Lacey SF, June CH (2020) CRISPR-engineered T cells in patients with refractory cancer. Science. https://doi.org/10.1126/science.aba7365PubMedCrossRef Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, Tian L, Gonzalez VE, Xu J, Jung IY, Melenhorst JJ, Plesa G, Shea J, Matlawski T, Cervini A, Gaymon AL, Desjardins S, Lamontagne A, Salas-Mckee J, Fesnak A, Siegel DL, Levine BL, Jadlowsky JK, Young RM, Chew A, Hwang WT, Hexner EO, Carreno BM, Nobles CL, Bushman FD, Parker KR, Qi Y, Satpathy AT, Chang HY, Zhao Y, Lacey SF, June CH (2020) CRISPR-engineered T cells in patients with refractory cancer. Science. https://​doi.​org/​10.​1126/​science.​aba7365PubMedCrossRef
128.
go back to reference Inokuchi S, Aoyama T, Miura K, Österreicher CH, Kodama Y, Miyai K, Akira S, Brenner DA, Seki E (2010) Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci 107(2):844–849PubMedCrossRef Inokuchi S, Aoyama T, Miura K, Österreicher CH, Kodama Y, Miyai K, Akira S, Brenner DA, Seki E (2010) Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci 107(2):844–849PubMedCrossRef
130.
go back to reference Li J, Liang C, Zhang Z-K, Pan X, Peng S, Lee W-S, Lu A, Lin Z, Zhang G, Leung W-N (2017) TAK1 inhibition attenuates both inflammation and fibrosis in experimental pneumoconiosis. Cell Discov 3(1):1–21 Li J, Liang C, Zhang Z-K, Pan X, Peng S, Lee W-S, Lu A, Lin Z, Zhang G, Leung W-N (2017) TAK1 inhibition attenuates both inflammation and fibrosis in experimental pneumoconiosis. Cell Discov 3(1):1–21
131.
go back to reference Fan Y, Cheng J, Vasudevan SA, Patel RH, Liang L, Xu X, Zhao Y, Jia W, Lu F, Zhang H (2013) TAK1 inhibitor 5Z-7-oxozeaenol sensitizes neuroblastoma to chemotherapy. Apoptosis 18(10):1224–1234PubMedPubMedCentralCrossRef Fan Y, Cheng J, Vasudevan SA, Patel RH, Liang L, Xu X, Zhao Y, Jia W, Lu F, Zhang H (2013) TAK1 inhibitor 5Z-7-oxozeaenol sensitizes neuroblastoma to chemotherapy. Apoptosis 18(10):1224–1234PubMedPubMedCentralCrossRef
132.
go back to reference Dvashi Z, Green Y, Pollack A (2014) TAK1 inhibition accelerates cellular senescence of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 55(9):5679–5686PubMedCrossRef Dvashi Z, Green Y, Pollack A (2014) TAK1 inhibition accelerates cellular senescence of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 55(9):5679–5686PubMedCrossRef
133.
go back to reference Scarneo SA, Eibschutz LS, Bendele PJ, Yang KW, Totzke J, Hughes P, Fox DA, Haystead TA (2019) Pharmacological inhibition of TAK1, with the selective inhibitor takinib, alleviates clinical manifestation of arthritis in CIA mice. Arthritis Res Ther 21(1):1–10CrossRef Scarneo SA, Eibschutz LS, Bendele PJ, Yang KW, Totzke J, Hughes P, Fox DA, Haystead TA (2019) Pharmacological inhibition of TAK1, with the selective inhibitor takinib, alleviates clinical manifestation of arthritis in CIA mice. Arthritis Res Ther 21(1):1–10CrossRef
134.
go back to reference Podder B, Guttà C, Rožanc J, Gerlach E, Feoktistova M, Panayotova-Dimitrova D, Alexopoulos LG, Leverkus M, Rehm M (2019) TAK1 suppresses RIPK1-dependent cell death and is associated with disease progression in melanoma. Cell Death Differ 26(12):2520–2534PubMedPubMedCentralCrossRef Podder B, Guttà C, Rožanc J, Gerlach E, Feoktistova M, Panayotova-Dimitrova D, Alexopoulos LG, Leverkus M, Rehm M (2019) TAK1 suppresses RIPK1-dependent cell death and is associated with disease progression in melanoma. Cell Death Differ 26(12):2520–2534PubMedPubMedCentralCrossRef
135.
go back to reference Jones DS, Jenney AP, Swantek JL, Burke JM, Lauffenburger DA, Sorger PK (2017) Profiling drugs for rheumatoid arthritis that inhibit synovial fibroblast activation. Nat Chem Biol 13(1):38–45PubMedCrossRef Jones DS, Jenney AP, Swantek JL, Burke JM, Lauffenburger DA, Sorger PK (2017) Profiling drugs for rheumatoid arthritis that inhibit synovial fibroblast activation. Nat Chem Biol 13(1):38–45PubMedCrossRef
136.
go back to reference Acuña UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, de Blanco EJC (2012) Effects of (5Z)-7-oxozeaenol on MDA-MB-231 breast cancer cells. Anticancer Res 32(7):2415–2421PubMedPubMedCentral Acuña UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, de Blanco EJC (2012) Effects of (5Z)-7-oxozeaenol on MDA-MB-231 breast cancer cells. Anticancer Res 32(7):2415–2421PubMedPubMedCentral
137.
go back to reference Wu J, Powell F, Larsen NA, Lai Z, Byth KF, Read J, Gu R-F, Roth M, Toader D, Saeh JC (2013) Mechanism and in vitro pharmacology of TAK1 inhibition by (5 Z)-7-oxozeaenol. ACS Chem Biol 8(3):643–650PubMedCrossRef Wu J, Powell F, Larsen NA, Lai Z, Byth KF, Read J, Gu R-F, Roth M, Toader D, Saeh JC (2013) Mechanism and in vitro pharmacology of TAK1 inhibition by (5 Z)-7-oxozeaenol. ACS Chem Biol 8(3):643–650PubMedCrossRef
138.
go back to reference Wang Z, Zhang H, Shi M, Yu Y, Wang H, Cao W-M, Zhao Y, Zhang H (2016) TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells. Sci Rep 6(1):1–10CrossRef Wang Z, Zhang H, Shi M, Yu Y, Wang H, Cao W-M, Zhao Y, Zhang H (2016) TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells. Sci Rep 6(1):1–10CrossRef
141.
go back to reference Zhou J, Zheng B, Ji J, Shen F, Min H, Liu B, Wu J, Zhang S (2015) LYTAK1, a novel TAK1 inhibitor, suppresses KRAS mutant colorectal cancer cell growth in vitro and in vivo. Tumor Biol 36(5):3301–3308CrossRef Zhou J, Zheng B, Ji J, Shen F, Min H, Liu B, Wu J, Zhang S (2015) LYTAK1, a novel TAK1 inhibitor, suppresses KRAS mutant colorectal cancer cell growth in vitro and in vivo. Tumor Biol 36(5):3301–3308CrossRef
142.
go back to reference Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, Gan S, Sun S (2016) LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep 14(1):145–150PubMedPubMedCentralCrossRef Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, Gan S, Sun S (2016) LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep 14(1):145–150PubMedPubMedCentralCrossRef
144.
go back to reference Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-κB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IκBα kinase activation. Mol Pharmacol 71(6):1703–1714PubMedCrossRef Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-κB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IκBα kinase activation. Mol Pharmacol 71(6):1703–1714PubMedCrossRef
145.
go back to reference Yang C, Jiang Q (2019) Vitamin E δ-tocotrienol inhibits TNF-α-stimulated NF-κB activation by up-regulation of anti-inflammatory A20 via modulation of sphingolipid including elevation of intracellular dihydroceramides. J Nutr Biochem 64:101–109PubMedCrossRef Yang C, Jiang Q (2019) Vitamin E δ-tocotrienol inhibits TNF-α-stimulated NF-κB activation by up-regulation of anti-inflammatory A20 via modulation of sphingolipid including elevation of intracellular dihydroceramides. J Nutr Biochem 64:101–109PubMedCrossRef
146.
go back to reference Meng Z, Si CY, Teng S, Yu XH, Li HY (2019) Tanshinone IIA inhibits lipopolysaccharide-induced inflammatory responses through the TLR4/TAK1/NF-κB signaling pathway in vascular smooth muscle cells. Int J Mol Med 43(4):1847–1858PubMed Meng Z, Si CY, Teng S, Yu XH, Li HY (2019) Tanshinone IIA inhibits lipopolysaccharide-induced inflammatory responses through the TLR4/TAK1/NF-κB signaling pathway in vascular smooth muscle cells. Int J Mol Med 43(4):1847–1858PubMed
147.
go back to reference Wang Z, Zhao S, Song L, Pu Y, Wang Q, Zeng G, Liu X, Bai M, Li S, Gao F (2018) Natural cyclopeptide RA-V inhibits the NF-κB signaling pathway by targeting TAK1. Cell Death Dis 9(7):1–16 Wang Z, Zhao S, Song L, Pu Y, Wang Q, Zeng G, Liu X, Bai M, Li S, Gao F (2018) Natural cyclopeptide RA-V inhibits the NF-κB signaling pathway by targeting TAK1. Cell Death Dis 9(7):1–16
148.
go back to reference Harikumar KB, Sung B, Tharakan ST, Pandey MK, Joy B, Guha S, Krishnan S, Aggarwal BB (2010) Sesamin manifests chemopreventive effects through the suppression of NF-κB-regulated cell survival, proliferation, invasion, and angiogenic gene products. Mol Cancer Res 8(5):751–761PubMedPubMedCentralCrossRef Harikumar KB, Sung B, Tharakan ST, Pandey MK, Joy B, Guha S, Krishnan S, Aggarwal BB (2010) Sesamin manifests chemopreventive effects through the suppression of NF-κB-regulated cell survival, proliferation, invasion, and angiogenic gene products. Mol Cancer Res 8(5):751–761PubMedPubMedCentralCrossRef
149.
go back to reference Sethi G, Ahn KS, Sung B, Aggarwal BB (2008) Pinitol targets nuclear factor-κB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol Cancer Ther 7(6):1604–1614PubMedCrossRef Sethi G, Ahn KS, Sung B, Aggarwal BB (2008) Pinitol targets nuclear factor-κB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol Cancer Ther 7(6):1604–1614PubMedCrossRef
150.
go back to reference Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-κB signaling pathway. Blood 110(10):3517–3525PubMedPubMedCentralCrossRef Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-κB signaling pathway. Blood 110(10):3517–3525PubMedPubMedCentralCrossRef
151.
go back to reference Sethi G, Ahn KS, Pandey MK, Aggarwal BB (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-κB-regulated gene products and TAK1-mediated NF-κB activation. Blood 109(7):2727–2735PubMedCrossRef Sethi G, Ahn KS, Pandey MK, Aggarwal BB (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-κB-regulated gene products and TAK1-mediated NF-κB activation. Blood 109(7):2727–2735PubMedCrossRef
152.
go back to reference Lee H-W, Jang KSB, Choi HJ, Jo A, Cheong J-H, Chun K-H (2014) Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy. BMB Rep 47(12):697PubMedPubMedCentralCrossRef Lee H-W, Jang KSB, Choi HJ, Jo A, Cheong J-H, Chun K-H (2014) Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy. BMB Rep 47(12):697PubMedPubMedCentralCrossRef
Metadata
Title
TAK1 signaling is a potential therapeutic target for pathological angiogenesis
Authors
Linxin Zhu
Suraj Lama
Leilei Tu
Gregory J. Dusting
Jiang-Hui Wang
Guei-Sheung Liu
Publication date
01-08-2021
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2021
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-021-09787-5

Other articles of this Issue 3/2021

Angiogenesis 3/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.