Skip to main content
Top
Published in: Angiogenesis 2/2020

Open Access 01-05-2020 | Original Paper

The potassium channel Kcne3 is a VEGFA-inducible gene selectively expressed by vascular endothelial tip cells

Authors: Ron A. Deckelbaum, Ivan B. Lobov, Eunice Cheung, Gabor Halasz, Saathyaki Rajamani, Julia Lerner, Chunxiang Tong, Zhe Li, Patricia Boland, Melissa Dominguez, Virginia Hughes, George D. Yancopoulos, Andrew J. Murphy, Gavin Thurston, Jingtai Cao, Carmelo Romano, Nicholas W. Gale

Published in: Angiogenesis | Issue 2/2020

Login to get access

Abstract

Angiogenesis is largely driven by motile endothelial tip-cells capable of invading avascular tissue domains and enabling new vessel formation. Highly responsive to Vascular Endothelial Growth-Factor-A (VEGFA), endothelial tip-cells also suppress angiogenic sprouting in adjacent stalk cells, and thus have been a primary therapeutic focus in addressing neovascular pathologies. Surprisingly, however, there remains a paucity of specific endothelial tip-cell markers. Here, we employ transcriptional profiling and a lacZ reporter allele to identify Kcne3 as an early and selective endothelial tip-cell marker in multiple angiogenic contexts. In development, Kcne3 expression initiates during early phases of angiogenesis (E9) and remains specific to endothelial tip-cells, often adjacent to regions expressing VEGFA. Consistently, Kcne3 activation is highly responsive to exogenous VEGFA but maintains tip-cell specificity throughout normal retinal angiogenesis. We also demonstrate endothelial tip-cell selectivity of Kcne3 in several injury and tumor models. Together, our data show that Kcne3 is a unique marker of sprouting angiogenic tip-cells and offers new opportunities for investigating and targeting this cell type.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257PubMed Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257PubMed
2.
3.
go back to reference Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2(14):e93751PubMedCentral Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2(14):e93751PubMedCentral
4.
go back to reference Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887PubMed Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887PubMed
5.
go back to reference Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20):2511–2524PubMed Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20):2511–2524PubMed
6.
go back to reference Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedPubMedCentral Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedPubMedCentral
7.
go back to reference Hellstrom M et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780PubMed Hellstrom M et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780PubMed
8.
go back to reference Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784PubMed Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784PubMed
9.
go back to reference Lobov IB et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224PubMedPubMedCentral Lobov IB et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224PubMedPubMedCentral
10.
go back to reference Suchting S et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104(9):3225–3230PubMedPubMedCentral Suchting S et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104(9):3225–3230PubMedPubMedCentral
11.
go back to reference Ehling M et al (2013) Notch controls retinal blood vessel maturation and quiescence. Development 140(14):3051–3061PubMed Ehling M et al (2013) Notch controls retinal blood vessel maturation and quiescence. Development 140(14):3051–3061PubMed
12.
go back to reference Carmeliet P et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439PubMed Carmeliet P et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439PubMed
13.
go back to reference Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442PubMed Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442PubMed
14.
go back to reference Gale NW et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101(45):15949–15954PubMedPubMedCentral Gale NW et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101(45):15949–15954PubMedPubMedCentral
15.
16.
go back to reference Claxton S, Fruttiger M (2004) Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns 5(1):123–127PubMed Claxton S, Fruttiger M (2004) Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns 5(1):123–127PubMed
17.
go back to reference Lu X et al (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432(7014):179–186PubMed Lu X et al (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432(7014):179–186PubMed
18.
go back to reference Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660PubMed Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660PubMed
19.
go back to reference del Toro R et al (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116(19):4025–4033PubMedPubMedCentral del Toro R et al (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116(19):4025–4033PubMedPubMedCentral
20.
go back to reference Rocha SF et al (2014) Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ Res 115(6):581–590PubMed Rocha SF et al (2014) Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ Res 115(6):581–590PubMed
21.
go back to reference Strasser GA, Kaminker JS, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115(24):5102–5110PubMed Strasser GA, Kaminker JS, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115(24):5102–5110PubMed
22.
go back to reference Nowak-Sliwinska P et al (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532PubMedPubMedCentral Nowak-Sliwinska P et al (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532PubMedPubMedCentral
23.
go back to reference Pitulescu ME et al (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19(8):915–927PubMed Pitulescu ME et al (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19(8):915–927PubMed
24.
go back to reference Abbott GW (2016) KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene 576(1 Pt 1):1–13PubMed Abbott GW (2016) KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene 576(1 Pt 1):1–13PubMed
25.
go back to reference Abbott GW et al (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104(2):217–231PubMed Abbott GW et al (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104(2):217–231PubMed
26.
go back to reference Preston P et al (2010) Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl− transport. J Biol Chem 285(10):7165–7175PubMedPubMedCentral Preston P et al (2010) Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl transport. J Biol Chem 285(10):7165–7175PubMedPubMedCentral
28.
go back to reference Valenzuela DM et al (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21(6):652–659PubMed Valenzuela DM et al (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21(6):652–659PubMed
29.
go back to reference Adams NC, Gale NW (2006) High resolution gene expression analysis in mice using genetically inserted reporter genes. In: Pease S, Lois C (eds) Mammalian and avian transgenesis—new approaches. Springer, Berlin Adams NC, Gale NW (2006) High resolution gene expression analysis in mice using genetically inserted reporter genes. In: Pease S, Lois C (eds) Mammalian and avian transgenesis—new approaches. Springer, Berlin
30.
go back to reference Wang F et al (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14(1):22–29PubMedPubMedCentral Wang F et al (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14(1):22–29PubMedPubMedCentral
31.
go back to reference Smith LE et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111PubMed Smith LE et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111PubMed
32.
go back to reference Cursiefen C et al (2004) Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 45(8):2666–2673PubMed Cursiefen C et al (2004) Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 45(8):2666–2673PubMed
33.
go back to reference Li Z et al (2009) Embryonic stem cell tumor model reveals role of vascular endothelial receptor tyrosine phosphatase in regulating Tie2 pathway in tumor angiogenesis. Proc Natl Acad Sci USA 106(52):22399–22404PubMedPubMedCentral Li Z et al (2009) Embryonic stem cell tumor model reveals role of vascular endothelial receptor tyrosine phosphatase in regulating Tie2 pathway in tumor angiogenesis. Proc Natl Acad Sci USA 106(52):22399–22404PubMedPubMedCentral
34.
go back to reference Lobov IB et al (2011) The Dll4/Notch pathway controls postangiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow. Blood 117(24):6728–6737PubMed Lobov IB et al (2011) The Dll4/Notch pathway controls postangiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow. Blood 117(24):6728–6737PubMed
35.
go back to reference Holash J et al (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99(17):11393–11398PubMedPubMedCentral Holash J et al (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99(17):11393–11398PubMedPubMedCentral
36.
go back to reference Zhao Q et al (2018) Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res 78(9):2370–2382PubMed Zhao Q et al (2018) Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res 78(9):2370–2382PubMed
37.
38.
go back to reference Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438(7070):937–945PubMed Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438(7070):937–945PubMed
39.
go back to reference Eshkar-Oren I et al (2009) The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136(8):1263–1272PubMed Eshkar-Oren I et al (2009) The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136(8):1263–1272PubMed
40.
go back to reference Miquerol L et al (1999) Multiple developmental roles of VEGF suggested by a LacZ-tagged allele. Dev Biol 212(2):307–322PubMed Miquerol L et al (1999) Multiple developmental roles of VEGF suggested by a LacZ-tagged allele. Dev Biol 212(2):307–322PubMed
41.
go back to reference Cursiefen C et al (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113(7):1040–1050PubMedPubMedCentral Cursiefen C et al (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113(7):1040–1050PubMedPubMedCentral
42.
go back to reference Streilein JW et al (1996) Immunosuppressive properties of tissues obtained from eyes with experimentally manipulated corneas. Invest Ophthalmol Vis Sci 37(2):413–424PubMed Streilein JW et al (1996) Immunosuppressive properties of tissues obtained from eyes with experimentally manipulated corneas. Invest Ophthalmol Vis Sci 37(2):413–424PubMed
43.
go back to reference Rennel E et al (2007) Endocan is a VEGF-A and PI3K regulated gene with increased expression in human renal cancer. Exp Cell Res 313(7):1285–1294PubMed Rennel E et al (2007) Endocan is a VEGF-A and PI3K regulated gene with increased expression in human renal cancer. Exp Cell Res 313(7):1285–1294PubMed
44.
go back to reference Shin JW, Huggenberger R, Detmar M (2008) Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood 112(6):2318–2326PubMedPubMedCentral Shin JW, Huggenberger R, Detmar M (2008) Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood 112(6):2318–2326PubMedPubMedCentral
45.
go back to reference Eichten A et al (2013) Rapid decrease in tumor perfusion following VEGF blockade predicts long-term tumor growth inhibition in preclinical tumor models. Angiogenesis 16(2):429–441PubMed Eichten A et al (2013) Rapid decrease in tumor perfusion following VEGF blockade predicts long-term tumor growth inhibition in preclinical tumor models. Angiogenesis 16(2):429–441PubMed
46.
go back to reference Gerber HP et al (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628PubMed Gerber HP et al (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628PubMed
47.
go back to reference Maes C et al (2004) Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Invest 113(2):188–199PubMedPubMedCentral Maes C et al (2004) Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Invest 113(2):188–199PubMedPubMedCentral
48.
go back to reference Zelzer E et al (2004) VEGFA is necessary for chondrocyte survival during bone development. Development 131(9):2161–2171PubMed Zelzer E et al (2004) VEGFA is necessary for chondrocyte survival during bone development. Development 131(9):2161–2171PubMed
49.
go back to reference Zelzer E et al (2002) Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129(8):1893–1904PubMed Zelzer E et al (2002) Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129(8):1893–1904PubMed
50.
go back to reference Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328PubMedPubMedCentral Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328PubMedPubMedCentral
51.
go back to reference Ramasamy SK et al (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380PubMedPubMedCentral Ramasamy SK et al (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380PubMedPubMedCentral
52.
53.
go back to reference Kim K et al (2016) SoxF transcription factors are positive feedback regulators of VEGF signaling. Circ Res 119(7):839–852PubMed Kim K et al (2016) SoxF transcription factors are positive feedback regulators of VEGF signaling. Circ Res 119(7):839–852PubMed
54.
go back to reference Paik JH et al (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128(2):309–323PubMedPubMedCentral Paik JH et al (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128(2):309–323PubMedPubMedCentral
55.
go back to reference Pardo LA, Stuhmer W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14(1):39–48PubMed Pardo LA, Stuhmer W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14(1):39–48PubMed
56.
go back to reference Boriushkin E, Fancher IS, Levitan I (2019) Shear-stress sensitive inwardly-rectifying K(+) channels regulate developmental retinal angiogenesis by vessel regression. Cell Physiol Biochem 52(6):1569–1583PubMed Boriushkin E, Fancher IS, Levitan I (2019) Shear-stress sensitive inwardly-rectifying K(+) channels regulate developmental retinal angiogenesis by vessel regression. Cell Physiol Biochem 52(6):1569–1583PubMed
57.
go back to reference Mazhari R et al (2002) Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. J Clin Invest 109(8):1083–1090PubMedPubMedCentral Mazhari R et al (2002) Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. J Clin Invest 109(8):1083–1090PubMedPubMedCentral
58.
go back to reference Xu C et al (2014) Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5:5758PubMed Xu C et al (2014) Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5:5758PubMed
Metadata
Title
The potassium channel Kcne3 is a VEGFA-inducible gene selectively expressed by vascular endothelial tip cells
Authors
Ron A. Deckelbaum
Ivan B. Lobov
Eunice Cheung
Gabor Halasz
Saathyaki Rajamani
Julia Lerner
Chunxiang Tong
Zhe Li
Patricia Boland
Melissa Dominguez
Virginia Hughes
George D. Yancopoulos
Andrew J. Murphy
Gavin Thurston
Jingtai Cao
Carmelo Romano
Nicholas W. Gale
Publication date
01-05-2020
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 2/2020
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-019-09696-8

Other articles of this Issue 2/2020

Angiogenesis 2/2020 Go to the issue