Skip to main content
Top
Published in: Angiogenesis 3/2016

01-07-2016 | Brief Communication

Vegfr3-CreER T2 mouse, a new genetic tool for targeting the lymphatic system

Authors: Ines Martinez-Corral, Lukas Stanczuk, Maike Frye, Maria Helena Ulvmar, Rodrigo Diéguez-Hurtado, David Olmeda, Taija Makinen, Sagrario Ortega

Published in: Angiogenesis | Issue 3/2016

Login to get access

Abstract

The lymphatic system is essential in many physiological and pathological processes. Still, much remains to be known about the molecular mechanisms that control its development and function and how to modulate them therapeutically. The study of these mechanisms will benefit from better controlled genetic mouse models targeting specifically lymphatic endothelial cells. Among the genes expressed predominantly in lymphatic endothelium, Vegfr3 was the first one identified and is still considered to be one of the best lymphatic markers and a key regulator of the lymphatic system. Here, we report the generation of a Vegfr3-CreER T2 knockin mouse by gene targeting in embryonic stem cells. This mouse expresses the tamoxifen-inducible CreERT2 recombinase under the endogenous transcriptional control of the Vegfr3 gene without altering its physiological expression or regulation. The Vegfr3-CreER T2 allele drives efficient recombination of floxed sequences upon tamoxifen administration specifically in Vegfr3-expressing cells, both in vitro, in primary lymphatic endothelial cells, and in vivo, at different stages of mouse embryonic development and postnatal life. Thus, our Vegfr3-CreER T2 mouse constitutes a new powerful genetic tool for lineage tracing analysis and for conditional gene manipulation in the lymphatic endothelium that will contribute to improve our current understanding of this system.
Appendix
Available only for authorised users
Literature
4.
go back to reference Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML (2006) VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev Dyn 235(12):3413–3422. doi:10.1002/dvdy.20982 CrossRefPubMed Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML (2006) VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev Dyn 235(12):3413–3422. doi:10.​1002/​dvdy.​20982 CrossRefPubMed
5.
go back to reference Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486. doi:10.1038/nature09002 CrossRefPubMed Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486. doi:10.​1038/​nature09002 CrossRefPubMed
6.
8.
go back to reference Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570CrossRefPubMedPubMedCentral Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570CrossRefPubMedPubMedCentral
9.
go back to reference Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778CrossRefPubMed Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778CrossRefPubMed
10.
go back to reference Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR, Cyster JG (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207(1):17–27. doi:10.1084/jem.20091619 CrossRefPubMedPubMedCentral Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR, Cyster JG (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207(1):17–27. doi:10.​1084/​jem.​20091619 CrossRefPubMedPubMedCentral
15.
go back to reference Galland F, Karamysheva A, Mattei MG, Rosnet O, Marchetto S, Birnbaum D (1992) Chromosomal localization of FLT4, a novel receptor-type tyrosine kinase gene. Genomics 13(2):475–478CrossRefPubMed Galland F, Karamysheva A, Mattei MG, Rosnet O, Marchetto S, Birnbaum D (1992) Chromosomal localization of FLT4, a novel receptor-type tyrosine kinase gene. Genomics 13(2):475–478CrossRefPubMed
16.
go back to reference Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660. doi:10.1038/nature07083 CrossRefPubMed Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660. doi:10.​1038/​nature07083 CrossRefPubMed
17.
go back to reference Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, Stacker SA, Achen MG, Alitalo K (2000) VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 14(13):2087–2096. doi:10.1096/fj.99-1049com CrossRefPubMed Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, Stacker SA, Achen MG, Alitalo K (2000) VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 14(13):2087–2096. doi:10.​1096/​fj.​99-1049com CrossRefPubMed
18.
19.
go back to reference Ichise T, Yoshida N, Ichise H (2010) H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development 137(6):1003–1013. doi:10.1242/dev.043489 CrossRefPubMed Ichise T, Yoshida N, Ichise H (2010) H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development 137(6):1003–1013. doi:10.​1242/​dev.​043489 CrossRefPubMed
20.
24.
go back to reference Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949CrossRefPubMed Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949CrossRefPubMed
25.
go back to reference Hagerling R, Pollmann C, Kremer L, Andresen V, Kiefer F (2011) Intravital two-photon microscopy of lymphatic vessel development and function using a transgenic Prox1 promoter-directed mOrange2 reporter mouse. Biochem Soc Trans 39(6):1674–1681. doi:10.1042/BST20110722 CrossRefPubMed Hagerling R, Pollmann C, Kremer L, Andresen V, Kiefer F (2011) Intravital two-photon microscopy of lymphatic vessel development and function using a transgenic Prox1 promoter-directed mOrange2 reporter mouse. Biochem Soc Trans 39(6):1674–1681. doi:10.​1042/​BST20110722 CrossRefPubMed
27.
go back to reference Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Lavina B, Fruttiger M, Adams RH, Saur D, Betsholtz C, Ortega S, Alitalo K, Graupera M, Makinen T (2015) cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell reports. doi:10.1016/j.celrep.2015.02.026 PubMed Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Lavina B, Fruttiger M, Adams RH, Saur D, Betsholtz C, Ortega S, Alitalo K, Graupera M, Makinen T (2015) cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell reports. doi:10.​1016/​j.​celrep.​2015.​02.​026 PubMed
30.
go back to reference Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315. doi:10.1038/nature09493 CrossRefPubMedPubMedCentral Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315. doi:10.​1038/​nature09493 CrossRefPubMedPubMedCentral
31.
go back to reference Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, Kohno R, Hasegawa M, Nishikawa S, Sueishi K (2009) VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol 297(5):H1685–H1696. doi:10.1152/ajpheart.00015.2009 CrossRefPubMed Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, Kohno R, Hasegawa M, Nishikawa S, Sueishi K (2009) VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol 297(5):H1685–H1696. doi:10.​1152/​ajpheart.​00015.​2009 CrossRefPubMed
32.
go back to reference Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25(2):139–140. doi:10.1038/75973 CrossRefPubMed Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25(2):139–140. doi:10.​1038/​75973 CrossRefPubMed
33.
go back to reference You Y, Bersgtram R, Klemm M, Nelson H, Jaenisch R, Schimenti J (1998) Utility of C57BL/6 J × 129/SvJae embryonic stem cells for generating chromosomal deletions: tolerance to gamma radiation and microsatellite polymorphism. Mamm Genome 9(3):232–234CrossRefPubMed You Y, Bersgtram R, Klemm M, Nelson H, Jaenisch R, Schimenti J (1998) Utility of C57BL/6 J × 129/SvJae embryonic stem cells for generating chromosomal deletions: tolerance to gamma radiation and microsatellite polymorphism. Mamm Genome 9(3):232–234CrossRefPubMed
34.
go back to reference Behringer RGM, Vintersten K, Nagy A (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory press, Cold Spring Behringer RGM, Vintersten K, Nagy A (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory press, Cold Spring
Metadata
Title
Vegfr3-CreER T2 mouse, a new genetic tool for targeting the lymphatic system
Authors
Ines Martinez-Corral
Lukas Stanczuk
Maike Frye
Maria Helena Ulvmar
Rodrigo Diéguez-Hurtado
David Olmeda
Taija Makinen
Sagrario Ortega
Publication date
01-07-2016
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2016
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-016-9505-x

Other articles of this Issue 3/2016

Angiogenesis 3/2016 Go to the issue