Skip to main content
Top
Published in: Angiogenesis 3/2016

Open Access 01-07-2016 | Original Paper

CD34 expression modulates tube-forming capacity and barrier properties of peripheral blood-derived endothelial colony-forming cells (ECFCs)

Authors: Dimitar Tasev, Lara S. F. Konijnenberg, Joana Amado-Azevedo, Michiel H. van Wijhe, Pieter Koolwijk, Victor W. M. van Hinsbergh

Published in: Angiogenesis | Issue 3/2016

Login to get access

Abstract

Endothelial colony-forming cells (ECFC) are grown from circulating CD34+ progenitors present in adult peripheral blood, but during in vitro expansion part of the cells lose CD34. To evaluate whether the regulation of CD34 characterizes the angiogenic phenotypical features of PB-ECFCs, we investigated the properties of CD34+ and CD34 ECFCs with respect to their ability to form capillary-like tubes in 3D fibrin matrices, tip-cell gene expression, and barrier integrity. Selection of CD34+ and CD34 ECFCs from subcultured ECFCs was accomplished by magnetic sorting (FACS: CD34+: 95 % pos; CD34: 99 % neg). Both fractions proliferated at same rate, while CD34+ ECFCs exhibited higher tube-forming capacity and tip-cell gene expression than CD34− cells. However, during cell culture CD34 cells re-expressed CD34. Cell-seeding density, cell–cell contact formation, and serum supplements modulated CD34 expression. CD34 expression in ECFCs was strongly suppressed by newborn calf serum. Stimulation with FGF-2, VEGF, or HGF prepared in medium supplemented with 3 % albumin did not change CD34 mRNA or surface expression. Silencing of CD34 with siRNA resulted in strengthening of cell–cell contacts and increased barrier function of ECFC monolayers as measured by ECIS. Furthermore, CD34 siRNA reduced tube formation by ECFC, but did not affect tip-cell gene expression. These findings demonstrate that CD34+ and CD34 cells are different phenotypes of similar cells and that CD34 (1) can be regulated in ECFC; (2) is positively involved in capillary-like sprout formation; (3) is associated but not causally related to tip-cell gene expression; and (4) can affect endothelial barrier function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S et al (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768CrossRefPubMed Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S et al (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768CrossRefPubMed
2.
go back to reference Critser PJ, Yoder MC (2010) Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Curr Opin Organ Transpl 15:68–72CrossRef Critser PJ, Yoder MC (2010) Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Curr Opin Organ Transpl 15:68–72CrossRef
3.
go back to reference Sieveking DP, Buckle A, Celermajer DS, Ng MKC (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51:660–668CrossRefPubMed Sieveking DP, Buckle A, Celermajer DS, Ng MKC (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51:660–668CrossRefPubMed
4.
go back to reference Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809CrossRefPubMedPubMedCentral Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809CrossRefPubMedPubMedCentral
5.
go back to reference Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202CrossRefPubMedPubMedCentral Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202CrossRefPubMedPubMedCentral
6.
go back to reference Tura O, Skinner EM, Barclay GR, Samuel K, Gallagher RCJ et al (2013) Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31:338–348CrossRefPubMed Tura O, Skinner EM, Barclay GR, Samuel K, Gallagher RCJ et al (2013) Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31:338–348CrossRefPubMed
7.
go back to reference Mund JA, Estes ML, Yoder MC, Ingram DA, Case J (2012) Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 32:1045–1053CrossRefPubMedPubMedCentral Mund JA, Estes ML, Yoder MC, Ingram DA, Case J (2012) Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 32:1045–1053CrossRefPubMedPubMedCentral
8.
go back to reference Stella CC, Cazzola M, De Fabritiis P, De Vincentiis A, Gianni AM et al (1995) CD34-positive cells: biology and clinical relevance. Haematologica 80:367–387PubMed Stella CC, Cazzola M, De Fabritiis P, De Vincentiis A, Gianni AM et al (1995) CD34-positive cells: biology and clinical relevance. Haematologica 80:367–387PubMed
9.
go back to reference Shaliubhai K, Streeter PR, Smith CE, Jacob GS (1997) Sulfation and sialylation requirements for a glycoform of CD34, a major endothelial ligand for L-selectin in porcine peripheral lymph nodes. Glycobiology 7:305–314CrossRef Shaliubhai K, Streeter PR, Smith CE, Jacob GS (1997) Sulfation and sialylation requirements for a glycoform of CD34, a major endothelial ligand for L-selectin in porcine peripheral lymph nodes. Glycobiology 7:305–314CrossRef
10.
go back to reference Hemmerich S, Butcher EC, Rosen SD (1994) Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody. J Exp Med 180:2219–2226CrossRefPubMed Hemmerich S, Butcher EC, Rosen SD (1994) Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody. J Exp Med 180:2219–2226CrossRefPubMed
11.
go back to reference Sutherland DR, Keating A (1992) The CD34 antigen: structure, biology, and potential clinical applications. J Hematother 1:115–129CrossRefPubMed Sutherland DR, Keating A (1992) The CD34 antigen: structure, biology, and potential clinical applications. J Hematother 1:115–129CrossRefPubMed
12.
go back to reference Marone M, Scambia G, Bonanno G, Rutella S, De Ritis D et al (2002) Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects. Leuk Off J Leuk Soc Am Leuk Res Fund UK 16:94–105CrossRef Marone M, Scambia G, Bonanno G, Rutella S, De Ritis D et al (2002) Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects. Leuk Off J Leuk Soc Am Leuk Res Fund UK 16:94–105CrossRef
13.
go back to reference Delia D, Lampugnani MG, Resnati M, Dejana E, Aiello A et al (1993) CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood 81:1001–1008PubMed Delia D, Lampugnani MG, Resnati M, Dejana E, Aiello A et al (1993) CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood 81:1001–1008PubMed
14.
go back to reference Brunet De La Grange P, Barthe C, Lippert E, Hermitte F, Belloc F et al (2006) Oxygen concentration influences mRNA processing and expression of the cd34 gene. J Cell Biochem 97:135–144CrossRefPubMed Brunet De La Grange P, Barthe C, Lippert E, Hermitte F, Belloc F et al (2006) Oxygen concentration influences mRNA processing and expression of the cd34 gene. J Cell Biochem 97:135–144CrossRefPubMed
15.
go back to reference Levantini E, Lee S, Radomska HS, Hetherington CJ, Alberich-Jorda M et al (2011) RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO J 30:4059–4070CrossRefPubMedPubMedCentral Levantini E, Lee S, Radomska HS, Hetherington CJ, Alberich-Jorda M et al (2011) RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO J 30:4059–4070CrossRefPubMedPubMedCentral
16.
go back to reference Radomska HS, Satterthwaite AB, Burn TC, Oliff IA, Tenen DG (1998) Multiple control elements are required for expression of the human CD34 gene. Gene 222:305–318CrossRefPubMed Radomska HS, Satterthwaite AB, Burn TC, Oliff IA, Tenen DG (1998) Multiple control elements are required for expression of the human CD34 gene. Gene 222:305–318CrossRefPubMed
17.
go back to reference Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF et al (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133:157–165PubMed Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF et al (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133:157–165PubMed
18.
go back to reference Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P et al (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75:2417–2426PubMed Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P et al (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75:2417–2426PubMed
19.
go back to reference Drew E, Merkens H, Chelliah S, Doyonnas R, McNagny KM (2002) CD34 is a specific marker of mature murine mast cells. Exp Hematol 30:1211–1218CrossRefPubMed Drew E, Merkens H, Chelliah S, Doyonnas R, McNagny KM (2002) CD34 is a specific marker of mature murine mast cells. Exp Hematol 30:1211–1218CrossRefPubMed
20.
21.
go back to reference Schlingemann RO, Rietveld FJ, de Waal RM, Bradley NJ, Skene AI et al (1990) Leukocyte antigen CD34 is expressed by a subset of cultured endothelial cells and on endothelial abluminal microprocesses in the tumor stroma. Lab Invest 62:690–696PubMed Schlingemann RO, Rietveld FJ, de Waal RM, Bradley NJ, Skene AI et al (1990) Leukocyte antigen CD34 is expressed by a subset of cultured endothelial cells and on endothelial abluminal microprocesses in the tumor stroma. Lab Invest 62:690–696PubMed
22.
go back to reference Siemerink MJ, Klaassen I, Vogels IMC, Griffioen AW, Van Noorden CJF et al (2012) CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 15:151–163CrossRefPubMedPubMedCentral Siemerink MJ, Klaassen I, Vogels IMC, Griffioen AW, Van Noorden CJF et al (2012) CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 15:151–163CrossRefPubMedPubMedCentral
23.
go back to reference Young PE, Baumhueter S, Lasky LA (1995) The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 85:96–105PubMed Young PE, Baumhueter S, Lasky LA (1995) The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 85:96–105PubMed
24.
go back to reference Hu MC-T, Chien SL (1998) The cytoplasmic domain of stem cell antigen CD34 is essential for cytoadhesion signaling but not sufficient for proliferation signaling. Blood 91:1152–1162PubMed Hu MC-T, Chien SL (1998) The cytoplasmic domain of stem cell antigen CD34 is essential for cytoadhesion signaling but not sufficient for proliferation signaling. Blood 91:1152–1162PubMed
25.
go back to reference Majdic O, Stöckl J, Pickl WF, Bohuslav J, Strobl H et al (1994) Signaling and induction of enhanced cytoadhesiveness via the hematopoietic progenitor cell surface molecule CD34. Blood 83:1226–1234PubMed Majdic O, Stöckl J, Pickl WF, Bohuslav J, Strobl H et al (1994) Signaling and induction of enhanced cytoadhesiveness via the hematopoietic progenitor cell surface molecule CD34. Blood 83:1226–1234PubMed
26.
go back to reference Healy L, May G, Gale K, Grosveld F, Greaves M et al (1995) The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc Natl Acad Sci USA 92:12240–12244CrossRefPubMedPubMedCentral Healy L, May G, Gale K, Grosveld F, Greaves M et al (1995) The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc Natl Acad Sci USA 92:12240–12244CrossRefPubMedPubMedCentral
27.
go back to reference Ohnishi H, Sasaki H, Nakamura Y, Kato S, Ando K et al (2013) Regulation of cell shape and adhesion by CD34. Cell Adhes Migr 7:426–433CrossRef Ohnishi H, Sasaki H, Nakamura Y, Kato S, Ando K et al (2013) Regulation of cell shape and adhesion by CD34. Cell Adhes Migr 7:426–433CrossRef
28.
go back to reference Baumheter S, Singer MS, Henzel W, Hemmerich S, Renz M et al (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262:436–438CrossRefPubMed Baumheter S, Singer MS, Henzel W, Hemmerich S, Renz M et al (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262:436–438CrossRefPubMed
29.
go back to reference Puri KD, Finger EB, Gaudernack G, Springer TA (1995) Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules. J Cell Biol 131:261–270CrossRefPubMed Puri KD, Finger EB, Gaudernack G, Springer TA (1995) Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules. J Cell Biol 131:261–270CrossRefPubMed
30.
go back to reference Tasev D, van Wijhe MH, Weijers EM, van Hinsbergh VWM, Koolwijk P (2015) Long-term expansion in platelet lysate increases growth of peripheral blood-derived endothelial-colony forming cells and their growth factor-induced sprouting capacity. PLoS ONE 10:e0129935CrossRefPubMedPubMedCentral Tasev D, van Wijhe MH, Weijers EM, van Hinsbergh VWM, Koolwijk P (2015) Long-term expansion in platelet lysate increases growth of peripheral blood-derived endothelial-colony forming cells and their growth factor-induced sprouting capacity. PLoS ONE 10:e0129935CrossRefPubMedPubMedCentral
31.
go back to reference Ferreras C, Cole CL, Urban K, Jayson GC, Avizienyte E (2015) Segregation of late outgrowth endothelial cells into functional endothelial CD34− and progenitor-like CD34+ cell populations. Angiogenesis 18:47–68CrossRefPubMed Ferreras C, Cole CL, Urban K, Jayson GC, Avizienyte E (2015) Segregation of late outgrowth endothelial cells into functional endothelial CD34− and progenitor-like CD34+ cell populations. Angiogenesis 18:47–68CrossRefPubMed
32.
go back to reference Koolwijk P, van Erck MG, de Vree WJ, Vermeer MA, Weich HA et al (1996) Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 132:1177–1188CrossRefPubMed Koolwijk P, van Erck MG, de Vree WJ, Vermeer MA, Weich HA et al (1996) Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 132:1177–1188CrossRefPubMed
33.
go back to reference Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760CrossRefPubMed Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760CrossRefPubMed
34.
go back to reference Aman J, van Bezu J, Damanafshan A, Huveneers S, Eringa EC et al (2012) Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circ 126:2728–2738CrossRef Aman J, van Bezu J, Damanafshan A, Huveneers S, Eringa EC et al (2012) Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circ 126:2728–2738CrossRef
35.
36.
go back to reference Strilić B, Kučera T, Eglinger J, Hughes MR, McNagny KM et al (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17:505–515CrossRefPubMed Strilić B, Kučera T, Eglinger J, Hughes MR, McNagny KM et al (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17:505–515CrossRefPubMed
37.
go back to reference Ogawa M, Tajima F, Ito T, Sato T, Laver JH et al (2006) CD34 expression by murine hematopoietic stem cells. Ann N Y Acad Sci 938:139–145CrossRef Ogawa M, Tajima F, Ito T, Sato T, Laver JH et al (2006) CD34 expression by murine hematopoietic stem cells. Ann N Y Acad Sci 938:139–145CrossRef
38.
go back to reference Hellwig SMM, Damen CA, Van Adrichem NPH, Blijham GH, Groenewegen G et al (1997) Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett 120:203–211CrossRefPubMed Hellwig SMM, Damen CA, Van Adrichem NPH, Blijham GH, Groenewegen G et al (1997) Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett 120:203–211CrossRefPubMed
39.
go back to reference Barclay GR, Tura O, Samuel K, Hadoke PW, Mills NL et al (2012) Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther 3:23CrossRefPubMedPubMedCentral Barclay GR, Tura O, Samuel K, Hadoke PW, Mills NL et al (2012) Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther 3:23CrossRefPubMedPubMedCentral
40.
go back to reference Lee JH, Lee SH, Yoo SY, Asahara T, Kwon SM (2013) CD34 hybrid cells promote endothelial colony-forming cell bioactivity and therapeutic potential for ischemic diseases. Arterioscler Thromb Vasc Biol 33:1622–1634CrossRefPubMed Lee JH, Lee SH, Yoo SY, Asahara T, Kwon SM (2013) CD34 hybrid cells promote endothelial colony-forming cell bioactivity and therapeutic potential for ischemic diseases. Arterioscler Thromb Vasc Biol 33:1622–1634CrossRefPubMed
Metadata
Title
CD34 expression modulates tube-forming capacity and barrier properties of peripheral blood-derived endothelial colony-forming cells (ECFCs)
Authors
Dimitar Tasev
Lara S. F. Konijnenberg
Joana Amado-Azevedo
Michiel H. van Wijhe
Pieter Koolwijk
Victor W. M. van Hinsbergh
Publication date
01-07-2016
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2016
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-016-9506-9

Other articles of this Issue 3/2016

Angiogenesis 3/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.