Skip to main content
Top
Published in: Angiogenesis 4/2012

01-12-2012 | Original Paper

Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice

Authors: Paolo E. Porporato, Valéry L. Payen, Christophe J. De Saedeleer, Véronique Préat, Jean-Paul Thissen, Olivier Feron, Pierre Sonveaux

Published in: Angiogenesis | Issue 4/2012

Login to get access

Abstract

Wounds notoriously accumulate lactate as a consequence of both anaerobic and aerobic glycolysis following microcirculation disruption, immune activation, and increased cell proliferation. Several pieces of evidence suggest that lactate actively participates in the healing process through the activation of several molecular pathways that collectively promote angiogenesis. Lactate indeed stimulates endothelial cell migration and tube formation in vitro, as well as the recruitment of circulating vascular progenitor cells and vascular morphogenesis in vivo. In this study, we examined whether the pro-angiogenic potential of lactate may be exploited therapeutically to accelerate wound healing. We show that lactate delivered from a Matrigel matrix improves reperfusion and opposes muscular atrophy in ischemic hindlimb wounds in mice. Both responses involve lactate-induced reparative angiogenesis. Using microdialysis and enzymatic measurements, we found that, contrary to poly-L-lactide (PLA), a subcutaneous implant of poly-D,L-lactide-co-glycolide (PLGA) allows sustained local and systemic lactate release. PLGA promoted angiogenesis and accelerated the closure of excisional skin wounds in different mouse strains. This polymer is FDA-approved for other applications, emphasizing the possibility of exploiting PLGA therapeutically to improve wound healing.
Literature
1.
go back to reference Trabold O, Wagner S et al (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11:504–509PubMedCrossRef Trabold O, Wagner S et al (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11:504–509PubMedCrossRef
2.
go back to reference Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299PubMedCrossRef Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299PubMedCrossRef
3.
go back to reference Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628PubMedCrossRef Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628PubMedCrossRef
4.
go back to reference Schreml S, Szeimies RM et al (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268PubMedCrossRef Schreml S, Szeimies RM et al (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268PubMedCrossRef
5.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRef Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRef
6.
go back to reference Hunt TK, Conolly WB, Aronson SB, Goldstein P (1978) Anaerobic metabolism and wound healing: an hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg 135:328–332PubMedCrossRef Hunt TK, Conolly WB, Aronson SB, Goldstein P (1978) Anaerobic metabolism and wound healing: an hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg 135:328–332PubMedCrossRef
7.
go back to reference Ghani QP, Wagner S, Hussain MZ (2003) Role of ADP-ribosylation in wound repair. The contributions of Thomas K. Hunt, MD. Wound Repair Regen 11:439–444PubMedCrossRef Ghani QP, Wagner S, Hussain MZ (2003) Role of ADP-ribosylation in wound repair. The contributions of Thomas K. Hunt, MD. Wound Repair Regen 11:439–444PubMedCrossRef
8.
go back to reference Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30PubMedCrossRef Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30PubMedCrossRef
9.
go back to reference Green H, Goldberg B (1964) Collagen and cell protein synthesis by an established mammalian fibroblast line. Nature 204:347–349PubMedCrossRef Green H, Goldberg B (1964) Collagen and cell protein synthesis by an established mammalian fibroblast line. Nature 204:347–349PubMedCrossRef
10.
go back to reference Hussain MZ, Ghani QP, Hunt TK (1989) Inhibition of prolyl hydroxylase by poly(ADP-ribose) and phosphoribosyl-AMP. Possible role of ADP-ribosylation in intracellular prolyl hydroxylase regulation. J Biol Chem 264:7850–7855PubMed Hussain MZ, Ghani QP, Hunt TK (1989) Inhibition of prolyl hydroxylase by poly(ADP-ribose) and phosphoribosyl-AMP. Possible role of ADP-ribosylation in intracellular prolyl hydroxylase regulation. J Biol Chem 264:7850–7855PubMed
11.
go back to reference Constant JS, Feng JJ et al (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8:353–360PubMedCrossRef Constant JS, Feng JJ et al (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8:353–360PubMedCrossRef
12.
go back to reference Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598PubMedCrossRef Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598PubMedCrossRef
13.
go back to reference Kumar VB, Viji RI, Kiran MS, Sudhakaran PR (2007) Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol 211:477–485PubMedCrossRef Kumar VB, Viji RI, Kiran MS, Sudhakaran PR (2007) Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol 211:477–485PubMedCrossRef
14.
go back to reference Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560PubMedCrossRef Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560PubMedCrossRef
15.
go back to reference Sonveaux P, Copetti T et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 7:e33418PubMedCrossRef Sonveaux P, Copetti T et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 7:e33418PubMedCrossRef
16.
go back to reference Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115PubMedCrossRef Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115PubMedCrossRef
17.
go back to reference Lu H, Dalgard CL et al (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280:41928–41939PubMedCrossRef Lu H, Dalgard CL et al (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280:41928–41939PubMedCrossRef
18.
go back to reference Li F, Sonveaux P et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74PubMedCrossRef Li F, Sonveaux P et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74PubMedCrossRef
19.
go back to reference Milovanova TN, Bhopale VM et al (2008) Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 28:6248–6261PubMedCrossRef Milovanova TN, Bhopale VM et al (2008) Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 28:6248–6261PubMedCrossRef
20.
go back to reference Murray B, Wilson DJ (2001) A study of metabolites as intermediate effectors in angiogenesis. Angiogenesis 4:71–77PubMedCrossRef Murray B, Wilson DJ (2001) A study of metabolites as intermediate effectors in angiogenesis. Angiogenesis 4:71–77PubMedCrossRef
21.
go back to reference Beckert S, Farrahi F et al (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen 14:321–324PubMedCrossRef Beckert S, Farrahi F et al (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen 14:321–324PubMedCrossRef
22.
go back to reference Burns PA, Wilson DJ (2003) Angiogenesis mediated by metabolites is dependent on vascular endothelial growth factor (VEGF). Angiogenesis 6:73–77PubMedCrossRef Burns PA, Wilson DJ (2003) Angiogenesis mediated by metabolites is dependent on vascular endothelial growth factor (VEGF). Angiogenesis 6:73–77PubMedCrossRef
23.
go back to reference Hunt TK, Aslam RS et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9:1115–1124PubMedCrossRef Hunt TK, Aslam RS et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9:1115–1124PubMedCrossRef
24.
go back to reference Couffinhal T, Silver M et al (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679PubMed Couffinhal T, Silver M et al (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679PubMed
25.
go back to reference Sonveaux P, Martinive P et al (2004) Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95:154–161PubMedCrossRef Sonveaux P, Martinive P et al (2004) Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95:154–161PubMedCrossRef
26.
go back to reference Del Prete E, Lutz TA, Scharrer E (2004) Inhibition of glucose oxidation by alpha-cyano-4-hydroxycinnamic acid stimulates feeding in rats. Physiol Behav 80:489–498PubMedCrossRef Del Prete E, Lutz TA, Scharrer E (2004) Inhibition of glucose oxidation by alpha-cyano-4-hydroxycinnamic acid stimulates feeding in rats. Physiol Behav 80:489–498PubMedCrossRef
27.
go back to reference Sonveaux P, Vegran F et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942PubMed Sonveaux P, Vegran F et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942PubMed
28.
go back to reference Hishiya A, Iemura S et al (2006) A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J 25:554–564PubMedCrossRef Hishiya A, Iemura S et al (2006) A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J 25:554–564PubMedCrossRef
29.
go back to reference Dehoux M, Van Beneden R et al (2004) Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology 145:4806–4812PubMedCrossRef Dehoux M, Van Beneden R et al (2004) Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology 145:4806–4812PubMedCrossRef
30.
go back to reference Cao Y, Sonveaux P et al (2007) Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67:3835–3844PubMedCrossRef Cao Y, Sonveaux P et al (2007) Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67:3835–3844PubMedCrossRef
31.
go back to reference Peters T, Sindrilaru A et al (2005) Wound-healing defect of CD18(-/-) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J 24:3400–3410PubMedCrossRef Peters T, Sindrilaru A et al (2005) Wound-healing defect of CD18(-/-) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J 24:3400–3410PubMedCrossRef
32.
go back to reference Gutierrez-Fernandez A, Inada M et al (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591PubMedCrossRef Gutierrez-Fernandez A, Inada M et al (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591PubMedCrossRef
33.
go back to reference Sindrilaru A, Peters T et al (2009) Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils. Blood 113:5266–5276PubMedCrossRef Sindrilaru A, Peters T et al (2009) Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils. Blood 113:5266–5276PubMedCrossRef
34.
go back to reference Milch HS, Schubert SY, Hammond S, Spiegel JH (2010) Enhancement of ischemic wound healing by inducement of local angiogenesis. Laryngoscope 120:1744–1748PubMedCrossRef Milch HS, Schubert SY, Hammond S, Spiegel JH (2010) Enhancement of ischemic wound healing by inducement of local angiogenesis. Laryngoscope 120:1744–1748PubMedCrossRef
35.
go back to reference Mendel DB, Schreck RE et al (2000) The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res 6:4848–4858PubMed Mendel DB, Schreck RE et al (2000) The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res 6:4848–4858PubMed
36.
go back to reference Manning Fox JE, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529(Pt 2):285–293PubMed Manning Fox JE, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529(Pt 2):285–293PubMed
37.
go back to reference Stabile E, Kinnaird T et al (2006) CD8 + T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4 + mononuclear cells through the expression of interleukin-16. Circulation 113:118–124PubMedCrossRef Stabile E, Kinnaird T et al (2006) CD8 + T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4 + mononuclear cells through the expression of interleukin-16. Circulation 113:118–124PubMedCrossRef
38.
go back to reference Koponen JK, Kekarainen T et al (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15:2172–2177PubMedCrossRef Koponen JK, Kekarainen T et al (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15:2172–2177PubMedCrossRef
39.
go back to reference Bonen A (2001) The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol 86:6–11PubMedCrossRef Bonen A (2001) The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol 86:6–11PubMedCrossRef
40.
go back to reference Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2002) Resistance vessel remodeling and reparative angiogenesis in the microcirculatory bed of long-term denervated skeletal muscles. Microvasc Res 63:96–114PubMedCrossRef Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2002) Resistance vessel remodeling and reparative angiogenesis in the microcirculatory bed of long-term denervated skeletal muscles. Microvasc Res 63:96–114PubMedCrossRef
41.
go back to reference Kawai K, Larson BJ et al (2011) Calcium-based nanoparticles accelerate skin wound healing. PLoS ONE 6:e27106PubMedCrossRef Kawai K, Larson BJ et al (2011) Calcium-based nanoparticles accelerate skin wound healing. PLoS ONE 6:e27106PubMedCrossRef
42.
go back to reference Mendel DB, Laird AD et al (2000) Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 15:29–41PubMed Mendel DB, Laird AD et al (2000) Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 15:29–41PubMed
43.
go back to reference Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25PubMedCrossRef Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25PubMedCrossRef
44.
go back to reference Creager MA, Loscalzo J (2008) Diseases of the extremities. In: Fauci AS, Braunwald E, Kasper DL (eds) Harrison’s principles of internal medicine, 17th edn. McGraw Hill, New-York, pp 1568–1570 Creager MA, Loscalzo J (2008) Diseases of the extremities. In: Fauci AS, Braunwald E, Kasper DL (eds) Harrison’s principles of internal medicine, 17th edn. McGraw Hill, New-York, pp 1568–1570
45.
go back to reference Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330PubMed Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330PubMed
46.
go back to reference Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(Pt 1):219–227PubMedCrossRef Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(Pt 1):219–227PubMedCrossRef
47.
go back to reference Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21:2602–2612PubMedCrossRef Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21:2602–2612PubMedCrossRef
48.
go back to reference Porporato PE, Dadhich RK, Dhup S, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49PubMedCrossRef Porporato PE, Dadhich RK, Dhup S, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49PubMedCrossRef
49.
50.
go back to reference Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci USA 104:967–972PubMedCrossRef Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci USA 104:967–972PubMedCrossRef
51.
52.
go back to reference Barba I, Garcia-Ramirez M et al (2010) Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci 51:4416–4421PubMedCrossRef Barba I, Garcia-Ramirez M et al (2010) Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci 51:4416–4421PubMedCrossRef
53.
go back to reference Shanmugasundaram M, Ram VK, Luft UC, Szerlip M, Alpert JS (2011) Peripheral arterial disease–what do we need to know? Clin Cardiol 34:478–482PubMedCrossRef Shanmugasundaram M, Ram VK, Luft UC, Szerlip M, Alpert JS (2011) Peripheral arterial disease–what do we need to know? Clin Cardiol 34:478–482PubMedCrossRef
54.
go back to reference Enerson BE, Drewes LR (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 92:1531–1544PubMedCrossRef Enerson BE, Drewes LR (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 92:1531–1544PubMedCrossRef
55.
go back to reference Cori CF, Cori GT (1929) Glycogen formation in the liver with d- and l-lactic acid. J Biol Chem 81:389–403 Cori CF, Cori GT (1929) Glycogen formation in the liver with d- and l-lactic acid. J Biol Chem 81:389–403
56.
go back to reference Patel MS, Jomain-Baum M, Ballard FJ, Hanson RW (1971) Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue. J Lipid Res 12:179–191PubMed Patel MS, Jomain-Baum M, Ballard FJ, Hanson RW (1971) Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue. J Lipid Res 12:179–191PubMed
57.
go back to reference Pagliassotti MJ, Donovan CM (1990) Role of cell type in net lactate removal by skeletal muscle. Am J Physiol 258:E635–E642PubMed Pagliassotti MJ, Donovan CM (1990) Role of cell type in net lactate removal by skeletal muscle. Am J Physiol 258:E635–E642PubMed
58.
go back to reference Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm 415:34–52PubMedCrossRef Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm 415:34–52PubMedCrossRef
Metadata
Title
Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice
Authors
Paolo E. Porporato
Valéry L. Payen
Christophe J. De Saedeleer
Véronique Préat
Jean-Paul Thissen
Olivier Feron
Pierre Sonveaux
Publication date
01-12-2012
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 4/2012
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-012-9282-0

Other articles of this Issue 4/2012

Angiogenesis 4/2012 Go to the issue