Skip to main content
Top
Published in: Angiogenesis 2/2009

01-06-2009 | Review Paper

Cooperation between integrin ανβ3 and VEGFR2 in angiogenesis

Authors: Payaningal R. Somanath, Nikolay L. Malinin, Tatiana V. Byzova

Published in: Angiogenesis | Issue 2/2009

Login to get access

Abstract

The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin αvβ3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin αvβ3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and αvβ3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.
Literature
1.
go back to reference Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286PubMedCrossRef Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286PubMedCrossRef
2.
go back to reference Glade-Bender J et al (2003) VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 3:263–276PubMedCrossRef Glade-Bender J et al (2003) VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 3:263–276PubMedCrossRef
3.
go back to reference Ribatti D (2008) Napoleone Ferrara and the saga of vascular endothelial growth factor. Endothelium 15:1–8PubMedCrossRef Ribatti D (2008) Napoleone Ferrara and the saga of vascular endothelial growth factor. Endothelium 15:1–8PubMedCrossRef
4.
go back to reference Dass CR, Choong PF (2008) Cancer angiogenesis: targeting the heel of Achilles. J Drug Target 16:449–454PubMedCrossRef Dass CR, Choong PF (2008) Cancer angiogenesis: targeting the heel of Achilles. J Drug Target 16:449–454PubMedCrossRef
5.
go back to reference Andreoli CM, Miller JW (2007) Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18:502–508PubMedCrossRef Andreoli CM, Miller JW (2007) Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18:502–508PubMedCrossRef
6.
go back to reference Papanas N, Maltezos E (2008) Advances in treating the ischaemic diabetic foot. Curr Vasc Pharmacol 6:23–28PubMedCrossRef Papanas N, Maltezos E (2008) Advances in treating the ischaemic diabetic foot. Curr Vasc Pharmacol 6:23–28PubMedCrossRef
7.
go back to reference Simo R et al (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98PubMedCrossRef Simo R et al (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98PubMedCrossRef
9.
11.
go back to reference Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109:317–330PubMedCrossRef Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109:317–330PubMedCrossRef
12.
go back to reference Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem 6:407–428PubMedCrossRef Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem 6:407–428PubMedCrossRef
13.
go back to reference Alghisi GC, Ruegg C (2006) Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium 13:113–135PubMedCrossRef Alghisi GC, Ruegg C (2006) Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium 13:113–135PubMedCrossRef
14.
go back to reference Kumar CC (2003) Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 4:123–131PubMedCrossRef Kumar CC (2003) Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 4:123–131PubMedCrossRef
16.
go back to reference Herouy Y et al (2000) Autologous platelet-derived wound healing factor promotes angiogenesis via alphavbeta3-integrin expression in chronic wounds. Int J Mol Med 6:515–519PubMed Herouy Y et al (2000) Autologous platelet-derived wound healing factor promotes angiogenesis via alphavbeta3-integrin expression in chronic wounds. Int J Mol Med 6:515–519PubMed
17.
go back to reference Leu SJ et al (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 277:46248–46255PubMedCrossRef Leu SJ et al (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 277:46248–46255PubMedCrossRef
18.
go back to reference Brooks PC et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164PubMedCrossRef Brooks PC et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164PubMedCrossRef
19.
go back to reference Brooks PC et al (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571PubMedCrossRef Brooks PC et al (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571PubMedCrossRef
20.
go back to reference Van WC (1995) Cell adhesion and regulatory molecules involved in tumor formation, hemostasis, and wound healing. Head Neck 17:140–147CrossRef Van WC (1995) Cell adhesion and regulatory molecules involved in tumor formation, hemostasis, and wound healing. Head Neck 17:140–147CrossRef
21.
go back to reference Lim EH et al (2005) A review: integrin alphavbeta3-targeted molecular imaging and therapy in angiogenesis. Nanomedicine 1:110–114PubMed Lim EH et al (2005) A review: integrin alphavbeta3-targeted molecular imaging and therapy in angiogenesis. Nanomedicine 1:110–114PubMed
22.
go back to reference Cai W et al (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973PubMedCrossRef Cai W et al (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973PubMedCrossRef
23.
24.
go back to reference Hodivala-Dilke K (2008) alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 20:514–519PubMedCrossRef Hodivala-Dilke K (2008) alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 20:514–519PubMedCrossRef
25.
go back to reference Somanath PR et al (2009) Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 53:53–64PubMedCrossRef Somanath PR et al (2009) Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 53:53–64PubMedCrossRef
26.
go back to reference D’Andrea LD et al (2006) Peptide-based molecules in angiogenesis. Chem Biol Drug Des 67:115–126PubMedCrossRef D’Andrea LD et al (2006) Peptide-based molecules in angiogenesis. Chem Biol Drug Des 67:115–126PubMedCrossRef
27.
go back to reference Lenz HJ (2005) Antiangiogenic agents in cancer therapy. Oncology (Williston Park) 19:17–25 Lenz HJ (2005) Antiangiogenic agents in cancer therapy. Oncology (Williston Park) 19:17–25
28.
go back to reference Reynolds LE et al (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34PubMedCrossRef Reynolds LE et al (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34PubMedCrossRef
29.
go back to reference Weis SM et al (2007) Cooperation between VEGF and beta3 integrin during cardiac vascular development. Blood 109:1962–1970PubMedCrossRef Weis SM et al (2007) Cooperation between VEGF and beta3 integrin during cardiac vascular development. Blood 109:1962–1970PubMedCrossRef
30.
go back to reference Eliceiri BP, Cheresh DA (2000) Role of alpha v integrins during angiogenesis. Cancer J 6(Suppl 3):S245–S249PubMed Eliceiri BP, Cheresh DA (2000) Role of alpha v integrins during angiogenesis. Cancer J 6(Suppl 3):S245–S249PubMed
31.
go back to reference Zhu J et al (2002) beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 129:2891–2903PubMed Zhu J et al (2002) beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 129:2891–2903PubMed
32.
go back to reference Proctor JM et al (2005) Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci 25:9940–9948PubMedCrossRef Proctor JM et al (2005) Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci 25:9940–9948PubMedCrossRef
33.
go back to reference Lakhe-Reddy S et al (2006) Beta8 integrin binds Rho GDP dissociation inhibitor-1 and activates Rac1 to inhibit mesangial cell myofibroblast differentiation. J Biol Chem 281:19688–19699PubMedCrossRef Lakhe-Reddy S et al (2006) Beta8 integrin binds Rho GDP dissociation inhibitor-1 and activates Rac1 to inhibit mesangial cell myofibroblast differentiation. J Biol Chem 281:19688–19699PubMedCrossRef
34.
go back to reference Mahabeleshwar GH et al (2006) Integrin signaling is critical for pathological angiogenesis. J Exp Med 203:2495–2507PubMedCrossRef Mahabeleshwar GH et al (2006) Integrin signaling is critical for pathological angiogenesis. J Exp Med 203:2495–2507PubMedCrossRef
35.
go back to reference Chew DP, Bhatt DL (2001) Oral glycoprotein IIb/IIIa antagonists in coronary artery disease. Curr Cardiol Rep 3:63–71PubMedCrossRef Chew DP, Bhatt DL (2001) Oral glycoprotein IIb/IIIa antagonists in coronary artery disease. Curr Cardiol Rep 3:63–71PubMedCrossRef
36.
go back to reference Maranian AM, Steinhubl SR (2002) Glycoprotein IIb/IIIa receptor inhibitor-thrombolytic combination therapy for acute myocardial infarction. Curr Cardiol Rep 4:313–319PubMedCrossRef Maranian AM, Steinhubl SR (2002) Glycoprotein IIb/IIIa receptor inhibitor-thrombolytic combination therapy for acute myocardial infarction. Curr Cardiol Rep 4:313–319PubMedCrossRef
37.
go back to reference Cannon CP (2003) Oral platelet glycoprotein IIb/IIIa receptor inhibitors—part II. Clin Cardiol 26:401–406PubMedCrossRef Cannon CP (2003) Oral platelet glycoprotein IIb/IIIa receptor inhibitors—part II. Clin Cardiol 26:401–406PubMedCrossRef
38.
go back to reference Rosove MH (2004) Platelet glycoprotein IIb/IIIa inhibitors. Best Pract Res Clin Haematol 17:65–76PubMedCrossRef Rosove MH (2004) Platelet glycoprotein IIb/IIIa inhibitors. Best Pract Res Clin Haematol 17:65–76PubMedCrossRef
39.
go back to reference Said SM et al (2007) Glycoprotein IIb/IIIa inhibitor-induced thrombocytopenia: diagnosis and treatment. Clin Res Cardiol 96:61–69PubMedCrossRef Said SM et al (2007) Glycoprotein IIb/IIIa inhibitor-induced thrombocytopenia: diagnosis and treatment. Clin Res Cardiol 96:61–69PubMedCrossRef
40.
go back to reference Maeshima Y et al (2002) Tumstatin an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143PubMedCrossRef Maeshima Y et al (2002) Tumstatin an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143PubMedCrossRef
41.
go back to reference Sudhakar A et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 100:4766–4771PubMedCrossRef Sudhakar A et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 100:4766–4771PubMedCrossRef
42.
go back to reference Mould AP et al (1998) Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha5 beta1. Biochem J 331((Pt 3)):821–828PubMed Mould AP et al (1998) Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha5 beta1. Biochem J 331((Pt 3)):821–828PubMed
43.
go back to reference Humphries MJ (2004) Monoclonal antibodies as probes of integrin priming and activation. Biochem Soc Trans 32:407–411PubMedCrossRef Humphries MJ (2004) Monoclonal antibodies as probes of integrin priming and activation. Biochem Soc Trans 32:407–411PubMedCrossRef
44.
45.
go back to reference Mahabeleshwar GH et al (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101:570–580PubMedCrossRef Mahabeleshwar GH et al (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101:570–580PubMedCrossRef
46.
go back to reference Borges E et al (2000) Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 275:39867–39873PubMedCrossRef Borges E et al (2000) Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 275:39867–39873PubMedCrossRef
47.
go back to reference Soldi R et al (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892PubMedCrossRef Soldi R et al (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892PubMedCrossRef
48.
go back to reference Schneller M et al (1997) Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J 16:5600–5607PubMedCrossRef Schneller M et al (1997) Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J 16:5600–5607PubMedCrossRef
49.
go back to reference Vuori K, Ruoslahti E (1994) Association of insulin receptor substrate-1 with integrins. Science 266:1576–1578PubMedCrossRef Vuori K, Ruoslahti E (1994) Association of insulin receptor substrate-1 with integrins. Science 266:1576–1578PubMedCrossRef
50.
go back to reference Doerr ME, Jones JI (1996) The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J Biol Chem 271:2443–2447PubMedCrossRef Doerr ME, Jones JI (1996) The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J Biol Chem 271:2443–2447PubMedCrossRef
51.
go back to reference Falcioni R et al (1997) Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res 236:76–85PubMedCrossRef Falcioni R et al (1997) Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res 236:76–85PubMedCrossRef
52.
go back to reference Folgiero V et al (2008) Induction of ErbB-3 expression by alpha6beta4 integrin contributes to tamoxifen resistance in ERbeta1-negative breast carcinomas. PLoS ONE 3:e1592PubMedCrossRef Folgiero V et al (2008) Induction of ErbB-3 expression by alpha6beta4 integrin contributes to tamoxifen resistance in ERbeta1-negative breast carcinomas. PLoS ONE 3:e1592PubMedCrossRef
53.
go back to reference Wang JF et al (2001) Stimulation of beta 1 integrin induces tyrosine phosphorylation of vascular endothelial growth factor receptor-3 and modulates cell migration. J Biol Chem 276:41950–41957PubMedCrossRef Wang JF et al (2001) Stimulation of beta 1 integrin induces tyrosine phosphorylation of vascular endothelial growth factor receptor-3 and modulates cell migration. J Biol Chem 276:41950–41957PubMedCrossRef
54.
go back to reference Napione L et al (2007) Integrins: a flexible platform for endothelial vascular tyrosine kinase receptors. Autoimmun Rev 7:18–22PubMedCrossRef Napione L et al (2007) Integrins: a flexible platform for endothelial vascular tyrosine kinase receptors. Autoimmun Rev 7:18–22PubMedCrossRef
55.
go back to reference Mahabeleshwar GH et al (2008) Integrin affinity modulation in angiogenesis. Cell Cycle 7:335–347PubMed Mahabeleshwar GH et al (2008) Integrin affinity modulation in angiogenesis. Cell Cycle 7:335–347PubMed
56.
go back to reference Masson-Gadais B et al (2004) Integrin alphavbeta3 requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8:37–52CrossRef Masson-Gadais B et al (2004) Integrin alphavbeta3 requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8:37–52CrossRef
57.
go back to reference Pampori N et al (1999) Mechanisms and consequences of affinity modulation of integrin alpha(V)beta(3) detected with a novel patch-engineered monovalent ligand. J Biol Chem 274:21609–21616PubMedCrossRef Pampori N et al (1999) Mechanisms and consequences of affinity modulation of integrin alpha(V)beta(3) detected with a novel patch-engineered monovalent ligand. J Biol Chem 274:21609–21616PubMedCrossRef
58.
go back to reference Byzova TV et al (2002) Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 99:4434–4442PubMedCrossRef Byzova TV et al (2002) Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 99:4434–4442PubMedCrossRef
60.
go back to reference Cheresh DA, Stupack DG (2008) Regulation of angiogenesis: apoptotic cues from the ECM. Oncogene 27:6285–6298PubMedCrossRef Cheresh DA, Stupack DG (2008) Regulation of angiogenesis: apoptotic cues from the ECM. Oncogene 27:6285–6298PubMedCrossRef
61.
go back to reference Arnaout MA et al (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19:495–507PubMedCrossRef Arnaout MA et al (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19:495–507PubMedCrossRef
62.
go back to reference Phillips DR et al (2001) Integrin tyrosine phosphorylation in platelet signaling. Curr Opin Cell Biol 13:546–554PubMedCrossRef Phillips DR et al (2001) Integrin tyrosine phosphorylation in platelet signaling. Curr Opin Cell Biol 13:546–554PubMedCrossRef
63.
go back to reference Chandhoke SK et al (2004) Beta 3 integrin phosphorylation is essential for Arp3 organization into leukocyte alpha V beta 3-vitronectin adhesion contacts. J Cell Sci 117:1431–1441PubMedCrossRef Chandhoke SK et al (2004) Beta 3 integrin phosphorylation is essential for Arp3 organization into leukocyte alpha V beta 3-vitronectin adhesion contacts. J Cell Sci 117:1431–1441PubMedCrossRef
64.
go back to reference Butler B et al (2003) Lig, -dependent activation of integrin alpha vbeta 3. J Biol Chem 278:5264–5270PubMedCrossRef Butler B et al (2003) Lig, -dependent activation of integrin alpha vbeta 3. J Biol Chem 278:5264–5270PubMedCrossRef
65.
go back to reference Feng W (2008) The angiogenic response is dictated by beta3 integrin on bone marrow-derived cells. J Cell Biol 183:1145–1157PubMedCrossRef Feng W (2008) The angiogenic response is dictated by beta3 integrin on bone marrow-derived cells. J Cell Biol 183:1145–1157PubMedCrossRef
66.
go back to reference Johnson FM, Gallick GE (2007) SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer Agents Med Chem 7:651–659PubMedCrossRef Johnson FM, Gallick GE (2007) SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer Agents Med Chem 7:651–659PubMedCrossRef
67.
go back to reference Kefalas P et al (1995) Signalling by the p60c-src family of protein-tyrosine kinases. Int J Biochem Cell Biol 27:551–563PubMedCrossRef Kefalas P et al (1995) Signalling by the p60c-src family of protein-tyrosine kinases. Int J Biochem Cell Biol 27:551–563PubMedCrossRef
68.
go back to reference Basson MD (2008) An intracellular signal pathway that regulates cancer cell adhesion in response to extracellular forces. Cancer Res 68:2–4PubMedCrossRef Basson MD (2008) An intracellular signal pathway that regulates cancer cell adhesion in response to extracellular forces. Cancer Res 68:2–4PubMedCrossRef
69.
go back to reference Coluccia AM et al (2008) Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 112:1346–1356PubMedCrossRef Coluccia AM et al (2008) Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 112:1346–1356PubMedCrossRef
70.
go back to reference Eliceiri BP et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924PubMedCrossRef Eliceiri BP et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924PubMedCrossRef
71.
go back to reference Schwartzberg PL et al (1997) Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/- mutant mice. Genes Dev 11:2835–2844PubMedCrossRef Schwartzberg PL et al (1997) Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/- mutant mice. Genes Dev 11:2835–2844PubMedCrossRef
72.
go back to reference Lowell CA et al (1996) Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 87:1780–1792PubMed Lowell CA et al (1996) Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 87:1780–1792PubMed
73.
go back to reference McHugh KP et al (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–440PubMedCrossRef McHugh KP et al (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–440PubMedCrossRef
74.
go back to reference Soriano P et al (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702PubMedCrossRef Soriano P et al (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702PubMedCrossRef
75.
go back to reference Klinghoffer RA et al (1999) Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 18:2459–2471PubMedCrossRef Klinghoffer RA et al (1999) Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 18:2459–2471PubMedCrossRef
76.
go back to reference Su X, Mi J et al (2008) RGT, a synthetic peptide corresponding to the integrin beta 3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin alpha IIb beta 3 with Src kinase. Blood 112:592–602PubMedCrossRef Su X, Mi J et al (2008) RGT, a synthetic peptide corresponding to the integrin beta 3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin alpha IIb beta 3 with Src kinase. Blood 112:592–602PubMedCrossRef
77.
go back to reference Stockmann C et al (2008) Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456:814–818PubMedCrossRef Stockmann C et al (2008) Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456:814–818PubMedCrossRef
78.
go back to reference Jones PL et al (1997) Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 139:279–293PubMedCrossRef Jones PL et al (1997) Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 139:279–293PubMedCrossRef
79.
go back to reference Woodard AS et al (1998) The synergistic activity of alphavbeta3 integrin and PDGF receptor increases cell migration. J Cell Sci 111(Pt 4):469–478PubMed Woodard AS et al (1998) The synergistic activity of alphavbeta3 integrin and PDGF receptor increases cell migration. J Cell Sci 111(Pt 4):469–478PubMed
80.
go back to reference Trusolino L et al (1998) Growth factor-dependent activation of alphavbeta3 integrin in normal epithelial cells: implications for tumor invasion. J Cell Biol 142:1145–1156PubMedCrossRef Trusolino L et al (1998) Growth factor-dependent activation of alphavbeta3 integrin in normal epithelial cells: implications for tumor invasion. J Cell Biol 142:1145–1156PubMedCrossRef
81.
go back to reference Rahman S et al (2005) Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol 6:8PubMedCrossRef Rahman S et al (2005) Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol 6:8PubMedCrossRef
82.
go back to reference Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375:287–291PubMedCrossRef Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375:287–291PubMedCrossRef
83.
go back to reference Igarashi KI et al (1998) Tyrosine 1213 of Flt-1 is a major binding site of Nck and SHP-2. Biochem Biophys Res Commun 246:95–99PubMedCrossRef Igarashi KI et al (1998) Tyrosine 1213 of Flt-1 is a major binding site of Nck and SHP-2. Biochem Biophys Res Commun 246:95–99PubMedCrossRef
84.
go back to reference Le Boeuf F et al (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279:39175–39185PubMedCrossRef Le Boeuf F et al (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279:39175–39185PubMedCrossRef
85.
go back to reference Laramee M et al (2007) The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem 282:7758–7769PubMedCrossRef Laramee M et al (2007) The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem 282:7758–7769PubMedCrossRef
86.
go back to reference Graells J et al (2004) Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3K signaling. J Invest Dermatol 123:1151–1161PubMedCrossRef Graells J et al (2004) Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3K signaling. J Invest Dermatol 123:1151–1161PubMedCrossRef
87.
go back to reference Dardik R et al (2005) Molecular mechanisms underlying the proangiogenic effect of factor XIII. Arterioscler Thromb Vasc Biol 25:526–532PubMedCrossRef Dardik R et al (2005) Molecular mechanisms underlying the proangiogenic effect of factor XIII. Arterioscler Thromb Vasc Biol 25:526–532PubMedCrossRef
88.
go back to reference Dardik R et al (2006) Evaluation of the pro-angiogenic effect of factor XIII in heterotopic mouse heart allografts and FXIII-deficient mice. Thromb Haemost 95:546–550PubMed Dardik R et al (2006) Evaluation of the pro-angiogenic effect of factor XIII in heterotopic mouse heart allografts and FXIII-deficient mice. Thromb Haemost 95:546–550PubMed
89.
go back to reference Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312:2973–2982PubMedCrossRef Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312:2973–2982PubMedCrossRef
90.
go back to reference Lee SC et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703PubMedCrossRef Lee SC et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703PubMedCrossRef
91.
go back to reference Chen J et al (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11:1188–1196PubMedCrossRef Chen J et al (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11:1188–1196PubMedCrossRef
92.
go back to reference Somanath PR et al (2007) Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly. J Biol Chem 282:22964–22976PubMedCrossRef Somanath PR et al (2007) Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly. J Biol Chem 282:22964–22976PubMedCrossRef
93.
go back to reference Wijelath ES et al (2006) Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 99:853–860PubMedCrossRef Wijelath ES et al (2006) Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 99:853–860PubMedCrossRef
94.
go back to reference Vlahakis NE et al (2007) Integrin alpha9beta1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. J Biol Chem 282:15187–15196PubMedCrossRef Vlahakis NE et al (2007) Integrin alpha9beta1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. J Biol Chem 282:15187–15196PubMedCrossRef
95.
go back to reference Becker PM et al (2005) Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res 96:1257–1265PubMedCrossRef Becker PM et al (2005) Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res 96:1257–1265PubMedCrossRef
96.
go back to reference Pan Q et al (2007) Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 282:24049–24056PubMedCrossRef Pan Q et al (2007) Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 282:24049–24056PubMedCrossRef
97.
go back to reference Pellet-Many C et al (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226PubMedCrossRef Pellet-Many C et al (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226PubMedCrossRef
98.
go back to reference Qu CK (2002) Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta 1592:297–301PubMedCrossRef Qu CK (2002) Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta 1592:297–301PubMedCrossRef
99.
go back to reference Maile LA, Clemmons DR (2002) Regulation of insulin-like growth factor I receptor dephosphorylation by SHPS-1 and the tyrosine phosphatase SHP-2. J Biol Chem 277:8955–8960PubMedCrossRef Maile LA, Clemmons DR (2002) Regulation of insulin-like growth factor I receptor dephosphorylation by SHPS-1 and the tyrosine phosphatase SHP-2. J Biol Chem 277:8955–8960PubMedCrossRef
100.
go back to reference Ling Y et al (2003) Tyrosine phosphorylation of the beta3-subunit of the alphaVbeta3 integrin is required for membrane association of the tyrosine phosphatase SHP-2 and its further recruitment to the insulin-like growth factor I receptor. Mol Endocrinol 17:1824–1833PubMedCrossRef Ling Y et al (2003) Tyrosine phosphorylation of the beta3-subunit of the alphaVbeta3 integrin is required for membrane association of the tyrosine phosphatase SHP-2 and its further recruitment to the insulin-like growth factor I receptor. Mol Endocrinol 17:1824–1833PubMedCrossRef
101.
go back to reference Ling Y et al (2005) DOK1 mediates SHP-2 binding to the alphaVbeta3 integrin and thereby regulates insulin-like growth factor I signaling in cultured vascular smooth muscle cells. J Biol Chem 280:3151–3158PubMedCrossRef Ling Y et al (2005) DOK1 mediates SHP-2 binding to the alphaVbeta3 integrin and thereby regulates insulin-like growth factor I signaling in cultured vascular smooth muscle cells. J Biol Chem 280:3151–3158PubMedCrossRef
102.
go back to reference Ling Y et al (2005) Role of SHPS-1 in the regulation of insulin-like growth factor I-stimulated Shc and mitogen-activated protein kinase activation in vascular smooth muscle cells. Mol Biol Cell 16:3353–3364PubMedCrossRef Ling Y et al (2005) Role of SHPS-1 in the regulation of insulin-like growth factor I-stimulated Shc and mitogen-activated protein kinase activation in vascular smooth muscle cells. Mol Biol Cell 16:3353–3364PubMedCrossRef
103.
go back to reference Clemmons DR et al (2007) Role of the integrin alphaVbeta3 in mediating increased smooth muscle cell responsiveness to IGF-I in response to hyperglycemic stress. Growth Horm IGF Res 17:265–270PubMedCrossRef Clemmons DR et al (2007) Role of the integrin alphaVbeta3 in mediating increased smooth muscle cell responsiveness to IGF-I in response to hyperglycemic stress. Growth Horm IGF Res 17:265–270PubMedCrossRef
104.
go back to reference Kwon M et al (2006) Recruitment of the tyrosine phosphatase Src homology 2 domain tyrosine phosphatase-2 to the p85 subunit of phosphatidylinositol-3 (PI-3) kinase is required for insulin-like growth factor-I-dependent PI-3 kinase activation in smooth muscle cells. Endocrinology 147:1458–1465PubMedCrossRef Kwon M et al (2006) Recruitment of the tyrosine phosphatase Src homology 2 domain tyrosine phosphatase-2 to the p85 subunit of phosphatidylinositol-3 (PI-3) kinase is required for insulin-like growth factor-I-dependent PI-3 kinase activation in smooth muscle cells. Endocrinology 147:1458–1465PubMedCrossRef
105.
go back to reference Edderkaoui M et al (2007) Insulin-like growth factor-I receptor mediates the prosurvival effect of fibronectin. J Biol Chem 282:26646–26655PubMedCrossRef Edderkaoui M et al (2007) Insulin-like growth factor-I receptor mediates the prosurvival effect of fibronectin. J Biol Chem 282:26646–26655PubMedCrossRef
106.
go back to reference Mitola S et al (2006) Type I collagen limits VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1. Circ Res 98:45–54PubMedCrossRef Mitola S et al (2006) Type I collagen limits VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1. Circ Res 98:45–54PubMedCrossRef
107.
go back to reference Lieskovska J et al (2006) The role of Src kinase in insulin-like growth factor-dependent mitogenic signaling in vascular smooth muscle cells. J Biol Chem 281:25041–25053PubMedCrossRef Lieskovska J et al (2006) The role of Src kinase in insulin-like growth factor-dependent mitogenic signaling in vascular smooth muscle cells. J Biol Chem 281:25041–25053PubMedCrossRef
108.
go back to reference Chabot C et al (2009) New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol 29:241–253PubMedCrossRef Chabot C et al (2009) New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol 29:241–253PubMedCrossRef
109.
go back to reference Mattila E et al (2008) The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J Cell Sci 121:3570–3580PubMedCrossRef Mattila E et al (2008) The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J Cell Sci 121:3570–3580PubMedCrossRef
110.
go back to reference Yamaoka-Tojo M et al (2006) IQGAP1 mediates VE-cadherin-based cell–cell contacts and VEGF signaling at adherence junctions linked to angiogenesis. Arterioscler Thromb Vasc Biol 26:1991–1997PubMedCrossRef Yamaoka-Tojo M et al (2006) IQGAP1 mediates VE-cadherin-based cell–cell contacts and VEGF signaling at adherence junctions linked to angiogenesis. Arterioscler Thromb Vasc Biol 26:1991–1997PubMedCrossRef
111.
go back to reference Tzima E et al (2005) VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 280:2405–2408PubMedCrossRef Tzima E et al (2005) VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 280:2405–2408PubMedCrossRef
112.
go back to reference Ukropec JA et al (2002) Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress. Exp Cell Res 273:240–247PubMedCrossRef Ukropec JA et al (2002) Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress. Exp Cell Res 273:240–247PubMedCrossRef
Metadata
Title
Cooperation between integrin ανβ3 and VEGFR2 in angiogenesis
Authors
Payaningal R. Somanath
Nikolay L. Malinin
Tatiana V. Byzova
Publication date
01-06-2009
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 2/2009
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-009-9141-9

Other articles of this Issue 2/2009

Angiogenesis 2/2009 Go to the issue