Skip to main content
Top
Published in: Esophagus 1/2016

01-01-2016 | Review Article

Structure and motility of the esophagus from a mechanical perspective

Authors: Mariam Mir, Murtaza Najabat Ali, Umar Ansari, Javaria Sami

Published in: Esophagus | Issue 1/2016

Login to get access

Abstract

Esophagus is an important part of the alimentary canal that performs various functions, most important of which is the transfer of bolus from the pharynx to the stomach. This involves active contraction of both the circular and longitudinal esophageal muscles. Esophageal anatomical features are harmonized with the functional and physiological demands of esophagus. However, impairment of esophageal functions may occur resulting in symptoms like dysphagia, gastroesophageal reflux or esophageal pain. This review covers broadly the anatomical and physiological details of esophagus, mechanical function of esophagus and its motility. In particular, the mechanical characteristics of the esophageal tissue and its motile function have been scrutinized. An overlay of the diagnostic technologies tapping these metrics is also covered.
Literature
1.
go back to reference Lamb PJ, Griffin SM. The Anatomy and physiology of the esophagus. London: Springer; 2006. Lamb PJ, Griffin SM. The Anatomy and physiology of the esophagus. London: Springer; 2006.
2.
go back to reference Patti M, Gantert W, et al. Surgery of the esophagus. Anatomy and physiology. Surg Clin North Am. 1997;77(5):959–70.PubMedCrossRef Patti M, Gantert W, et al. Surgery of the esophagus. Anatomy and physiology. Surg Clin North Am. 1997;77(5):959–70.PubMedCrossRef
3.
go back to reference Epstein FH. The gastroesophageal junction. N Engl J Med. 1997;336:924–32.CrossRef Epstein FH. The gastroesophageal junction. N Engl J Med. 1997;336:924–32.CrossRef
4.
go back to reference Natali AN, Carniel EL, et al. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med Eng Phys. 2009;31:1056–62.PubMedCrossRef Natali AN, Carniel EL, et al. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med Eng Phys. 2009;31:1056–62.PubMedCrossRef
5.
go back to reference Sommer G, Schriefl A, Zeindlinger G, Katzensteiner A, Ainödhofer H, Saxena A, et al. Multiaxial mechanical response and constitutive modeling of esophageal tissues: impact on esophageal tissue engineering. Acta Biomater. 2013;9:9379–91.PubMedCrossRef Sommer G, Schriefl A, Zeindlinger G, Katzensteiner A, Ainödhofer H, Saxena A, et al. Multiaxial mechanical response and constitutive modeling of esophageal tissues: impact on esophageal tissue engineering. Acta Biomater. 2013;9:9379–91.PubMedCrossRef
6.
go back to reference Yang W, TC Fung, et al. Three-dimensional finite element model of the two-layered esophagus, including the effects of residual strains and buckling of mucosa.” In: Proceedings of the institution of mechanical engineers part H-journal of engineering in medicine 2007;221(H4):417–26. Yang W, TC Fung, et al. Three-dimensional finite element model of the two-layered esophagus, including the effects of residual strains and buckling of mucosa.” In: Proceedings of the institution of mechanical engineers part H-journal of engineering in medicine 2007;221(H4):417–26.
7.
go back to reference Miller LS, Kim JK, et al. Mechanics and hemodynamics of esophageal varices during peristaltic contraction. Am J Physiol Gastrointest Liver Physiol. 2004;287(4):G830–5.PubMedCrossRef Miller LS, Kim JK, et al. Mechanics and hemodynamics of esophageal varices during peristaltic contraction. Am J Physiol Gastrointest Liver Physiol. 2004;287(4):G830–5.PubMedCrossRef
8.
go back to reference Liao D, Villadsen GE, Gregersen H. Distension-evoked motility analysis in human esophagus. Neurogastroenterol Motil. 2013;25(407–12):e296–7. Liao D, Villadsen GE, Gregersen H. Distension-evoked motility analysis in human esophagus. Neurogastroenterol Motil. 2013;25(407–12):e296–7.
9.
go back to reference Egorov VI, Schastlivtsev IV, Prut EV, Baranov AO, Turusov RA. Mechanical properties of the human gastrointestinal tract. J Biomech. 2002;35:1417–25.PubMedCrossRef Egorov VI, Schastlivtsev IV, Prut EV, Baranov AO, Turusov RA. Mechanical properties of the human gastrointestinal tract. J Biomech. 2002;35:1417–25.PubMedCrossRef
10.
go back to reference Choi CM, Han HY, Kim J, Cheong JN. Characterization of the biomechanical properties of the lower esophagus for surgical simulation. In: Key Eng. Mater. 2006:835–8. Choi CM, Han HY, Kim J, Cheong JN. Characterization of the biomechanical properties of the lower esophagus for surgical simulation. In: Key Eng. Mater. 2006:835–8.
12.
go back to reference Fung YC. Biomechanics: motion, flow, stress, and growth. New York: Springer; 1990.CrossRef Fung YC. Biomechanics: motion, flow, stress, and growth. New York: Springer; 1990.CrossRef
13.
go back to reference Gregersen H, Lee TC, Chien S, Skalak R, Fung YC. Strain distribution in the layered wall of the esophagus. J Biomech Eng. 1999;121:442.PubMedCrossRef Gregersen H, Lee TC, Chien S, Skalak R, Fung YC. Strain distribution in the layered wall of the esophagus. J Biomech Eng. 1999;121:442.PubMedCrossRef
14.
go back to reference Gregersen H. Residual strain in the gastrointestinal tract: a new concept. Neurogastroenterol Motil. 2000;12:411–4.PubMedCrossRef Gregersen H. Residual strain in the gastrointestinal tract: a new concept. Neurogastroenterol Motil. 2000;12:411–4.PubMedCrossRef
16.
go back to reference Cha JM, Park S-N, Noh SH, Suh H. Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain. Artif Organs. 2006;30:250–8.PubMedCrossRef Cha JM, Park S-N, Noh SH, Suh H. Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain. Artif Organs. 2006;30:250–8.PubMedCrossRef
17.
go back to reference Nicosia MA, Brasseur JG, Liu JB, Miller LS. Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1022–33.PubMed Nicosia MA, Brasseur JG, Liu JB, Miller LS. Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1022–33.PubMed
18.
go back to reference Dooley CP, Schlossmacher B, et al. Modulation of esophageal peristalsis by alterations of body position—effect of bolus viscosity. Dig Dis Sci. 1989;34(11):1662–7.PubMedCrossRef Dooley CP, Schlossmacher B, et al. Modulation of esophageal peristalsis by alterations of body position—effect of bolus viscosity. Dig Dis Sci. 1989;34(11):1662–7.PubMedCrossRef
19.
go back to reference Dodds WJ. Current concepts of esophageal motor function—clinical implications for radiology. Am J Roentgenol. 1977;128(4):549–61.CrossRef Dodds WJ. Current concepts of esophageal motor function—clinical implications for radiology. Am J Roentgenol. 1977;128(4):549–61.CrossRef
20.
go back to reference Daniels SK, Foundas AL. Swallowing physiology of sequential straw drinking. Dysphagia. 2001;16(3):176–82.PubMedCrossRef Daniels SK, Foundas AL. Swallowing physiology of sequential straw drinking. Dysphagia. 2001;16(3):176–82.PubMedCrossRef
21.
22.
23.
go back to reference Pal A, Brasseur JG. The mechanical advantage of local longitudinal shortening on peristaltic transport. J Biomech Eng. 2002;124:94–100.PubMedCrossRef Pal A, Brasseur JG. The mechanical advantage of local longitudinal shortening on peristaltic transport. J Biomech Eng. 2002;124:94–100.PubMedCrossRef
24.
25.
go back to reference Gravesen F, Behan N, Drewes A, Gregersen H. Viscosity of food boluses affects the axial force in the esophagus. World J Gastroenterol. 2011;17:1982–8.PubMedPubMedCentralCrossRef Gravesen F, Behan N, Drewes A, Gregersen H. Viscosity of food boluses affects the axial force in the esophagus. World J Gastroenterol. 2011;17:1982–8.PubMedPubMedCentralCrossRef
26.
go back to reference Fox M, Sweis R. Future directions in esophageal motility and function—new technology and methodology. Neurogastroenterol Motil. 2012;24(Suppl 1):48–56.PubMedCrossRef Fox M, Sweis R. Future directions in esophageal motility and function—new technology and methodology. Neurogastroenterol Motil. 2012;24(Suppl 1):48–56.PubMedCrossRef
27.
go back to reference Tutuian R, Castell DO. Combined multichannel intraluminal impedance and manometry clarifies esophageal function abnormalities: study in 350 patients. Am J Gastroenterol. 2004;99:1011–9.PubMedCrossRef Tutuian R, Castell DO. Combined multichannel intraluminal impedance and manometry clarifies esophageal function abnormalities: study in 350 patients. Am J Gastroenterol. 2004;99:1011–9.PubMedCrossRef
28.
go back to reference Mcmahon BP, Frøkjær JB, Kunwald P, Liao D, Funch-Jensen P, Drewes AM, et al. The functional lumen imaging probe (FLIP) for evaluation of the esophagogastric junction. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G377–84.PubMedCrossRef Mcmahon BP, Frøkjær JB, Kunwald P, Liao D, Funch-Jensen P, Drewes AM, et al. The functional lumen imaging probe (FLIP) for evaluation of the esophagogastric junction. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G377–84.PubMedCrossRef
29.
go back to reference Pandolfino JE, Shi G, Trueworthy B, Kahrilas PJ. Esophagogastric junction opening during relaxation distinguishes non-hernia reflux patients, hernia patients, and normal subjects. ☆ Subjects. 2015;5085:1–7. Pandolfino JE, Shi G, Trueworthy B, Kahrilas PJ. Esophagogastric junction opening during relaxation distinguishes non-hernia reflux patients, hernia patients, and normal subjects. ☆ Subjects. 2015;5085:1–7.
30.
go back to reference Regan J, Walshe M, Rommel N, Tack J, McMahon BP. New measures of upper esophageal sphincter distensibility and opening patterns during swallowing in healthy subjects using EndoFLIP®. Neurogastroenterol Motil. 2013;25(1):25–34.CrossRef Regan J, Walshe M, Rommel N, Tack J, McMahon BP. New measures of upper esophageal sphincter distensibility and opening patterns during swallowing in healthy subjects using EndoFLIP®. Neurogastroenterol Motil. 2013;25(1):25–34.CrossRef
31.
go back to reference Nguyen HN, Silny J, et al. Dynamics of esophageal bolus transport in healthy subjects studied using multiple intraluminal impedancometry. Am J Physiol Gastrointest Liver Physiol. 1997;273(4):G958–64. Nguyen HN, Silny J, et al. Dynamics of esophageal bolus transport in healthy subjects studied using multiple intraluminal impedancometry. Am J Physiol Gastrointest Liver Physiol. 1997;273(4):G958–64.
32.
go back to reference Ren JL, Massey BT, et al. Determinants of intrabolus pressure during esophageal peristaltic bolus transport. Am J Physiol. 1993;264(3):G407–13.PubMed Ren JL, Massey BT, et al. Determinants of intrabolus pressure during esophageal peristaltic bolus transport. Am J Physiol. 1993;264(3):G407–13.PubMed
33.
go back to reference Rohof WO, Myers JC, Estremera FA, Ferris LS, van de Pol J, Boeckxstaens GE, et al. Inter- and intra-rater reproducibility of automated and integrated pressure-flow analysis of esophageal pressure-impedance recordings. Neurogastroenterol Motil. 2014;26:168–75.PubMedCrossRef Rohof WO, Myers JC, Estremera FA, Ferris LS, van de Pol J, Boeckxstaens GE, et al. Inter- and intra-rater reproducibility of automated and integrated pressure-flow analysis of esophageal pressure-impedance recordings. Neurogastroenterol Motil. 2014;26:168–75.PubMedCrossRef
34.
go back to reference Chen C-L, Yi C-H, Liu T-T, Hsu C-S, Omari TI. Characterization of esophageal pressure-flow abnormalities in patients with non-obstructive dysphagia and normal manometry findings. J Gastroenterol Hepatol. 2013;28:946–53.PubMedCrossRef Chen C-L, Yi C-H, Liu T-T, Hsu C-S, Omari TI. Characterization of esophageal pressure-flow abnormalities in patients with non-obstructive dysphagia and normal manometry findings. J Gastroenterol Hepatol. 2013;28:946–53.PubMedCrossRef
35.
go back to reference Kaye MD, Wexler RM. Alteration of esophageal peristalsis by body position. Dig Dis Sci. 1981;26(10):897–901.PubMedCrossRef Kaye MD, Wexler RM. Alteration of esophageal peristalsis by body position. Dig Dis Sci. 1981;26(10):897–901.PubMedCrossRef
36.
go back to reference Hollis JB, Castell DO. Effect of dry swallows and wet swallows of different volumes on esophageal peristalsis. J Appl Physiol. 1975;38(6):1161–4.PubMed Hollis JB, Castell DO. Effect of dry swallows and wet swallows of different volumes on esophageal peristalsis. J Appl Physiol. 1975;38(6):1161–4.PubMed
37.
go back to reference Mittal RK, Bhalla V. Oesophageal motor functions and its disorders. Gut 2004; 53(10):1536–42. Mittal RK, Bhalla V. Oesophageal motor functions and its disorders. Gut 2004; 53(10):1536–42.
38.
go back to reference Ghosh SK, Pandolfino JE, et al. Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G988–97.PubMedCrossRef Ghosh SK, Pandolfino JE, et al. Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G988–97.PubMedCrossRef
39.
go back to reference Ghosh SK, Pandolfino JE, et al. Oesophageal peristaltic transition zone defects: real but few and far between. Neurogastroenterol Motil. 2008;20(12):1283–90.PubMedPubMedCentralCrossRef Ghosh SK, Pandolfino JE, et al. Oesophageal peristaltic transition zone defects: real but few and far between. Neurogastroenterol Motil. 2008;20(12):1283–90.PubMedPubMedCentralCrossRef
41.
go back to reference Schoen HJ, Morris DW, et al. Esophageal peristaltic force in man—response to mechanical and pharmacological alterations. Am J Dig Dis. 1977;22(7):589–97.PubMedCrossRef Schoen HJ, Morris DW, et al. Esophageal peristaltic force in man—response to mechanical and pharmacological alterations. Am J Dig Dis. 1977;22(7):589–97.PubMedCrossRef
42.
go back to reference Kwiatek MA, Pandolfino JE, Hirano I, Kahrilas PJ. Esophagogastric junction distensibility assessed with an endoscopic functional luminal imaging probe (EndoFLIP). Gastrointest Endosc. 2010;72:272–8. Kwiatek MA, Pandolfino JE, Hirano I, Kahrilas PJ. Esophagogastric junction distensibility assessed with an endoscopic functional luminal imaging probe (EndoFLIP). Gastrointest Endosc. 2010;72:272–8.
43.
go back to reference Regan J, Walshe M, Rommel N, Mcmahon BP. A new evaluation of the upper esophageal sphincter using the functional lumen imaging probe: a preliminary report. Dis Esophagus. 2013;26(2):117–23.PubMedCrossRef Regan J, Walshe M, Rommel N, Mcmahon BP. A new evaluation of the upper esophageal sphincter using the functional lumen imaging probe: a preliminary report. Dis Esophagus. 2013;26(2):117–23.PubMedCrossRef
Metadata
Title
Structure and motility of the esophagus from a mechanical perspective
Authors
Mariam Mir
Murtaza Najabat Ali
Umar Ansari
Javaria Sami
Publication date
01-01-2016
Publisher
Springer Japan
Published in
Esophagus / Issue 1/2016
Print ISSN: 1612-9059
Electronic ISSN: 1612-9067
DOI
https://doi.org/10.1007/s10388-015-0497-1

Other articles of this Issue 1/2016

Esophagus 1/2016 Go to the issue