Skip to main content
Top
Published in: European Surgery 5/2017

Open Access 01-10-2017 | review

Notch and its oncogenic activity in human malignancies

Authors: Marlena Brzozowa-Zasada, Adam Piecuch, Marek Michalski, Oliwia Segiet, Józef Kurek, Marzena Harabin-Słowińska, Romuald Wojnicz

Published in: European Surgery | Issue 5/2017

Login to get access

Summary

Background

Increasing evidence has demonstrated that Notch signaling is deregulated in human hematological malignancies and solid tumors. This signaling has a protumorigenic effect but may also act as a tumor suppressor. How induction of a single pathway gives rise to the opposite effects in different cell types is still unknown.

Methods

This review article includes available data from peer-reviewed publications associated with the role of Notch signaling during cancer pathogenesis.

Results

Numerous reports have indicated that alterations in Notch signaling and its oncogenic activity were originally associated with the pathogenesis of T‑cell acute lymphoblastic leukemia/lymphoma (T-ALL), an aggressive hematologic tumor affecting children and adolescents. The possibility that Notch could play a significant role in human breast cancer development comes from studies on mouse mammary tumor virus-induced cancer. Numerous findings over the past several years have indicated that alterations in Notch signaling are also responsible for ovarian cancer development. Mention should also be made of the connection between expression of Notch 3 and increased resistance to chemotherapy, which remains a major obstacle to successful treatment. Notch as an oncogenic factor is also involved in the development of colon cancer, lung carcinoma and Kaposi’s sarcoma.

Conclusion

Notch is a binary cell fate determinant and its overexpression has been described as oncogenic in a wide array of human malignancies. This finding led to interest in therapeutically targeting this pathway, especially by the use of gamma-secretase inhibitors (GSIs) blocking the cleavage of Notch receptors at the cell membrane by the inhibition of Notch intracellular domain (NICD) releasing. Preclinical cancer models have revealed that GSIs suppress the growth of cancers such as pancreatic, breast and lung cancer.
Literature
1.
go back to reference Bray S. Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7:678–89.CrossRefPubMed Bray S. Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7:678–89.CrossRefPubMed
2.
go back to reference Purrow B. Notch signaling in embryology and cancer. Adv Exp Med Biol. 2012;727:174–315.CrossRef Purrow B. Notch signaling in embryology and cancer. Adv Exp Med Biol. 2012;727:174–315.CrossRef
3.
go back to reference Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther. 2002;1:466–76.CrossRefPubMed Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther. 2002;1:466–76.CrossRefPubMed
4.
go back to reference Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G, Helewski K, et al. The Notch ligand Delta-like 4 (DLL4) as a target in angiogenesis-based cancer therapy? Contemp Oncol (Pozn). 2013;17(3):234–7. Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G, Helewski K, et al. The Notch ligand Delta-like 4 (DLL4) as a target in angiogenesis-based cancer therapy? Contemp Oncol (Pozn). 2013;17(3):234–7.
5.
go back to reference Brzozowa M, Mielańczyk L, Michalski M, Malinowski L, Kowalczyk-Ziomek G, Helewski K, et al. Role of Notch signaling pathway in gastric cancer pathogenesis. Contemp Oncol (Pozn). 2013;17:1–5. Brzozowa M, Mielańczyk L, Michalski M, Malinowski L, Kowalczyk-Ziomek G, Helewski K, et al. Role of Notch signaling pathway in gastric cancer pathogenesis. Contemp Oncol (Pozn). 2013;17:1–5.
6.
go back to reference Brzozowa-Zasada M, Piecuch A, Dittfeld A, Mielańczyk L, Michalski M, Wyrobiec G, et al. Notch signaling pathway as an oncogenic factor involved in cancer development. Contemp Oncol (Pozn). 2016;20:267–72. Brzozowa-Zasada M, Piecuch A, Dittfeld A, Mielańczyk L, Michalski M, Wyrobiec G, et al. Notch signaling pathway as an oncogenic factor involved in cancer development. Contemp Oncol (Pozn). 2016;20:267–72.
7.
go back to reference Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3:756–67.CrossRefPubMed Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3:756–67.CrossRefPubMed
8.
go back to reference Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.CrossRefPubMed Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.CrossRefPubMed
9.
go back to reference Ellisen L, Bird J, West D, Soreng A, Reynolds T, Smith S, et al. TAN-1, the human homolog of the drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–61.CrossRefPubMed Ellisen L, Bird J, West D, Soreng A, Reynolds T, Smith S, et al. TAN-1, the human homolog of the drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–61.CrossRefPubMed
10.
go back to reference Weng A, Ferrando A, Lee W, Morris J, Silverman I, Sanchez-Irizarry C, et al. Activating mutations of Notch1 in human T cell acute lymphoblstic leukemia. Science. 2004;306:269–71.CrossRefPubMed Weng A, Ferrando A, Lee W, Morris J, Silverman I, Sanchez-Irizarry C, et al. Activating mutations of Notch1 in human T cell acute lymphoblstic leukemia. Science. 2004;306:269–71.CrossRefPubMed
11.
go back to reference Haydu J, De Keersmaecker K, Duff M, Paietta E, Racevskis J, Wiernik P, et al. An activating intragenic deletion in Notch1 in human T‑ALL. Blood. 2012;119:5211–4.CrossRefPubMedPubMedCentral Haydu J, De Keersmaecker K, Duff M, Paietta E, Racevskis J, Wiernik P, et al. An activating intragenic deletion in Notch1 in human T‑ALL. Blood. 2012;119:5211–4.CrossRefPubMedPubMedCentral
12.
go back to reference Sulis M, Williams O, Palomer T, Tosello V, Pallikuppam S, Real P, et al. Notch1 extracellular juxtamembrane expansion mutations in T‑ALL. Blood. 2008;112:733–40.CrossRefPubMedPubMedCentral Sulis M, Williams O, Palomer T, Tosello V, Pallikuppam S, Real P, et al. Notch1 extracellular juxtamembrane expansion mutations in T‑ALL. Blood. 2008;112:733–40.CrossRefPubMedPubMedCentral
13.
go back to reference Thompson B, Buonamici S, Sulis M, Palomer T, Viliams T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204:1825–35.CrossRefPubMedPubMedCentral Thompson B, Buonamici S, Sulis M, Palomer T, Viliams T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204:1825–35.CrossRefPubMedPubMedCentral
14.
go back to reference O’Neil J, Grim J, Strack P, Rao S, Tibbits D, Winter C, et al. FBW7 mutations in leukemic cells mediate Notch pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204:1813–24.CrossRefPubMedPubMedCentral O’Neil J, Grim J, Strack P, Rao S, Tibbits D, Winter C, et al. FBW7 mutations in leukemic cells mediate Notch pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204:1813–24.CrossRefPubMedPubMedCentral
15.
go back to reference Malyukowa A, Dohda T, von der Lehr N, Akhoodi S, Corcoran M, Heyman M, et al. The tumor suppressor gene hCDC4 is frequently mutated in human T‑cell acute lymphoblastic leukemia with functional consequence for Notch signaling. Cancer Res. 2007;67:5611–6.CrossRef Malyukowa A, Dohda T, von der Lehr N, Akhoodi S, Corcoran M, Heyman M, et al. The tumor suppressor gene hCDC4 is frequently mutated in human T‑cell acute lymphoblastic leukemia with functional consequence for Notch signaling. Cancer Res. 2007;67:5611–6.CrossRef
16.
go back to reference Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, et al. SCF (FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 2011;471:104–9.CrossRefPubMedPubMedCentral Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, et al. SCF (FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 2011;471:104–9.CrossRefPubMedPubMedCentral
17.
go back to reference Tan Y, Sangfelt O, Spruck C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett. 2008;271:1–12.CrossRefPubMed Tan Y, Sangfelt O, Spruck C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett. 2008;271:1–12.CrossRefPubMed
18.
go back to reference Sharma VM, Draheim KM, Kelliher MA. The Notch1/c-myc pathway in T cell leukemia. Cell Cycle. 2007;6(8):927–30.CrossRefPubMed Sharma VM, Draheim KM, Kelliher MA. The Notch1/c-myc pathway in T cell leukemia. Cell Cycle. 2007;6(8):927–30.CrossRefPubMed
19.
go back to reference Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ. Notch signals positively regulate activity of the mTOR pathway in T‑cell acute lymphoblstic leukemia. Blood. 2007;110:278–86.CrossRefPubMedPubMedCentral Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ. Notch signals positively regulate activity of the mTOR pathway in T‑cell acute lymphoblstic leukemia. Blood. 2007;110:278–86.CrossRefPubMedPubMedCentral
20.
go back to reference Ciofani M, Zúniga-Pflucker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol. 2005;6:881–8.CrossRefPubMed Ciofani M, Zúniga-Pflucker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol. 2005;6:881–8.CrossRefPubMed
21.
go back to reference Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T‑cell leukemia. Nat Med. 2007;13:1203–10.CrossRefPubMedPubMedCentral Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T‑cell leukemia. Nat Med. 2007;13:1203–10.CrossRefPubMedPubMedCentral
22.
go back to reference Gonzales-Garcia S, Garcia-Peydro M, Martin-Gayo E, Ballestar E, Esteller M, Bornstein R. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R{alpha} gene expression in early human thymopeiesis and leukemia. J Exp Med. 2009;206:779–91.CrossRef Gonzales-Garcia S, Garcia-Peydro M, Martin-Gayo E, Ballestar E, Esteller M, Bornstein R. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R{alpha} gene expression in early human thymopeiesis and leukemia. J Exp Med. 2009;206:779–91.CrossRef
23.
go back to reference Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O, et al. High-level IGF1R expression is required for leukemia-initiating cell activity in T‑ALL and is supported by notch signaling. J Exp Med. 2011;208:1809–22.CrossRefPubMedPubMedCentral Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O, et al. High-level IGF1R expression is required for leukemia-initiating cell activity in T‑ALL and is supported by notch signaling. J Exp Med. 2011;208:1809–22.CrossRefPubMedPubMedCentral
24.
25.
go back to reference Dohda T, Maljukova A, Liu L, Heyman M, Grander D, Brodin D, et al. Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T‑cell acute lymphoblastic leukemia cell lines. Exp Cell Res. 2007;313:3141–52.CrossRefPubMed Dohda T, Maljukova A, Liu L, Heyman M, Grander D, Brodin D, et al. Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T‑cell acute lymphoblastic leukemia cell lines. Exp Cell Res. 2007;313:3141–52.CrossRefPubMed
26.
go back to reference Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Marqolin A, et al. NOTCH1 directly regulates c‑MYC and activates a feed-forward-loop transcriptional network promoting leukemic growth. Proc Natl Acad Sci USA. 2006;103:18261–6.CrossRefPubMedPubMedCentral Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Marqolin A, et al. NOTCH1 directly regulates c‑MYC and activates a feed-forward-loop transcriptional network promoting leukemic growth. Proc Natl Acad Sci USA. 2006;103:18261–6.CrossRefPubMedPubMedCentral
28.
go back to reference Ntziachristos P, Tsiriqos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med. 2012;18:298–301.CrossRefPubMedPubMedCentral Ntziachristos P, Tsiriqos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med. 2012;18:298–301.CrossRefPubMedPubMedCentral
29.
go back to reference Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig T, Tolle G, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T‑cell lymphoblastic leukemia. Blood. 2006;108:1151–7.CrossRefPubMed Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig T, Tolle G, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T‑cell lymphoblastic leukemia. Blood. 2006;108:1151–7.CrossRefPubMed
30.
go back to reference Park MJ, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgin lymphoma. Br J Haematol. 2009;145:198–206.CrossRefPubMed Park MJ, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgin lymphoma. Br J Haematol. 2009;145:198–206.CrossRefPubMed
31.
go back to reference Mansour MR, Sulis ML, Duke V, Foroni L, Jenkins S, Koo K, et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T‑cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. J Clin Oncol. 2009;27:4352–6.CrossRefPubMedPubMedCentral Mansour MR, Sulis ML, Duke V, Foroni L, Jenkins S, Koo K, et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T‑cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. J Clin Oncol. 2009;27:4352–6.CrossRefPubMedPubMedCentral
32.
go back to reference Abdelali BR, Asnafi V, Lequay T, Boissel N, Buzyn A, Chevallier P, et al. Pediatric-inspired intensified therapy of adult T‑ALL reveals the favorable outcome of NOTCH1/FBXW7 mutations, but not of low ERG/BAALC expression: a GRAALL study. Blood. 2011;118:5099–107.CrossRefPubMed Abdelali BR, Asnafi V, Lequay T, Boissel N, Buzyn A, Chevallier P, et al. Pediatric-inspired intensified therapy of adult T‑ALL reveals the favorable outcome of NOTCH1/FBXW7 mutations, but not of low ERG/BAALC expression: a GRAALL study. Blood. 2011;118:5099–107.CrossRefPubMed
33.
go back to reference Mori M, Tottone L, Quaglio D, Zhdanovskaya N, Ingallina C, Fusto M. Identification of a novel chalcone derivative that inhibits Notch signaling in T‑cell acute lymphoblastic leukemia. Sci Rep. 2017;7:2213.CrossRefPubMedPubMedCentral Mori M, Tottone L, Quaglio D, Zhdanovskaya N, Ingallina C, Fusto M. Identification of a novel chalcone derivative that inhibits Notch signaling in T‑cell acute lymphoblastic leukemia. Sci Rep. 2017;7:2213.CrossRefPubMedPubMedCentral
35.
go back to reference Mikaelian I, Blades N, Churchill GA, Fancher K, Knowless BB, Eppig JT, et al. Proteotypic classification of spontaneous transgenic mammary neoplasms. Breast Cancer Res. 2004;6:668–79.CrossRef Mikaelian I, Blades N, Churchill GA, Fancher K, Knowless BB, Eppig JT, et al. Proteotypic classification of spontaneous transgenic mammary neoplasms. Breast Cancer Res. 2004;6:668–79.CrossRef
36.
go back to reference Scully OJ, Bay B‑H, Yip G, Yu Y. Breast cancer metastasis. Cancer Genomics Proteomics. 2012;9:311–20.PubMed Scully OJ, Bay B‑H, Yip G, Yu Y. Breast cancer metastasis. Cancer Genomics Proteomics. 2012;9:311–20.PubMed
37.
go back to reference Zardawi SJ, Zardawi I, McNeil CM, Millar EKA, McLeod D, Morey AL, et al. High Notch1 protein expression is an early event in breast cancer development and is associated with the HER2 molecular subtype. Histopathology. 2010;56:286–96.CrossRefPubMed Zardawi SJ, Zardawi I, McNeil CM, Millar EKA, McLeod D, Morey AL, et al. High Notch1 protein expression is an early event in breast cancer development and is associated with the HER2 molecular subtype. Histopathology. 2010;56:286–96.CrossRefPubMed
38.
go back to reference Lee SH, Jeong EG, Yoo NJ, Lee SH. Mutational analysis of NOTCH1, 2, 3, and 4 genes in common solid cancers and acute leukemias. APMIS. 2007;115:1357–63.CrossRefPubMed Lee SH, Jeong EG, Yoo NJ, Lee SH. Mutational analysis of NOTCH1, 2, 3, and 4 genes in common solid cancers and acute leukemias. APMIS. 2007;115:1357–63.CrossRefPubMed
39.
go back to reference Rizzo P, Miao H, D’Souza G, Osipo C, Yun J, Zhao H, et al. Cross-talk between notch and estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 2008;68:5226–35.CrossRefPubMedPubMedCentral Rizzo P, Miao H, D’Souza G, Osipo C, Yun J, Zhao H, et al. Cross-talk between notch and estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 2008;68:5226–35.CrossRefPubMedPubMedCentral
40.
go back to reference Mittal S, Subramanyam D, Dey D, Kumar RV, Rangarajan A. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer. 2009;8:128.CrossRefPubMedPubMedCentral Mittal S, Subramanyam D, Dey D, Kumar RV, Rangarajan A. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer. 2009;8:128.CrossRefPubMedPubMedCentral
41.
go back to reference Bolos V, Mira E, Martinez-Poveda B, Luxan G, Caňamero M, Martinez-AC, et al. Notch activation stimulates migration of breast cancer suggests novel therapeutic approaches. Cancer Res. 2008;68:5226–35.CrossRef Bolos V, Mira E, Martinez-Poveda B, Luxan G, Caňamero M, Martinez-AC, et al. Notch activation stimulates migration of breast cancer suggests novel therapeutic approaches. Cancer Res. 2008;68:5226–35.CrossRef
42.
go back to reference Shao S, Zhao X, Zhang X, Luo M, Zuo X, Huang S, et al. Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol Cancer. 2015;14:28.CrossRefPubMedPubMedCentral Shao S, Zhao X, Zhang X, Luo M, Zuo X, Huang S, et al. Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol Cancer. 2015;14:28.CrossRefPubMedPubMedCentral
44.
go back to reference Bednarz-Knoll N, Efstathiou A, Gotzhein F, Wikman H, Mueller V, Kang Y, et al. Potential involvement of Jagged1 in metastatic progression of human breast carcinomas. Clin Chem. 2016;62:378–86.CrossRefPubMed Bednarz-Knoll N, Efstathiou A, Gotzhein F, Wikman H, Mueller V, Kang Y, et al. Potential involvement of Jagged1 in metastatic progression of human breast carcinomas. Clin Chem. 2016;62:378–86.CrossRefPubMed
45.
go back to reference Dickson BC, Mulligan AM, Zhang H, Lockwood G, O’Malley FP, Egan SE, et al. High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol. 2007;20:685–93.CrossRefPubMed Dickson BC, Mulligan AM, Zhang H, Lockwood G, O’Malley FP, Egan SE, et al. High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol. 2007;20:685–93.CrossRefPubMed
46.
go back to reference Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011;19:192–205.CrossRefPubMedPubMedCentral Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011;19:192–205.CrossRefPubMedPubMedCentral
47.
go back to reference Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, et al. JAGGED1 expression is associated with prostate cancer metastatsis and recourence. Cancer Res. 2004;64:6854–7.CrossRefPubMed Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, et al. JAGGED1 expression is associated with prostate cancer metastatsis and recourence. Cancer Res. 2004;64:6854–7.CrossRefPubMed
48.
go back to reference Zhang XHF, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell. 2009;16:67–78.CrossRefPubMedPubMedCentral Zhang XHF, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell. 2009;16:67–78.CrossRefPubMedPubMedCentral
49.
50.
51.
go back to reference Jung SG, Kwon YD, Song JA, Back MJ, Lee SY, Lee C, et al. Prognostic significance of Notch3 gene expression in ovarian serous carcinoma. Cancer Sci. 2010;101:1977–83.CrossRefPubMed Jung SG, Kwon YD, Song JA, Back MJ, Lee SY, Lee C, et al. Prognostic significance of Notch3 gene expression in ovarian serous carcinoma. Cancer Sci. 2010;101:1977–83.CrossRefPubMed
52.
go back to reference Park JT, Chen X, Troppe CG, Davidson B, le Shih M, Wang TL. Notch3 overexpression is related to the recurrence of ovarian cancer and confers resistance to carboplatin. Am J Path. 2010;177:1087–94.CrossRefPubMedPubMedCentral Park JT, Chen X, Troppe CG, Davidson B, le Shih M, Wang TL. Notch3 overexpression is related to the recurrence of ovarian cancer and confers resistance to carboplatin. Am J Path. 2010;177:1087–94.CrossRefPubMedPubMedCentral
53.
go back to reference Rahman MT, Nakayama K, Rahman M, Katagiri H, Katagiri A, Ishibashi T, et al. Notch3 overexpression as potential therapeutic target in advanced stage chemoresistant ovarian cancer. Am J Clin Pathol. 2012;138:535–44.CrossRefPubMed Rahman MT, Nakayama K, Rahman M, Katagiri H, Katagiri A, Ishibashi T, et al. Notch3 overexpression as potential therapeutic target in advanced stage chemoresistant ovarian cancer. Am J Clin Pathol. 2012;138:535–44.CrossRefPubMed
54.
go back to reference Gupta N, Xu Z, El-Sehemy A, Steed H, Fu Y. Notch3 induces epithelial-mesenchymal transition and attenuates carboplatin -induced apoptosis in ovarian cancer. Gynecol Oncol. 2013;130:200–6.CrossRefPubMed Gupta N, Xu Z, El-Sehemy A, Steed H, Fu Y. Notch3 induces epithelial-mesenchymal transition and attenuates carboplatin -induced apoptosis in ovarian cancer. Gynecol Oncol. 2013;130:200–6.CrossRefPubMed
55.
go back to reference Kang H, Jeong JY, Song JY, Kim TH, Kim G, Huh JH. Notch-3 specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells. Mol Carcinog. 2016;55:1196–209.CrossRefPubMed Kang H, Jeong JY, Song JY, Kim TH, Kim G, Huh JH. Notch-3 specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells. Mol Carcinog. 2016;55:1196–209.CrossRefPubMed
57.
go back to reference Rose SL, Kunnimalaiyaan M, Drenzek J, Seiler N. Notch1 signaling is active in ovarian cancer. Gynecol Oncol. 2010;117:130–3.CrossRefPubMed Rose SL, Kunnimalaiyaan M, Drenzek J, Seiler N. Notch1 signaling is active in ovarian cancer. Gynecol Oncol. 2010;117:130–3.CrossRefPubMed
58.
go back to reference Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat. 2007;10:59–67.CrossRefPubMed Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat. 2007;10:59–67.CrossRefPubMed
59.
go back to reference Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer. 2010;127:1785–94.CrossRefPubMed Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer. 2010;127:1785–94.CrossRefPubMed
60.
go back to reference Hwang JH, Voortman J, Giovanetti E, Steinberg SM, Leon LG, Kim YT, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLOS ONE. 2010;5:e10630.CrossRefPubMedPubMedCentral Hwang JH, Voortman J, Giovanetti E, Steinberg SM, Leon LG, Kim YT, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLOS ONE. 2010;5:e10630.CrossRefPubMedPubMedCentral
61.
go back to reference Liu MX, Siu MKY, Liu SS, Yam JWP, Ngan HYS, Chan DW. Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget. 2014;5:944–58.CrossRefPubMed Liu MX, Siu MKY, Liu SS, Yam JWP, Ngan HYS, Chan DW. Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget. 2014;5:944–58.CrossRefPubMed
62.
go back to reference Zhou Y, Chen Q, Qin R, Zhang K, Li H. MicroRNA-449a reduces cell survival and enhances cisplatin-induced cytotoxicity via downregulation of NOTCH1 in ovarian cancer cells. Tumour Biol. 2014;35:12369–78.CrossRefPubMed Zhou Y, Chen Q, Qin R, Zhang K, Li H. MicroRNA-449a reduces cell survival and enhances cisplatin-induced cytotoxicity via downregulation of NOTCH1 in ovarian cancer cells. Tumour Biol. 2014;35:12369–78.CrossRefPubMed
63.
go back to reference Liang T, Guo Q, Li L, Cheng Y, Ren C, Zhang G. MicroRNA-433 inhibits migration and invasion of ovarian cancer cells via targeting Notch1. Neoplasma. 2016;63:696–704.CrossRefPubMed Liang T, Guo Q, Li L, Cheng Y, Ren C, Zhang G. MicroRNA-433 inhibits migration and invasion of ovarian cancer cells via targeting Notch1. Neoplasma. 2016;63:696–704.CrossRefPubMed
64.
go back to reference Chen Ch, Wang X, Huang S, Wang L, Han L, Yu S. Prognostic roles of Notch receptor mRNA expression in human ovarian cancer. Oncotarget. 2017;8:32731–40.PubMedPubMedCentral Chen Ch, Wang X, Huang S, Wang L, Han L, Yu S. Prognostic roles of Notch receptor mRNA expression in human ovarian cancer. Oncotarget. 2017;8:32731–40.PubMedPubMedCentral
65.
go back to reference Zhang Y, Li B, Ji Z‑Z, Zheng P‑S. Notch 1 regulates the growth of human colon cancers. Cancer. 2010;116:5207–18.CrossRefPubMed Zhang Y, Li B, Ji Z‑Z, Zheng P‑S. Notch 1 regulates the growth of human colon cancers. Cancer. 2010;116:5207–18.CrossRefPubMed
66.
go back to reference Chu D, Li Y, Wang W, Zhao Q, Li J, Lu Y, et al. High level of Notch1 protein is associated with poor overall survival in colorectal cancer. Ann Surg Oncol. 2010;17:1337–42.CrossRefPubMed Chu D, Li Y, Wang W, Zhao Q, Li J, Lu Y, et al. High level of Notch1 protein is associated with poor overall survival in colorectal cancer. Ann Surg Oncol. 2010;17:1337–42.CrossRefPubMed
67.
go back to reference Brzozowa-Zasada M, Piecuch A, Segiet O, Stęplewska K, Gabriel A, Wojnicz R. The complex interplay between Notch signaling and Snail1 transcription factor in the regulation of epithelial-mesenchymal transition. Eur Surg. 2015;47:218–25.CrossRef Brzozowa-Zasada M, Piecuch A, Segiet O, Stęplewska K, Gabriel A, Wojnicz R. The complex interplay between Notch signaling and Snail1 transcription factor in the regulation of epithelial-mesenchymal transition. Eur Surg. 2015;47:218–25.CrossRef
68.
go back to reference Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch-1 promotes stemness and Epithelila to mesenchymal transition in colorectal cancer. J Cell Biochem. 2015;116:2517–27.CrossRefPubMed Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch-1 promotes stemness and Epithelila to mesenchymal transition in colorectal cancer. J Cell Biochem. 2015;116:2517–27.CrossRefPubMed
70.
go back to reference Kim HA, Koo BK, Cho JH, Kim YY, Seong J, Chang HJ, et al. Notch1 counteracts WNT/β-catenin signaling through chromatin modification in colorectal cancer. J Clin Invest. 2012;122:3248–59.CrossRefPubMedPubMedCentral Kim HA, Koo BK, Cho JH, Kim YY, Seong J, Chang HJ, et al. Notch1 counteracts WNT/β-catenin signaling through chromatin modification in colorectal cancer. J Clin Invest. 2012;122:3248–59.CrossRefPubMedPubMedCentral
71.
go back to reference Chu D, Zhang Z, Zhou Y, Wang W, Li Y, Zhang H, et al. Notch1 and Notch2 have opposite prognostic effects on patients with colorectal cancer. Ann Oncol. 2011;22:2440–7.CrossRefPubMed Chu D, Zhang Z, Zhou Y, Wang W, Li Y, Zhang H, et al. Notch1 and Notch2 have opposite prognostic effects on patients with colorectal cancer. Ann Oncol. 2011;22:2440–7.CrossRefPubMed
72.
go back to reference Wang WJ, Yao Y, Jiang LL, Hu TH, Jq Ruan MZP, et al. Increased LEF1 expression and decreased notch2 expression are strong predictors of poor outcomes in colorectal cancer patients. Dis Markers. 2013;35:395–405.CrossRefPubMedPubMedCentral Wang WJ, Yao Y, Jiang LL, Hu TH, Jq Ruan MZP, et al. Increased LEF1 expression and decreased notch2 expression are strong predictors of poor outcomes in colorectal cancer patients. Dis Markers. 2013;35:395–405.CrossRefPubMedPubMedCentral
75.
go back to reference Indraccolo S, Minuzzo S, Masiero M, Pusceddu I, Persano L, Moserle L, et al. Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Res. 2009;69:1314–23.CrossRefPubMed Indraccolo S, Minuzzo S, Masiero M, Pusceddu I, Persano L, Moserle L, et al. Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Res. 2009;69:1314–23.CrossRefPubMed
76.
go back to reference Paso A, Serafin V, Pilotto G, Lago C, Bellio C, Trusolino L, et al. Notch3 signaling regulates MUSASHI-1 expression in metastatic colorectal cancer cells. Cancer Res. 2014;74:2106–18.CrossRef Paso A, Serafin V, Pilotto G, Lago C, Bellio C, Trusolino L, et al. Notch3 signaling regulates MUSASHI-1 expression in metastatic colorectal cancer cells. Cancer Res. 2014;74:2106–18.CrossRef
77.
go back to reference Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem. 2009;284:31921–7.CrossRefPubMedPubMedCentral Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem. 2009;284:31921–7.CrossRefPubMedPubMedCentral
78.
go back to reference Wang XW, Xi XQ, Wu J, Wan YY, Hui HX, Cao XF. MicroRNA-206 attenuates tumor proliferation and migration involving the downregulation of Notch3 in colorectal cancer. Oncol Rep. 2015;33:1402–10.CrossRefPubMed Wang XW, Xi XQ, Wu J, Wan YY, Hui HX, Cao XF. MicroRNA-206 attenuates tumor proliferation and migration involving the downregulation of Notch3 in colorectal cancer. Oncol Rep. 2015;33:1402–10.CrossRefPubMed
79.
go back to reference Westhoff B, Colaluca IN, D’Ario G, Donzelli M, Tosoni D, Volorio S, et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA. 2009;106:22293–8.CrossRefPubMedPubMedCentral Westhoff B, Colaluca IN, D’Ario G, Donzelli M, Tosoni D, Volorio S, et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA. 2009;106:22293–8.CrossRefPubMedPubMedCentral
80.
go back to reference Donnem T, Andersen S, Al-shibili K, Al-Saad S, Busund L‑T, Bremnes RM. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer: coexpression of Notch-1 and vascular endothelial growth factor-A predicts poor survival. Cancer. 2010;116:5674–85. Donnem T, Andersen S, Al-shibili K, Al-Saad S, Busund L‑T, Bremnes RM. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer: coexpression of Notch-1 and vascular endothelial growth factor-A predicts poor survival. Cancer. 2010;116:5674–85.
81.
go back to reference Allen TD, Rodriguez EM, Jones KD, Bishop JM. Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Res. 2011;71:6010–8.CrossRefPubMedPubMedCentral Allen TD, Rodriguez EM, Jones KD, Bishop JM. Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Res. 2011;71:6010–8.CrossRefPubMedPubMedCentral
82.
go back to reference Hassan WA, Yoshida R, Kudoh S, Motooka Y, Ito T. Evaluation of role of Notch3 signaling pathway in human lung cancer cells. J Cancer Res Clin Oncol. 2016;142:981–93.CrossRefPubMed Hassan WA, Yoshida R, Kudoh S, Motooka Y, Ito T. Evaluation of role of Notch3 signaling pathway in human lung cancer cells. J Cancer Res Clin Oncol. 2016;142:981–93.CrossRefPubMed
83.
go back to reference Haruki N, Kawaguchi KS, Eichenberger S, Massion PP, Olson S, Gonzales A, et al. Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Res. 2005;65:3555–61.CrossRefPubMed Haruki N, Kawaguchi KS, Eichenberger S, Massion PP, Olson S, Gonzales A, et al. Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Res. 2005;65:3555–61.CrossRefPubMed
84.
go back to reference Konishi J, Kawaguchi KS, Vo H, Haruki N, Gonzales A, Carbone DP, et al. γ‑secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res. 2007;67:8051–7.CrossRefPubMed Konishi J, Kawaguchi KS, Vo H, Haruki N, Gonzales A, Carbone DP, et al. γ‑secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res. 2007;67:8051–7.CrossRefPubMed
85.
go back to reference Konishi J, Yi F, Chen X, Vo H, Carbone DP, Dang TP. Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene. 2010;29:589–96.CrossRefPubMed Konishi J, Yi F, Chen X, Vo H, Carbone DP, Dang TP. Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene. 2010;29:589–96.CrossRefPubMed
86.
go back to reference Yuan X, Wu H, Xu H, Han N, Chu Q, Yu S, et al. Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep. 2015;5:10338.CrossRefPubMedPubMedCentral Yuan X, Wu H, Xu H, Han N, Chu Q, Yu S, et al. Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep. 2015;5:10338.CrossRefPubMedPubMedCentral
88.
go back to reference Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Cancer Res Clin Oncol. 2016;142:981–93.CrossRef Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Cancer Res Clin Oncol. 2016;142:981–93.CrossRef
89.
go back to reference Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM. Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol. 2003;77:11425–35.CrossRefPubMedPubMedCentral Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM. Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol. 2003;77:11425–35.CrossRefPubMedPubMedCentral
90.
go back to reference Lan K, Choudhuri T, Murakami M, Kuppers D, Robertson S. Intracellular activated Notch1 is critical for proliferation of Kaposi’s sarcoma-associated herpesvirus-associated B‑lymphoma cell lines in vitro. J Virol. 2006;80:6411–9.CrossRefPubMedPubMedCentral Lan K, Choudhuri T, Murakami M, Kuppers D, Robertson S. Intracellular activated Notch1 is critical for proliferation of Kaposi’s sarcoma-associated herpesvirus-associated B‑lymphoma cell lines in vitro. J Virol. 2006;80:6411–9.CrossRefPubMedPubMedCentral
91.
go back to reference Curry CL, Reed LL, Golde TE, Miele L, Nickoloff BJ, Foreman KE. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi’s sarcoma tumor cells. Oncogene. 2005;24:6333–44.PubMed Curry CL, Reed LL, Golde TE, Miele L, Nickoloff BJ, Foreman KE. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi’s sarcoma tumor cells. Oncogene. 2005;24:6333–44.PubMed
92.
93.
go back to reference Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33:416–21.CrossRefPubMed Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33:416–21.CrossRefPubMed
94.
go back to reference Gat U, DasGupta R, Degenstein L, Fuchs E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell. 1998;95:605–14.CrossRefPubMed Gat U, DasGupta R, Degenstein L, Fuchs E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell. 1998;95:605–14.CrossRefPubMed
95.
go back to reference Zhu AJ, Watt FM. Beta catenin signaling modulates proliferative potential of human epidermal keratinocytes independently of interecellular adhesion. Development. 1999;126:2285–98.PubMed Zhu AJ, Watt FM. Beta catenin signaling modulates proliferative potential of human epidermal keratinocytes independently of interecellular adhesion. Development. 1999;126:2285–98.PubMed
96.
go back to reference Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP. P21WAF1/CIP1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 2005;19:14851495.CrossRef Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP. P21WAF1/CIP1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 2005;19:14851495.CrossRef
Metadata
Title
Notch and its oncogenic activity in human malignancies
Authors
Marlena Brzozowa-Zasada
Adam Piecuch
Marek Michalski
Oliwia Segiet
Józef Kurek
Marzena Harabin-Słowińska
Romuald Wojnicz
Publication date
01-10-2017
Publisher
Springer Vienna
Published in
European Surgery / Issue 5/2017
Print ISSN: 1682-8631
Electronic ISSN: 1682-4016
DOI
https://doi.org/10.1007/s10353-017-0491-z

Other articles of this Issue 5/2017

European Surgery 5/2017 Go to the issue