Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019

01-02-2019 | Magnetic Resonance Imaging | Research Article

Improved compressed sensing reconstruction for \(^{19}\)F magnetic resonance imaging

Authors: Thomas Kampf, Volker J. F. Sturm, Thomas C. Basse-Lüsebrink, André Fischer, Lukas R. Buschle, Felix T. Kurz, Heinz-Peter Schlemmer, Christian H. Ziener, Sabine Heiland, Martin Bendszus, Mirko Pham, Guido Stoll, Peter M. Jakob

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2019

Login to get access

Abstract

Objective

In magnetic resonance imaging (MRI), compressed sensing (CS) enables the reconstruction of undersampled sparse data sets. Thus, partial acquisition of the underlying k-space data is sufficient, which significantly reduces measurement time. While 19F MRI data sets are spatially sparse, they often suffer from low SNR. This can lead to artifacts in CS reconstructions that reduce the image quality. We present a method to improve the image quality of undersampled, reconstructed CS data sets.

Materials and methods

Two resampling strategies in combination with CS reconstructions are presented. Numerical simulations are performed for low-SNR spatially sparse data obtained from 19F chemical-shift imaging measurements. Different parameter settings for undersampling factors and SNR values are tested and the error is quantified in terms of the root-mean-square error.

Results

An improvement in overall image quality compared to conventional CS reconstructions was observed for both strategies. Specifically spike artifacts in the background were suppressed, while the changes in signal pixels remained small.

Discussion

The proposed methods improve the quality of CS reconstructions. Furthermore, because resampling is applied during post-processing, no additional measurement time is required. This allows easy incorporation into existing protocols and application to already measured data.
Literature
1.
2.
go back to reference Yu JX, Hallac RR, Chiguru S, Mason RP (2013) New frontiers and developing applications in 19F NMR. Prog Nucl Magn Reson Spectrosc 70:25–49CrossRefPubMed Yu JX, Hallac RR, Chiguru S, Mason RP (2013) New frontiers and developing applications in 19F NMR. Prog Nucl Magn Reson Spectrosc 70:25–49CrossRefPubMed
3.
go back to reference Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013a) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013a) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed
4.
go back to reference Schirra C, Brunner D, Keupp J, Razavi R, Schaeffter T, Kozerke S (2009) Compressed sensing for highly accelerated 3D visualization of 19F-catheters. In: Proceedings of the 17th annual meeting of the ISMRM, Honolulu, Hawaii, USA, 4405 Schirra C, Brunner D, Keupp J, Razavi R, Schaeffter T, Kozerke S (2009) Compressed sensing for highly accelerated 3D visualization of 19F-catheters. In: Proceedings of the 17th annual meeting of the ISMRM, Honolulu, Hawaii, USA, 4405
5.
go back to reference Ye YX, Basse-Lusebrink TC, Arias-Loza PA, Kocoski V, Kampf T, Gan Q, Bauer E, Sparka S, Helluy X, Hu K, Hiller KH, Boivin-Jahns V, Jakob PM, Jahns R, Bauer WR (2013) Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging. Circulation 128(17):1878–1888CrossRefPubMed Ye YX, Basse-Lusebrink TC, Arias-Loza PA, Kocoski V, Kampf T, Gan Q, Bauer E, Sparka S, Helluy X, Hu K, Hiller KH, Boivin-Jahns V, Jakob PM, Jahns R, Bauer WR (2013) Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging. Circulation 128(17):1878–1888CrossRefPubMed
6.
go back to reference Hertlein T, Sturm V, Jakob P, Ohlsen K (2013) 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model. PLoS ONE 8(5):e64440CrossRefPubMedPubMedCentral Hertlein T, Sturm V, Jakob P, Ohlsen K (2013) 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model. PLoS ONE 8(5):e64440CrossRefPubMedPubMedCentral
7.
go back to reference Weise G, Basse-Lusebrink TC, Kleinschnitz C, Kampf T, Jakob PM, Stoll G (2011) In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI. PLoS ONE 6(12):e28143CrossRefPubMedPubMedCentral Weise G, Basse-Lusebrink TC, Kleinschnitz C, Kampf T, Jakob PM, Stoll G (2011) In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI. PLoS ONE 6(12):e28143CrossRefPubMedPubMedCentral
8.
go back to reference Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD (2015) Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 74(2):537–543CrossRefPubMed Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD (2015) Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 74(2):537–543CrossRefPubMed
9.
go back to reference Schmid F, Holtke C, Parker D, Faber C (2013) Boosting (19) F MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. Magn Reson Med 69(4):1056–1062CrossRefPubMed Schmid F, Holtke C, Parker D, Faber C (2013) Boosting (19) F MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. Magn Reson Med 69(4):1056–1062CrossRefPubMed
10.
go back to reference van Heeswijk RB, Colotti R, Darcot E, Delacoste J, Pellegrin M, Piccini D, Hernando D (2018) Chemical shift encoding (CSE) for sensitive fluorine-19 MRI of perfluorocarbons with complex spectra. Magn Reson Med 79(5):2724–2730CrossRefPubMed van Heeswijk RB, Colotti R, Darcot E, Delacoste J, Pellegrin M, Piccini D, Hernando D (2018) Chemical shift encoding (CSE) for sensitive fluorine-19 MRI of perfluorocarbons with complex spectra. Magn Reson Med 79(5):2724–2730CrossRefPubMed
11.
go back to reference Ludwig KD, Hernando D, Roberts NT, van Heeswijk RB, Fain SB (2018) A chemical shift encoding (CSE) approach for spectral selection in fluorine-19 MRI. Magn Reson Med 79(4):2183–2189CrossRefPubMed Ludwig KD, Hernando D, Roberts NT, van Heeswijk RB, Fain SB (2018) A chemical shift encoding (CSE) approach for spectral selection in fluorine-19 MRI. Magn Reson Med 79(4):2183–2189CrossRefPubMed
12.
go back to reference Fischer A, Basse-Lüsebrink T, Kampf T, Ladewig G, Blaimer M, Breuer F, Stoll G, Bauer W, Jakob P (2009) Improved sensitivity in 19F cellular imaging using non-convex compressed sensing. In: Proceedings of the 17th annual meeting of the ISMRM, Honolulu, Hawaii, USA, p 3154 Fischer A, Basse-Lüsebrink T, Kampf T, Ladewig G, Blaimer M, Breuer F, Stoll G, Bauer W, Jakob P (2009) Improved sensitivity in 19F cellular imaging using non-convex compressed sensing. In: Proceedings of the 17th annual meeting of the ISMRM, Honolulu, Hawaii, USA, p 3154
13.
go back to reference Kampf T, Fischer A, Basse-Lüsebrink T, Ladewig G, Breuer F, Stoll G, Jakob P, Bauer W (2010) Application of compressed sensing to in vivo 3D 19F CSI. J Magn Reson 207(2):262–273CrossRefPubMed Kampf T, Fischer A, Basse-Lüsebrink T, Ladewig G, Breuer F, Stoll G, Jakob P, Bauer W (2010) Application of compressed sensing to in vivo 3D 19F CSI. J Magn Reson 207(2):262–273CrossRefPubMed
14.
go back to reference Basse-Luesebrink T, Fischer A, Kampf T, Sturm V, Ladewig G, Stoll G, Jakob P (2010a) 19f-compressed-sensing-CISS: Elimination of banding artifacts in 19F BSSFP MRI/CSI without sacrificing time. In: Proceedings of the 18th annual meeting of the international society for magnetic resonance in medicine, p 4888 Basse-Luesebrink T, Fischer A, Kampf T, Sturm V, Ladewig G, Stoll G, Jakob P (2010a) 19f-compressed-sensing-CISS: Elimination of banding artifacts in 19F BSSFP MRI/CSI without sacrificing time. In: Proceedings of the 18th annual meeting of the international society for magnetic resonance in medicine, p 4888
15.
go back to reference Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013b) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013b) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed
16.
go back to reference Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509CrossRef Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509CrossRef
17.
go back to reference Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52(4):1289–1306CrossRef Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52(4):1289–1306CrossRef
18.
go back to reference Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987CrossRefPubMed Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987CrossRefPubMed
19.
go back to reference Jx Yu, Kodibagkar VD, Cui W, Mason RP (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Medi Chem 12:819–848CrossRef Jx Yu, Kodibagkar VD, Cui W, Mason RP (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Medi Chem 12:819–848CrossRef
20.
go back to reference Chartrand R (2007) Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14(10):707–710CrossRef Chartrand R (2007) Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14(10):707–710CrossRef
21.
go back to reference Luo J, Zhu Y, Magnin IE (2009) Denoising by averaging reconstructed images: application to magnetic resonance images. IEEE Trans Biomed Eng 56(3):666–674CrossRefPubMed Luo J, Zhu Y, Magnin IE (2009) Denoising by averaging reconstructed images: application to magnetic resonance images. IEEE Trans Biomed Eng 56(3):666–674CrossRefPubMed
22.
go back to reference Miao J, Li W, Yu X, Wilson DL (2010) Mr rician noise reduction in diffusion tensor imaging using compressed sensing by sampling decomposition. In: Proceedings of the 18th annual meeting of the ISMRM, Stockholm, Sweden, p 4890 Miao J, Li W, Yu X, Wilson DL (2010) Mr rician noise reduction in diffusion tensor imaging using compressed sensing by sampling decomposition. In: Proceedings of the 18th annual meeting of the ISMRM, Stockholm, Sweden, p 4890
23.
go back to reference Miao J, Guo W, Narayan S, Wilson DL (2013) A simple application of compressed sensing to further accelerate partially parallel imaging. Magn Reson Imaging 31(1):75–85CrossRefPubMed Miao J, Guo W, Narayan S, Wilson DL (2013) A simple application of compressed sensing to further accelerate partially parallel imaging. Magn Reson Imaging 31(1):75–85CrossRefPubMed
24.
go back to reference Richter D, Basse-Lusebrink TC, Kampf T, Fischer A, Israel I, Schneider M, Jakob PM, Samnick S (2014) Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction. Z Med Phys 24(1):16–26CrossRefPubMed Richter D, Basse-Lusebrink TC, Kampf T, Fischer A, Israel I, Schneider M, Jakob PM, Samnick S (2014) Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction. Z Med Phys 24(1):16–26CrossRefPubMed
25.
go back to reference Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRefPubMed Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRefPubMed
26.
go back to reference Cukur T, Lustig M, Nishimura DG (2009) Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing. Magn Reson Med 61(5):1122–1131CrossRefPubMedPubMedCentral Cukur T, Lustig M, Nishimura DG (2009) Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing. Magn Reson Med 61(5):1122–1131CrossRefPubMedPubMedCentral
27.
go back to reference Fischer A (2012) On the application of compressed sensing to magnetic resonance imaging. Dissertation, Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Fischer A (2012) On the application of compressed sensing to magnetic resonance imaging. Dissertation, Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg,
28.
29.
go back to reference Basse-Luesebrink T, Kampf T, Fischer A, Ladewig G, Stoll G, Jakob P (2010b) Spike artifact reduction in nonconvex compressed sensing. In: Proceedings of the 18th annual meeting of the ISMRM, Stockholm, Sweden, p 4886 Basse-Luesebrink T, Kampf T, Fischer A, Ladewig G, Stoll G, Jakob P (2010b) Spike artifact reduction in nonconvex compressed sensing. In: Proceedings of the 18th annual meeting of the ISMRM, Stockholm, Sweden, p 4886
30.
go back to reference Efron B (1982) The jackknife, the bootstrap, and other resampling plans, vol 38. Siam Efron B (1982) The jackknife, the bootstrap, and other resampling plans, vol 38. Siam
31.
go back to reference Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci :54–75 Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci :54–75
32.
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in C, vol 2. Cambridge University Press, Cambridge Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in C, vol 2. Cambridge University Press, Cambridge
Metadata
Title
Improved compressed sensing reconstruction for F magnetic resonance imaging
Authors
Thomas Kampf
Volker J. F. Sturm
Thomas C. Basse-Lüsebrink
André Fischer
Lukas R. Buschle
Felix T. Kurz
Heinz-Peter Schlemmer
Christian H. Ziener
Sabine Heiland
Martin Bendszus
Mirko Pham
Guido Stoll
Peter M. Jakob
Publication date
01-02-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0729-1

Other articles of this Issue 1/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019 Go to the issue