Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016

01-04-2016 | Review Article

Segmentation and quantification of adipose tissue by magnetic resonance imaging

Authors: Houchun Harry Hu, Jun Chen, Wei Shen

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2016

Login to get access

Abstract

In this brief review, introductory concepts in animal and human adipose tissue segmentation using proton magnetic resonance imaging (MRI) and computed tomography are summarized in the context of obesity research. Adipose tissue segmentation and quantification using spin relaxation-based (e.g., T1-weighted, T2-weighted), relaxometry-based (e.g., T1-, T2-, T2*-mapping), chemical-shift selective, and chemical-shift encoded water–fat MRI pulse sequences are briefly discussed. The continuing interest to classify subcutaneous and visceral adipose tissue depots into smaller sub-depot compartments is mentioned. The use of a single slice, a stack of slices across a limited anatomical region, or a whole body protocol is considered. Common image post-processing steps and emerging atlas-based automated segmentation techniques are noted. Finally, the article identifies some directions of future research, including a discussion on the growing topic of brown adipose tissue and related segmentation considerations.
Literature
1.
go back to reference Wang Y, Lobstein T (2006) Worldwide trends in childhood overweight and obesity. Int J Ped Obes 1:11–25CrossRef Wang Y, Lobstein T (2006) Worldwide trends in childhood overweight and obesity. Int J Ped Obes 1:11–25CrossRef
2.
go back to reference Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–241PubMedCrossRef Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–241PubMedCrossRef
3.
go back to reference Després JP, Lemieux I, Bergeron J et al (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28:1039–1049PubMedCrossRef Després JP, Lemieux I, Bergeron J et al (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28:1039–1049PubMedCrossRef
4.
go back to reference Matsuzawa Y, Funahashi T, Nakamura T (2011) The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 18:629–639PubMedCrossRef Matsuzawa Y, Funahashi T, Nakamura T (2011) The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 18:629–639PubMedCrossRef
5.
go back to reference Bizino MB, Sala ML, de Heer P et al (2015) MR of multi-organ involvement in the metabolic syndrome. Magn Reson Imaging Clin N Am 23:41–58PubMedCrossRef Bizino MB, Sala ML, de Heer P et al (2015) MR of multi-organ involvement in the metabolic syndrome. Magn Reson Imaging Clin N Am 23:41–58PubMedCrossRef
6.
go back to reference Silver HJ, Welch EB, Avison MJ, Niswender KD (2010) Imaging body composition in obesity and weight loss: challenges and opportunities. Diabetes Metab Syndr Obes 28:337–347CrossRef Silver HJ, Welch EB, Avison MJ, Niswender KD (2010) Imaging body composition in obesity and weight loss: challenges and opportunities. Diabetes Metab Syndr Obes 28:337–347CrossRef
7.
go back to reference Machann J, Horstmann A, Born M, Hesse S, Hirsch FW (2013) Diagnostic imaging in obesity. Best Pract Res Clin Endocrinol Metab 27:261–277PubMedCrossRef Machann J, Horstmann A, Born M, Hesse S, Hirsch FW (2013) Diagnostic imaging in obesity. Best Pract Res Clin Endocrinol Metab 27:261–277PubMedCrossRef
8.
go back to reference MacDonald AJ, Greig CA, Baracos V (2011) The advantages and limitations of cross-sectional body composition analysis. Curr Opin Support Palliat Care 5:342–349PubMedCrossRef MacDonald AJ, Greig CA, Baracos V (2011) The advantages and limitations of cross-sectional body composition analysis. Curr Opin Support Palliat Care 5:342–349PubMedCrossRef
9.
go back to reference Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Després JP (1993) Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr 58:463–467PubMed Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Després JP (1993) Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr 58:463–467PubMed
10.
go back to reference Conway JM, Yanovski SZ, Avila NA, Hubbard VS (1995) Visceral adipose tissue differences in black and white women. Am J Clin Nutr 61:765–771PubMed Conway JM, Yanovski SZ, Avila NA, Hubbard VS (1995) Visceral adipose tissue differences in black and white women. Am J Clin Nutr 61:765–771PubMed
11.
go back to reference Kadowaki T, Sekikawa A, Murata K et al (2006) Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int J Obes (Lond) 30:1163–1165CrossRef Kadowaki T, Sekikawa A, Murata K et al (2006) Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int J Obes (Lond) 30:1163–1165CrossRef
12.
go back to reference Koska J, Stefan N, Votruba SB, Smith SR, Krakoff J, Bunt JC (2008) Distribution of subcutaneous fat predicts insulin action in obesity in sex-specific manner. Obesity (Silver Spring) 16:2003–2009CrossRef Koska J, Stefan N, Votruba SB, Smith SR, Krakoff J, Bunt JC (2008) Distribution of subcutaneous fat predicts insulin action in obesity in sex-specific manner. Obesity (Silver Spring) 16:2003–2009CrossRef
13.
go back to reference Engelson ES, Kotler DP, Tan Y et al (1999) Fat distribution in HIV-infected patients reporting trances enlargement quantified by whole-body magnetic resonance imaging. Am J Clin Nutr 69:1162–1169PubMed Engelson ES, Kotler DP, Tan Y et al (1999) Fat distribution in HIV-infected patients reporting trances enlargement quantified by whole-body magnetic resonance imaging. Am J Clin Nutr 69:1162–1169PubMed
14.
go back to reference Klein S, Fontana L, Young VL et al (2004) Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 350:2549–2557PubMedCrossRef Klein S, Fontana L, Young VL et al (2004) Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 350:2549–2557PubMedCrossRef
15.
go back to reference Mayer LE, Klein DA, Black E et al (2009) Adipose tissue distribution after weight restoration and weight maintenance in women with anorexia nervosa. Am J Clin Nutr 90:1132–1137PubMedPubMedCentralCrossRef Mayer LE, Klein DA, Black E et al (2009) Adipose tissue distribution after weight restoration and weight maintenance in women with anorexia nervosa. Am J Clin Nutr 90:1132–1137PubMedPubMedCentralCrossRef
16.
go back to reference Cordes C, Dieckmeyer M, Ott B et al (2015) MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging. doi:10.1002/jmri.24908 PubMed Cordes C, Dieckmeyer M, Ott B et al (2015) MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging. doi:10.​1002/​jmri.​24908 PubMed
17.
go back to reference Machann J, Thamer C, Stefan N et al (2010) Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology 257:353–363PubMedCrossRef Machann J, Thamer C, Stefan N et al (2010) Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology 257:353–363PubMedCrossRef
18.
go back to reference Anblagan D, Deshpande R, Jones NW et al (2013) Measurement of fetal fat in utero in normal and diabetic pregnancies using magnetic resonance imaging. Ultrasound Obstet Gynecol 42:335–340PubMedCrossRef Anblagan D, Deshpande R, Jones NW et al (2013) Measurement of fetal fat in utero in normal and diabetic pregnancies using magnetic resonance imaging. Ultrasound Obstet Gynecol 42:335–340PubMedCrossRef
19.
go back to reference Kabir N, Forsum E (1993) Estimation of total body fat and subcutaneous adipose tissue in full-term infants less than 3 months old. Pediatr Res 34:448–454PubMedCrossRef Kabir N, Forsum E (1993) Estimation of total body fat and subcutaneous adipose tissue in full-term infants less than 3 months old. Pediatr Res 34:448–454PubMedCrossRef
20.
go back to reference Harrington TA, Thomas EL, Frost G, Modi N, Bell JD (2004) Distribution of adipose tissue in the newborn. Pediatr Res 55:437–441PubMedCrossRef Harrington TA, Thomas EL, Frost G, Modi N, Bell JD (2004) Distribution of adipose tissue in the newborn. Pediatr Res 55:437–441PubMedCrossRef
21.
go back to reference Brambilla P, Bedogni G, Moreno LA et al (2006) Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes (Lond) 30:23–30CrossRef Brambilla P, Bedogni G, Moreno LA et al (2006) Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes (Lond) 30:23–30CrossRef
22.
go back to reference Fields DA, Teague AM, Short KR, Chernausek SD (2015) Evaluation of DXA vs. MRI for body composition measures in 1-month olds. Pediatr Obes. doi:10.1111/ijpo.12021 Fields DA, Teague AM, Short KR, Chernausek SD (2015) Evaluation of DXA vs. MRI for body composition measures in 1-month olds. Pediatr Obes. doi:10.​1111/​ijpo.​12021
23.
go back to reference Lange T, Beuchert M, Baumstark MW et al (2015) Value of MRI and MRS fat measurements to complement conventional screening methods for childhood obesity. J Magn Reson Imaging. doi:10.1002/jmri.24919 Lange T, Beuchert M, Baumstark MW et al (2015) Value of MRI and MRS fat measurements to complement conventional screening methods for childhood obesity. J Magn Reson Imaging. doi:10.​1002/​jmri.​24919
24.
go back to reference Siegel MJ, Hildebolt CF, Bae KT, Hong C, White NH (2007) Total and intraabdomianl fat distribution in preadolescents and adolescents: measurement with MR imaging. Radiology 242:846–856PubMedCrossRef Siegel MJ, Hildebolt CF, Bae KT, Hong C, White NH (2007) Total and intraabdomianl fat distribution in preadolescents and adolescents: measurement with MR imaging. Radiology 242:846–856PubMedCrossRef
25.
go back to reference Khoo CM, Leow MK, Sadananthan SA et al (2014) Body fat partitioning does not explain the interethnic variation in insulin sensitivity among Asian ethnicity: the Singapore adult metabolism study. Diabetes 63:1093–1102PubMedCrossRef Khoo CM, Leow MK, Sadananthan SA et al (2014) Body fat partitioning does not explain the interethnic variation in insulin sensitivity among Asian ethnicity: the Singapore adult metabolism study. Diabetes 63:1093–1102PubMedCrossRef
26.
go back to reference Stefan N, Kantartzis K, Machann J et al (2008) Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 168:1609–1616PubMedCrossRef Stefan N, Kantartzis K, Machann J et al (2008) Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 168:1609–1616PubMedCrossRef
27.
go back to reference Thomas EL, Parkinson JR, Frost GS et al (2012) The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 20:76–87CrossRef Thomas EL, Parkinson JR, Frost GS et al (2012) The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 20:76–87CrossRef
28.
go back to reference St-Onge MP, Janssen I, Heymsfield SB (2004) Metabolic syndrome in normal-weight Americans: new definition of the metabolically obese, normal-weight individual. Diabetes Care 27:2222–2228PubMedCrossRef St-Onge MP, Janssen I, Heymsfield SB (2004) Metabolic syndrome in normal-weight Americans: new definition of the metabolically obese, normal-weight individual. Diabetes Care 27:2222–2228PubMedCrossRef
29.
go back to reference Kelishadi R, Cook SR, Motlagh ME et al (2008) Metabolically obese normal weight and phenotypically obese metabolically normal youths: the CASPIAN study. J Am Diet Assoc 108:82–90PubMedCrossRef Kelishadi R, Cook SR, Motlagh ME et al (2008) Metabolically obese normal weight and phenotypically obese metabolically normal youths: the CASPIAN study. J Am Diet Assoc 108:82–90PubMedCrossRef
30.
go back to reference Kullberg J, Johansson L, Lind L, Ahlström H, Strand R (2015) Imiomics: bringing -omics to whole body imaging: examples in cross-sectional interaction between whole-body MRI and non-imaging data. In: Proceedings of the 23rd scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 3757 Kullberg J, Johansson L, Lind L, Ahlström H, Strand R (2015) Imiomics: bringing -omics to whole body imaging: examples in cross-sectional interaction between whole-body MRI and non-imaging data. In: Proceedings of the 23rd scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 3757
32.
go back to reference Thomas LW (1962) The chemical composition of adipose tissue of man and mice. Q J Exp Physiol Cogn Med Sci 47:179–188PubMed Thomas LW (1962) The chemical composition of adipose tissue of man and mice. Q J Exp Physiol Cogn Med Sci 47:179–188PubMed
34.
go back to reference Thomas EL, Fitzpatrick JA, Malik SJ, Taylor-Robinson SD, Bell JD (2013) Whole body fat: content and distribution. Prog Nucl Magn Reson Spectrosc 73:56–80PubMedCrossRef Thomas EL, Fitzpatrick JA, Malik SJ, Taylor-Robinson SD, Bell JD (2013) Whole body fat: content and distribution. Prog Nucl Magn Reson Spectrosc 73:56–80PubMedCrossRef
35.
go back to reference Kaul S, Rothney MP, Peters DM et al (2012) Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring) 20:1313–1318CrossRef Kaul S, Rothney MP, Peters DM et al (2012) Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring) 20:1313–1318CrossRef
36.
go back to reference Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE (2008) A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 33:997–1006PubMedCrossRef Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE (2008) A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 33:997–1006PubMedCrossRef
37.
go back to reference Kullberg J, Brandberg J, Angelhed JE et al (2009) Whole-body adipose tissue analysis: comparison of MRI, CT, and dual energy X-ray absorptiometry. Br J Radiol 82:123–130PubMedCrossRef Kullberg J, Brandberg J, Angelhed JE et al (2009) Whole-body adipose tissue analysis: comparison of MRI, CT, and dual energy X-ray absorptiometry. Br J Radiol 82:123–130PubMedCrossRef
38.
go back to reference Bredella MA, Ghomi RH, Thomas BJ et al (2010) Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring) 18:2227–2233CrossRef Bredella MA, Ghomi RH, Thomas BJ et al (2010) Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring) 18:2227–2233CrossRef
39.
go back to reference Metzinger MN, Miramontes B, Zhou P et al (2014) Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice. Sensors (Basel) 14:18526–18542PubMedCentralCrossRef Metzinger MN, Miramontes B, Zhou P et al (2014) Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice. Sensors (Basel) 14:18526–18542PubMedCentralCrossRef
40.
go back to reference Varady KA, Santosa S, Jones PJ (2007) Validation of hand-held bioelectrical impedance analysis with magnetic resonance imaging for the assessment of body composition in overweight women. Am J Hum Biol 19:429–433PubMedCrossRef Varady KA, Santosa S, Jones PJ (2007) Validation of hand-held bioelectrical impedance analysis with magnetic resonance imaging for the assessment of body composition in overweight women. Am J Hum Biol 19:429–433PubMedCrossRef
41.
go back to reference Ludescher B, Machann J, Eschweiler GW et al (2009) Correlation of fat distribution in whole body MRI with generally used anthropometric data. Invest Radiol 44:712–719PubMedCrossRef Ludescher B, Machann J, Eschweiler GW et al (2009) Correlation of fat distribution in whole body MRI with generally used anthropometric data. Invest Radiol 44:712–719PubMedCrossRef
42.
go back to reference Browning LM, Mugridge O, Dixon AK, Aitken SW, Prentice AM, Jebb SA (2011) Measuring abdominal adipose tissue: comparison of simpler methods with MRI. Obes Facts 4:9–15PubMedCrossRef Browning LM, Mugridge O, Dixon AK, Aitken SW, Prentice AM, Jebb SA (2011) Measuring abdominal adipose tissue: comparison of simpler methods with MRI. Obes Facts 4:9–15PubMedCrossRef
43.
go back to reference Ludwig UA, Klausmann F, Baumann S et al (2014) Whole-body MRI-based fat quantification: a comparison to air displacement plethysmography. J Magn Reson Imaging 40:1437–1444PubMedCrossRef Ludwig UA, Klausmann F, Baumann S et al (2014) Whole-body MRI-based fat quantification: a comparison to air displacement plethysmography. J Magn Reson Imaging 40:1437–1444PubMedCrossRef
44.
go back to reference Karlsson AK, Kullberg J, Stokland E, Allvin K, Gronowitz E, Svensson PA, Dahlgren J (2013) Measurements of total and regional body composition in preschool children: a comparison of MRI, DXA, and anthropometric data. Obesity (Silver Spring) 21:1018–1024CrossRef Karlsson AK, Kullberg J, Stokland E, Allvin K, Gronowitz E, Svensson PA, Dahlgren J (2013) Measurements of total and regional body composition in preschool children: a comparison of MRI, DXA, and anthropometric data. Obesity (Silver Spring) 21:1018–1024CrossRef
45.
go back to reference Silver HJ, Niswender KD, Kullberg J et al (2013) Comparison of gross body fat–water magnetic resonance imaging at 3 Tesla to dual-energy X-ray absorptiometry in obese women. Obesity (Silver Spring) 21:765–774CrossRef Silver HJ, Niswender KD, Kullberg J et al (2013) Comparison of gross body fat–water magnetic resonance imaging at 3 Tesla to dual-energy X-ray absorptiometry in obese women. Obesity (Silver Spring) 21:765–774CrossRef
46.
go back to reference Clarke LP, Velthuizen RP, Camacho MA et al (1995) MRI segmentation: methods and applications. Magn Reson Imaging 13:343–368PubMedCrossRef Clarke LP, Velthuizen RP, Camacho MA et al (1995) MRI segmentation: methods and applications. Magn Reson Imaging 13:343–368PubMedCrossRef
47.
go back to reference Baba S, Jacene HA, Engles JM, Honda H, Wahl RL (2010) CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med 51:246–250PubMedCrossRef Baba S, Jacene HA, Engles JM, Honda H, Wahl RL (2010) CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med 51:246–250PubMedCrossRef
48.
go back to reference Ahmadi N, Hajsadeghi F, Conneely M et al (2013) Active brown and white adipose tissues with computed tomography. Acad Radiol 20:1443–1447PubMedCrossRef Ahmadi N, Hajsadeghi F, Conneely M et al (2013) Active brown and white adipose tissues with computed tomography. Acad Radiol 20:1443–1447PubMedCrossRef
49.
go back to reference Kvist H, Chowdhury B, Grangård U, Tylén U, Sjöström L (1988) Total and visceral adipose tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr 48:1351–1361PubMed Kvist H, Chowdhury B, Grangård U, Tylén U, Sjöström L (1988) Total and visceral adipose tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr 48:1351–1361PubMed
50.
go back to reference Yoshizumi T, Nakamura T, Yamane M et al (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211:283–286PubMedCrossRef Yoshizumi T, Nakamura T, Yamane M et al (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211:283–286PubMedCrossRef
51.
go back to reference Maurovich-Horvat P, Massaro J, Fox CS, Moselewski F, O’Donnell CJ, Hoffmann U (2006) Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomopgrahy. Int J Obes (Lond) 31:500–506CrossRef Maurovich-Horvat P, Massaro J, Fox CS, Moselewski F, O’Donnell CJ, Hoffmann U (2006) Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomopgrahy. Int J Obes (Lond) 31:500–506CrossRef
52.
go back to reference El-Serag H, Hashmi A, Garcia J et al (2014) Visceral abdominal obesity measured by CT scan is associated with an increased risk of Barrett’s oesophagus: a case–control study. Gut 63:220–229PubMedPubMedCentralCrossRef El-Serag H, Hashmi A, Garcia J et al (2014) Visceral abdominal obesity measured by CT scan is associated with an increased risk of Barrett’s oesophagus: a case–control study. Gut 63:220–229PubMedPubMedCentralCrossRef
53.
go back to reference Seidell JC, Bakker CJ, van der Kooy K (1990) Imaging techniques for measuring adipose tissue distribution—a comparison between computed tomography and 1.5T magnetic resonance. Am J Clin Nutr 51:953–957PubMed Seidell JC, Bakker CJ, van der Kooy K (1990) Imaging techniques for measuring adipose tissue distribution—a comparison between computed tomography and 1.5T magnetic resonance. Am J Clin Nutr 51:953–957PubMed
54.
go back to reference Enzi G, Biondetti PR, Fiore D, Semisa M, Zurlo F (1986) Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomopgrahy. Am J Clin Nutr 44:739–746PubMed Enzi G, Biondetti PR, Fiore D, Semisa M, Zurlo F (1986) Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomopgrahy. Am J Clin Nutr 44:739–746PubMed
55.
go back to reference Sobol W, Rossner S, Hinson B et al (1991) Evaluation of a new magnetic resonance imaging method for quntitating adipose tissue areas. Int J Obes (Lond) 15:589–599 Sobol W, Rossner S, Hinson B et al (1991) Evaluation of a new magnetic resonance imaging method for quntitating adipose tissue areas. Int J Obes (Lond) 15:589–599
56.
go back to reference Fowler PA, Fuller MF, Glasbey CA et al (1991) Total and subcutaneous adipose tissue in women: the measurement of distribution and accurate prediction of quantity by using magnetic resonance imaging. Am J Clin Nutr 54:18–25PubMed Fowler PA, Fuller MF, Glasbey CA et al (1991) Total and subcutaneous adipose tissue in women: the measurement of distribution and accurate prediction of quantity by using magnetic resonance imaging. Am J Clin Nutr 54:18–25PubMed
57.
go back to reference Shen W, Liu H, Punyanitya M, Chen J, Heymsfield SB (2005) Pediatric obesity phenotyping by magnetic resonance imaging. Curr Opin Clin Nutr Metab Care 8:595–601PubMedPubMedCentralCrossRef Shen W, Liu H, Punyanitya M, Chen J, Heymsfield SB (2005) Pediatric obesity phenotyping by magnetic resonance imaging. Curr Opin Clin Nutr Metab Care 8:595–601PubMedPubMedCentralCrossRef
58.
go back to reference Fowler PA, Fuller MF, Glasbey CA, Cameron CG, Foster MA (1992) Validation of in vivo measurement of adipose tissue by magnetic resonance imaging of lean and obese pig. Am J Clin Nutr 56:7–13PubMed Fowler PA, Fuller MF, Glasbey CA, Cameron CG, Foster MA (1992) Validation of in vivo measurement of adipose tissue by magnetic resonance imaging of lean and obese pig. Am J Clin Nutr 56:7–13PubMed
59.
go back to reference Mitchell AD, Scholz AM, Wange PC, Song H (2001) Body composition analysis of the pig by magnetic resonance imaging. J Anim Sci 79:1800–1813PubMed Mitchell AD, Scholz AM, Wange PC, Song H (2001) Body composition analysis of the pig by magnetic resonance imaging. J Anim Sci 79:1800–1813PubMed
60.
go back to reference Ranefall P, Bidar AW, Hockings PD (2009) Automatic segmentation of intra-abdominal and subcutaneous adipose tissue in 3D whole mouse MRI. J Magn Reson Imaging 30:554–560PubMedCrossRef Ranefall P, Bidar AW, Hockings PD (2009) Automatic segmentation of intra-abdominal and subcutaneous adipose tissue in 3D whole mouse MRI. J Magn Reson Imaging 30:554–560PubMedCrossRef
61.
go back to reference Luu YK, Lublinsky S, Ozcivici E, Capilla E, Pessin JE, Rubin CT, Judex S (2009) In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med Eng Phys 31:34–41PubMedPubMedCentralCrossRef Luu YK, Lublinsky S, Ozcivici E, Capilla E, Pessin JE, Rubin CT, Judex S (2009) In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med Eng Phys 31:34–41PubMedPubMedCentralCrossRef
62.
go back to reference Johnson DH, Flask CA, Ernsberger PR, Wong WC, Wilson DL (2008) Reproducible MRI measurement of adipose tissue volumes in genetic and dietary rodent obesity models. J Magn Reson Imaging 28:915–927PubMedPubMedCentralCrossRef Johnson DH, Flask CA, Ernsberger PR, Wong WC, Wilson DL (2008) Reproducible MRI measurement of adipose tissue volumes in genetic and dietary rodent obesity models. J Magn Reson Imaging 28:915–927PubMedPubMedCentralCrossRef
63.
go back to reference Johnson DH, Narayan S, Wilson DL, Flask CA (2012) Body composition analysis of obesity and hepatic steatosis in mice by relaxation compensated fat fraction (RCFF) MRI. J Magn Reson Imaging 35:837–843PubMedPubMedCentralCrossRef Johnson DH, Narayan S, Wilson DL, Flask CA (2012) Body composition analysis of obesity and hepatic steatosis in mice by relaxation compensated fat fraction (RCFF) MRI. J Magn Reson Imaging 35:837–843PubMedPubMedCentralCrossRef
64.
go back to reference Tang Y, Sharma P, Nelson MD, Simerly R, Moats RA (2011) Automatic abdominal fat assessment in obese mice using a segmented shape model. J Magn Reson Imaging 34:866–873PubMedCrossRef Tang Y, Sharma P, Nelson MD, Simerly R, Moats RA (2011) Automatic abdominal fat assessment in obese mice using a segmented shape model. J Magn Reson Imaging 34:866–873PubMedCrossRef
66.
go back to reference Garteiser P, Doblas S, Towner RA, Griffin TM (2013) Calibration of a semi-automated segmentation method for quantification of adipose tissue compartments from magnetic resonance images of mice. Metabolism 62:1686–1695PubMedCrossRef Garteiser P, Doblas S, Towner RA, Griffin TM (2013) Calibration of a semi-automated segmentation method for quantification of adipose tissue compartments from magnetic resonance images of mice. Metabolism 62:1686–1695PubMedCrossRef
67.
68.
go back to reference Monziols M, Collewet G, Mariette F, Kouba M, Davenel A (2005) Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue. Magn Reson Imaging 23:745–755PubMedCrossRef Monziols M, Collewet G, Mariette F, Kouba M, Davenel A (2005) Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue. Magn Reson Imaging 23:745–755PubMedCrossRef
69.
go back to reference Kremer PV, Förster Scholz AM (2013) Use of magnetic resonance imaging to predict the body composition of pigs in vivo. Animal 7:879–884PubMedCrossRef Kremer PV, Förster Scholz AM (2013) Use of magnetic resonance imaging to predict the body composition of pigs in vivo. Animal 7:879–884PubMedCrossRef
70.
go back to reference Hu HH, Kan HE (2013) Quantitative proton MR techniques for measuring fat. NMR Biomed 26:1609–1629PubMedCrossRef Hu HH, Kan HE (2013) Quantitative proton MR techniques for measuring fat. NMR Biomed 26:1609–1629PubMedCrossRef
71.
go back to reference Gronemeyer SA, Steen RG, Kauffman WM, Reddick WE, Glass JO (2000) Fast adipose tissue (FAT) assessment by MRI. Magn Reson Imaging 18:815–818PubMedCrossRef Gronemeyer SA, Steen RG, Kauffman WM, Reddick WE, Glass JO (2000) Fast adipose tissue (FAT) assessment by MRI. Magn Reson Imaging 18:815–818PubMedCrossRef
72.
go back to reference Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959PubMedCrossRef Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959PubMedCrossRef
74.
go back to reference Axel L, Constantini J, Listerud J (1987) Intensity correction in surface-coil MR imaging. AJR 148:418–420PubMedCrossRef Axel L, Constantini J, Listerud J (1987) Intensity correction in surface-coil MR imaging. AJR 148:418–420PubMedCrossRef
75.
go back to reference Wang D, Doddrell DM (2005) Method for a detailed measurement of image intensity nonuniformity in magnetic resonance imaging. Med Phys 32:952–960PubMedCrossRef Wang D, Doddrell DM (2005) Method for a detailed measurement of image intensity nonuniformity in magnetic resonance imaging. Med Phys 32:952–960PubMedCrossRef
76.
go back to reference Chen W (2004) A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images. In: IEEE international symposium on biomedical imaging: nano to macro, pp 1307–1310 Chen W (2004) A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images. In: IEEE international symposium on biomedical imaging: nano to macro, pp 1307–1310
77.
go back to reference Lin M, Chan S, Chen JH et al (2011) A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI. Med Phys 38:5–14PubMedPubMedCentralCrossRef Lin M, Chan S, Chen JH et al (2011) A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI. Med Phys 38:5–14PubMedPubMedCentralCrossRef
79.
go back to reference Peterson P, Romu T, Brorson H, Leinhard OD, Månsson S (2015) Fat quantification in skeletal muscle using multigradient-echo imaging: comparison of fat and water references. J Magn Reson Imaging. doi:10.1002/jmri.24972 PubMedCentral Peterson P, Romu T, Brorson H, Leinhard OD, Månsson S (2015) Fat quantification in skeletal muscle using multigradient-echo imaging: comparison of fat and water references. J Magn Reson Imaging. doi:10.​1002/​jmri.​24972 PubMedCentral
80.
go back to reference Collewet G, Davenel A, Toussaint C, Akoka S (2002) Correction of intensity nonuniformity in spin-echo T1-weighted images. Magn Reson Imaging 20:365–373PubMedCrossRef Collewet G, Davenel A, Toussaint C, Akoka S (2002) Correction of intensity nonuniformity in spin-echo T1-weighted images. Magn Reson Imaging 20:365–373PubMedCrossRef
81.
go back to reference Yang GZ, Myerson S, Chabat F, Pennell DJ, Firmin DN (2002) Automatic MRI adipose tissue mapping using overlapping mosaics. MAGMA 14:39–44PubMedCrossRef Yang GZ, Myerson S, Chabat F, Pennell DJ, Firmin DN (2002) Automatic MRI adipose tissue mapping using overlapping mosaics. MAGMA 14:39–44PubMedCrossRef
82.
go back to reference Kullberg J, Ahlström H, Johansson L, Frimmel H (2007) Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI. Int J Obes (Lond) 31:1806–1817CrossRef Kullberg J, Ahlström H, Johansson L, Frimmel H (2007) Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI. Int J Obes (Lond) 31:1806–1817CrossRef
83.
go back to reference Positano V, Cusi K, Santarelli MF et al (2008) Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 28:403–410PubMedCrossRef Positano V, Cusi K, Santarelli MF et al (2008) Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 28:403–410PubMedCrossRef
84.
go back to reference Leinhard OD, Johansson A, Rydell J, Smedby O, Nystrom F, Lundberg P, Borga M (2008) Quantitative abdominal fat estimation using MRI. In: IEEE international conference on pattern recognition, vol 19, pp 1–4. doi:10.1109/ICPR.2008.4761764 Leinhard OD, Johansson A, Rydell J, Smedby O, Nystrom F, Lundberg P, Borga M (2008) Quantitative abdominal fat estimation using MRI. In: IEEE international conference on pattern recognition, vol 19, pp 1–4. doi:10.​1109/​ICPR.​2008.​4761764
85.
go back to reference Romu T, Borga M, Leinhard OD (2011) MANA – Multi scale adaptive normalized averaging. In: IEEE international symposium on biomedical imaging: nano to macro, pp 361–364. doi:10.1109/ISBI.2011.5872424 Romu T, Borga M, Leinhard OD (2011) MANA – Multi scale adaptive normalized averaging. In: IEEE international symposium on biomedical imaging: nano to macro, pp 361–364. doi:10.​1109/​ISBI.​2011.​5872424
86.
go back to reference Andersson T, Romu T, Karlsson A et al (2015) Consistent intensity inhomogeneity correction in water–fat MRI. J Magn Reson Imaging 42:468–476PubMedCrossRef Andersson T, Romu T, Karlsson A et al (2015) Consistent intensity inhomogeneity correction in water–fat MRI. J Magn Reson Imaging 42:468–476PubMedCrossRef
87.
go back to reference Sussman DL, Yao J, Summers RM (2010) Automated fat measurement and segmentation with intensity inhomogeneity correction. In: Proceedings of SPIE 7623, medical imaging 2010: image processing, 76233X Sussman DL, Yao J, Summers RM (2010) Automated fat measurement and segmentation with intensity inhomogeneity correction. In: Proceedings of SPIE 7623, medical imaging 2010: image processing, 76233X
88.
go back to reference Azzabou N, de Sousa PL, Carlier PG (2010) Non-uniformity correction using cosine functions basis and total variation constraint. In: IEEE international symposium on biomedical imaging: nano to macro, pp 748–751. doi:10.1109/ISBI.2010.5490068 Azzabou N, de Sousa PL, Carlier PG (2010) Non-uniformity correction using cosine functions basis and total variation constraint. In: IEEE international symposium on biomedical imaging: nano to macro, pp 748–751. doi:10.1109/ISBI.2010.5490068
89.
go back to reference Mosbech TH, Pilgaard K, Vaag A, Larsen R (2011) Automatic segmentation of abdominal adipose tissue in MRI. In: Image analysis: 17th Scandinavian conference, SCIA, lecture notes in computer science, pp 501–511. ISBN:978-3-642-21226-0 Mosbech TH, Pilgaard K, Vaag A, Larsen R (2011) Automatic segmentation of abdominal adipose tissue in MRI. In: Image analysis: 17th Scandinavian conference, SCIA, lecture notes in computer science, pp 501–511. ISBN:978-3-642-21226-0
90.
go back to reference Würslin C, Springer F, Yang B, Schick F (2011) Compensation of RF field and receiver coil induced inhomogeneity effects in abdominal MR images by a priori knowledge of the human adipose tissue distribution. J Magn Reson Imaging 34:716–726PubMedCrossRef Würslin C, Springer F, Yang B, Schick F (2011) Compensation of RF field and receiver coil induced inhomogeneity effects in abdominal MR images by a priori knowledge of the human adipose tissue distribution. J Magn Reson Imaging 34:716–726PubMedCrossRef
91.
go back to reference Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36:1011–1014PubMedPubMedCentralCrossRef Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36:1011–1014PubMedPubMedCentralCrossRef
92.
go back to reference Addeman BT, Kutty S, Perkins TG et al (2014) Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method. J Magn Reson Imaging 41:233–241PubMedCrossRef Addeman BT, Kutty S, Perkins TG et al (2014) Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method. J Magn Reson Imaging 41:233–241PubMedCrossRef
93.
94.
go back to reference Hernando D, Levin YS, Sirlin CB, Reeder SB (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40:1003–1021PubMedPubMedCentralCrossRef Hernando D, Levin YS, Sirlin CB, Reeder SB (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40:1003–1021PubMedPubMedCentralCrossRef
95.
go back to reference Li Z, Graff C, Gmitro AF, Squire SW, Bilgin A, Outwater EK, Altbach MI (2009) Rapid water and lipid imaging with T2 mapping using a radial IDEAL-GRASE technique. Magn Reson Med 61:1415–1424PubMedPubMedCentralCrossRef Li Z, Graff C, Gmitro AF, Squire SW, Bilgin A, Outwater EK, Altbach MI (2009) Rapid water and lipid imaging with T2 mapping using a radial IDEAL-GRASE technique. Magn Reson Med 61:1415–1424PubMedPubMedCentralCrossRef
96.
go back to reference Pandey A, Bilgin A, Cumar S, Kalb B, Martin DR, Altbach MI (2013) Automated segmentation of liver parenchyma and blood vessel with in vivo radial Gradient and Spin-Echo (GRASE) datasets for characterization of diffuse liver disease. In: Proceedings of the 21st scientific meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, p 1528 Pandey A, Bilgin A, Cumar S, Kalb B, Martin DR, Altbach MI (2013) Automated segmentation of liver parenchyma and blood vessel with in vivo radial Gradient and Spin-Echo (GRASE) datasets for characterization of diffuse liver disease. In: Proceedings of the 21st scientific meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, p 1528
97.
go back to reference Kan HE, Scheenen TW, Wohlgemuth M, Klomp DW, van Loosbroek-Wagenmans I, Padberg GW, Heerschap A (2009) Quantitative MR imaging of individual muscle involvement in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 9:357–362CrossRef Kan HE, Scheenen TW, Wohlgemuth M, Klomp DW, van Loosbroek-Wagenmans I, Padberg GW, Heerschap A (2009) Quantitative MR imaging of individual muscle involvement in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 9:357–362CrossRef
98.
go back to reference Alabousi A, Al-Attar S, Joy TR, Hegele RA, McKenzie CA (2011) Evaluation of adipose tissue volume quantification with IDEAL fat–water separation. J Magn Reson Imaging 34:474–479PubMedCrossRef Alabousi A, Al-Attar S, Joy TR, Hegele RA, McKenzie CA (2011) Evaluation of adipose tissue volume quantification with IDEAL fat–water separation. J Magn Reson Imaging 34:474–479PubMedCrossRef
99.
go back to reference Walker GE, Verti B, Marzullo P et al (2007) Deep subcutaneous adipose tissue: a distinct abdominal adipose depot. Obesity (Silver Spring) 15:1933–1943CrossRef Walker GE, Verti B, Marzullo P et al (2007) Deep subcutaneous adipose tissue: a distinct abdominal adipose depot. Obesity (Silver Spring) 15:1933–1943CrossRef
100.
go back to reference Lundbom J, Hakkarainen A, Lundbom N, Taskinen MR (2013) Deep subcutaneous adipose tissue is more saturated than superficial subcutaneous adipose tissue. Int J Obes (Lond) 37:620–622CrossRef Lundbom J, Hakkarainen A, Lundbom N, Taskinen MR (2013) Deep subcutaneous adipose tissue is more saturated than superficial subcutaneous adipose tissue. Int J Obes (Lond) 37:620–622CrossRef
101.
go back to reference Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278:E941–E948PubMed Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278:E941–E948PubMed
102.
go back to reference Misra A, Garg A, Abate N, Peshock RM, Stray-Gundersen J, Grundy SM (1997) Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res 5:93–99PubMedCrossRef Misra A, Garg A, Abate N, Peshock RM, Stray-Gundersen J, Grundy SM (1997) Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res 5:93–99PubMedCrossRef
103.
go back to reference Ross R, Aru J, Freeman J, Hudson R, Janssen I (2002) Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab 282:E657–E663PubMedCrossRef Ross R, Aru J, Freeman J, Hudson R, Janssen I (2002) Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab 282:E657–E663PubMedCrossRef
104.
go back to reference Nichols JH, Samy B, Nasir K et al (2008) Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: a reproducibility study. J Cardiovasc Comput Tomogr 2:288–295PubMedPubMedCentralCrossRef Nichols JH, Samy B, Nasir K et al (2008) Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: a reproducibility study. J Cardiovasc Comput Tomogr 2:288–295PubMedPubMedCentralCrossRef
105.
go back to reference Shahzad R, Bos D, Metz C et al (2013) Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach. Med Phys 40:09190CrossRef Shahzad R, Bos D, Metz C et al (2013) Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach. Med Phys 40:09190CrossRef
106.
go back to reference Elming MB, Lønborg J, Rasmussen T et al (2013) Measurement of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 29:1401–1407PubMedCrossRef Elming MB, Lønborg J, Rasmussen T et al (2013) Measurement of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 29:1401–1407PubMedCrossRef
107.
go back to reference Mihl C, Loeffen D, Versteylen MO et al (2014) Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiopgraphy: comparison with manual assessment and correlation with coronary artery disease. J Cardiovasc Comput Tomogr 8:215–221PubMedCrossRef Mihl C, Loeffen D, Versteylen MO et al (2014) Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiopgraphy: comparison with manual assessment and correlation with coronary artery disease. J Cardiovasc Comput Tomogr 8:215–221PubMedCrossRef
108.
go back to reference Spearman JV, Meinel FG, Schoepf UJ et al (2014) Automated quantification of epicardial adipose tissue using CT angiography: evaluation of a prototype software. Eur Radiol 24:519–526PubMedCrossRef Spearman JV, Meinel FG, Schoepf UJ et al (2014) Automated quantification of epicardial adipose tissue using CT angiography: evaluation of a prototype software. Eur Radiol 24:519–526PubMedCrossRef
109.
go back to reference Kortelainen ML, Särkioja T (2001) Visceral fat and coronary pathology in male adolescents. Int J Obes Relat Metab Disord 25:228–232PubMedCrossRef Kortelainen ML, Särkioja T (2001) Visceral fat and coronary pathology in male adolescents. Int J Obes Relat Metab Disord 25:228–232PubMedCrossRef
110.
go back to reference Liu KH, Chan YL, Chan WB, Chan JC, Chu CW (2006) Mesenteric fat thickness is an independent determinant of metabolic syndrome and identifies subjects with increased carotid intima-media thickness. Diabetes Care 29:379–384PubMedCrossRef Liu KH, Chan YL, Chan WB, Chan JC, Chu CW (2006) Mesenteric fat thickness is an independent determinant of metabolic syndrome and identifies subjects with increased carotid intima-media thickness. Diabetes Care 29:379–384PubMedCrossRef
111.
go back to reference Bergman RN, Kim SP, Hsu I et al (2007) Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med 120(2 Suppl 1):S3–S8PubMedCrossRef Bergman RN, Kim SP, Hsu I et al (2007) Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med 120(2 Suppl 1):S3–S8PubMedCrossRef
112.
go back to reference Fabbrini E, Tamboli RA, Magkos F et al (2010) Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology 139:448–455PubMedPubMedCentralCrossRef Fabbrini E, Tamboli RA, Magkos F et al (2010) Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology 139:448–455PubMedPubMedCentralCrossRef
113.
go back to reference Albu JB, Kovera AJ, Allen L et al (2005) Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater actue insulin response to glucose in African American than in white nondiabetic women. Am J Clin Nutr 82:1210–1217PubMedPubMedCentral Albu JB, Kovera AJ, Allen L et al (2005) Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater actue insulin response to glucose in African American than in white nondiabetic women. Am J Clin Nutr 82:1210–1217PubMedPubMedCentral
114.
go back to reference Yim JE, Heshka S, Albu J et al (2007) Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk. Int J Obes (Lond) 31:1400–1405CrossRef Yim JE, Heshka S, Albu J et al (2007) Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk. Int J Obes (Lond) 31:1400–1405CrossRef
115.
go back to reference Boettcher M, Machann J, Stefan N et al (2009) Intermuscular adipose tissue: association with other adipose tissue compartments and insulin sensitivity. J Magn Reson Imaging 29:1340–1345PubMedCrossRef Boettcher M, Machann J, Stefan N et al (2009) Intermuscular adipose tissue: association with other adipose tissue compartments and insulin sensitivity. J Magn Reson Imaging 29:1340–1345PubMedCrossRef
116.
go back to reference Al-Attar SA, Pollex RL, Robinson JF et al (2006) Semi-automated segmentation and quantification of adipose tissue in calf and thigh by MRI: a preliminary study in patients with monogenic metabolic syndrome. BMC Med Imaging 31:6–11 Al-Attar SA, Pollex RL, Robinson JF et al (2006) Semi-automated segmentation and quantification of adipose tissue in calf and thigh by MRI: a preliminary study in patients with monogenic metabolic syndrome. BMC Med Imaging 31:6–11
117.
go back to reference Karampinos DC, Baum T, Nardo L et al (2012) Characterization of the regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based water/fat separation. J Magn Reson Imaging 35:899–907PubMedPubMedCentralCrossRef Karampinos DC, Baum T, Nardo L et al (2012) Characterization of the regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based water/fat separation. J Magn Reson Imaging 35:899–907PubMedPubMedCentralCrossRef
118.
go back to reference Mattei JP, Fur YL, Cuge N, Guis S, Cozzone PJ, Bendahan D (2006) Segmentation of fascias, fat and muscle from magnetic resonance images in humans: the DISPIMAG software. MAGMA 19:275–279PubMedCrossRef Mattei JP, Fur YL, Cuge N, Guis S, Cozzone PJ, Bendahan D (2006) Segmentation of fascias, fat and muscle from magnetic resonance images in humans: the DISPIMAG software. MAGMA 19:275–279PubMedCrossRef
119.
go back to reference Orgiu S, Lafortuna CL, Rastelli F, Cadioli M, Falini A, Rizzo G (2015) Automatic muscle and fat segmentation in the thigh from T1-weighted MRI. J Magn Reson Imaging. doi:10.1002/jmri.25031 PubMed Orgiu S, Lafortuna CL, Rastelli F, Cadioli M, Falini A, Rizzo G (2015) Automatic muscle and fat segmentation in the thigh from T1-weighted MRI. J Magn Reson Imaging. doi:10.​1002/​jmri.​25031 PubMed
120.
go back to reference Casazza K, Hanks LJ, Hildalgo B, Hu HH, Affuso O (2012) Short-term physical activity intervention decreases femoral bone marrow adipose tissue in young children: a pilot study. Bone 50:23–27PubMedPubMedCentralCrossRef Casazza K, Hanks LJ, Hildalgo B, Hu HH, Affuso O (2012) Short-term physical activity intervention decreases femoral bone marrow adipose tissue in young children: a pilot study. Bone 50:23–27PubMedPubMedCentralCrossRef
121.
go back to reference Bathija A, Davis S, Trubowitz S (1979) Bone marrow adipose tissue: response to acute starvation. Am J Hematol 6:191–198PubMedCrossRef Bathija A, Davis S, Trubowitz S (1979) Bone marrow adipose tissue: response to acute starvation. Am J Hematol 6:191–198PubMedCrossRef
122.
go back to reference Schwartz AV, Sigurdsson S, Hue TF et al (2013) Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 98:2294–2300PubMedPubMedCentralCrossRef Schwartz AV, Sigurdsson S, Hue TF et al (2013) Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 98:2294–2300PubMedPubMedCentralCrossRef
123.
go back to reference Karampinos DC, Melkus G, Baum T, Bauer JS, Rummeny EJ, Krug R (2014) Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water–fat imaging and single-voxel MRS. Magn Reson Med 71:1158–1165PubMedPubMedCentralCrossRef Karampinos DC, Melkus G, Baum T, Bauer JS, Rummeny EJ, Krug R (2014) Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water–fat imaging and single-voxel MRS. Magn Reson Med 71:1158–1165PubMedPubMedCentralCrossRef
124.
go back to reference Demerath EW, Shen W, Lee M et al (2007) Approximation of total visceral adipose tissue with a single magnetic resonance image. Am J Clin Nutr 85:362–368PubMedPubMedCentral Demerath EW, Shen W, Lee M et al (2007) Approximation of total visceral adipose tissue with a single magnetic resonance image. Am J Clin Nutr 85:362–368PubMedPubMedCentral
125.
go back to reference Schaudinn A, Linder N, Garnov N et al (2015) Predictive accuracy of single- and multi-slice MRI for the estimation of total visceral adipose tissue in overweight to severely obese patients. NMR Biomed 28:583–590PubMedCrossRef Schaudinn A, Linder N, Garnov N et al (2015) Predictive accuracy of single- and multi-slice MRI for the estimation of total visceral adipose tissue in overweight to severely obese patients. NMR Biomed 28:583–590PubMedCrossRef
126.
go back to reference Machann J, Thamer C, Schnoedt B et al (2005) Standardized assessment of whole body adipose tissue topography by MRI. J Magn Reson Imaging 21:455–462PubMedCrossRef Machann J, Thamer C, Schnoedt B et al (2005) Standardized assessment of whole body adipose tissue topography by MRI. J Magn Reson Imaging 21:455–462PubMedCrossRef
127.
go back to reference Börnert P, Keupp J, Eggers H, Aldefeld B (2007) Whole-body 3D water/fat resolved continuously moving table imaging. J Magn Reson Imaging 25:660–665PubMedCrossRef Börnert P, Keupp J, Eggers H, Aldefeld B (2007) Whole-body 3D water/fat resolved continuously moving table imaging. J Magn Reson Imaging 25:660–665PubMedCrossRef
128.
go back to reference Shen W, Chen J, Gantz M, Velasquez G, Punyanitya M, Heymsfield SB (2012) A single MRI slice does not accurately predict visceral and subcutaneous adipose tissue changes during weight loss. Obesity (Silver Spring) 20:2458–2463CrossRef Shen W, Chen J, Gantz M, Velasquez G, Punyanitya M, Heymsfield SB (2012) A single MRI slice does not accurately predict visceral and subcutaneous adipose tissue changes during weight loss. Obesity (Silver Spring) 20:2458–2463CrossRef
129.
go back to reference Shen W, Punyanitya M, Wang Z et al (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97:2333–2338PubMedCrossRef Shen W, Punyanitya M, Wang Z et al (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97:2333–2338PubMedCrossRef
130.
go back to reference Shen W, Punyanitya M, Wang Z et al (2004) Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr 80:271–278PubMedPubMedCentral Shen W, Punyanitya M, Wang Z et al (2004) Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr 80:271–278PubMedPubMedCentral
131.
go back to reference Shen W, Punyanitya M, Chen J et al (2007) Visceral adipose tissue: relationships between single slice areas at different locations and obesity-related health. Int J Obes (Lond) 31:763–769 Shen W, Punyanitya M, Chen J et al (2007) Visceral adipose tissue: relationships between single slice areas at different locations and obesity-related health. Int J Obes (Lond) 31:763–769
132.
go back to reference Irlbeck T, Jm Massaro, Bamberg F, O’Donnel CJ, Hoffman U, Fox CS (2010) Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. Int J Obes (Lond) 34:781–787CrossRef Irlbeck T, Jm Massaro, Bamberg F, O’Donnel CJ, Hoffman U, Fox CS (2010) Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. Int J Obes (Lond) 34:781–787CrossRef
133.
go back to reference Kuk JL, Church TS, Blair SN, Ross R (2006) Does measurement site for visceral and abdominal subcutaneous adipose tissue alter associations with the metabolic syndrome? Diabetes Care 29:679–684PubMedCrossRef Kuk JL, Church TS, Blair SN, Ross R (2006) Does measurement site for visceral and abdominal subcutaneous adipose tissue alter associations with the metabolic syndrome? Diabetes Care 29:679–684PubMedCrossRef
134.
go back to reference Kuk JL, Church TS, Blair SN, Ross R (2010) Measurement site and the association between visceral and abdominal subcutaneous adipose tissue with metabolic risk in women. Obesity (Silver Spring) 18:1336–1340CrossRef Kuk JL, Church TS, Blair SN, Ross R (2010) Measurement site and the association between visceral and abdominal subcutaneous adipose tissue with metabolic risk in women. Obesity (Silver Spring) 18:1336–1340CrossRef
135.
go back to reference Thomas EL, Bell JD (2003) Influence of undersampling on magnetic resonance imaging measurements of intra-abdominal adipose tissue. Int J Obes Relat Metab Disord 27:211–218PubMedCrossRef Thomas EL, Bell JD (2003) Influence of undersampling on magnetic resonance imaging measurements of intra-abdominal adipose tissue. Int J Obes Relat Metab Disord 27:211–218PubMedCrossRef
136.
go back to reference Springer F, Ehehalt S, Sommer J et al (2012) Predicting volumes of metabolically important whole-body adipose tissue compartments in overweight and obese adolescents by different MRI approaches and anthropometry. Eur J Radiol 81:1488–1494PubMedCrossRef Springer F, Ehehalt S, Sommer J et al (2012) Predicting volumes of metabolically important whole-body adipose tissue compartments in overweight and obese adolescents by different MRI approaches and anthropometry. Eur J Radiol 81:1488–1494PubMedCrossRef
137.
go back to reference Thomas EL, Saeed N, Hajnal JV et al (1998) Magnetic resonance imaging of total body fat. J Appl Physiol 85:1778–1785PubMed Thomas EL, Saeed N, Hajnal JV et al (1998) Magnetic resonance imaging of total body fat. J Appl Physiol 85:1778–1785PubMed
138.
go back to reference Shen W, Chen J, Kwak S, Punyanitya M, Heymsfield SB (2011) Between-slice intervals in quantification of adipose tissue and muscle in children. Int J Pediatr Obesity 6:149–156CrossRef Shen W, Chen J, Kwak S, Punyanitya M, Heymsfield SB (2011) Between-slice intervals in quantification of adipose tissue and muscle in children. Int J Pediatr Obesity 6:149–156CrossRef
139.
go back to reference Schwenzer NF, Machann J, Schraml C et al (2010) Quantitative analysis of adipose tissue in single transverse slices for estimation of volumes of relevant fat tissue compartments. Invest Radiol 45:788–794PubMedCrossRef Schwenzer NF, Machann J, Schraml C et al (2010) Quantitative analysis of adipose tissue in single transverse slices for estimation of volumes of relevant fat tissue compartments. Invest Radiol 45:788–794PubMedCrossRef
140.
go back to reference Maislin G, Ahmed MM, Gooneratne N et al (2012) Single slice vs. volumetric MR assessment of visceral adipose tissue, reliability and validity among the overweight and obese. Obesity (Silver Spring) 20:2124–2132CrossRef Maislin G, Ahmed MM, Gooneratne N et al (2012) Single slice vs. volumetric MR assessment of visceral adipose tissue, reliability and validity among the overweight and obese. Obesity (Silver Spring) 20:2124–2132CrossRef
141.
go back to reference Jin Y, Imielinska CZ, Laine AF, Udupa J, Shen W, Heymsfield SB (2003) Segmentation and evaluation of adipose tissue from whole body MRI scans. In: Medical image computing and computer-assisted intervention—MICCAI 2003 lecture notes in computer science, vol 2878, pp 635–642 Jin Y, Imielinska CZ, Laine AF, Udupa J, Shen W, Heymsfield SB (2003) Segmentation and evaluation of adipose tissue from whole body MRI scans. In: Medical image computing and computer-assisted intervention—MICCAI 2003 lecture notes in computer science, vol 2878, pp 635–642
142.
go back to reference Zhao B, Colville J, Kalaigian J, Curran S, Jiang L, Kijewski P, Schwartz LH (2006) Automated quantification of body fat distribution on volumetric compute tomography. J Comput Assist Tomogr 30:777–783PubMedCrossRef Zhao B, Colville J, Kalaigian J, Curran S, Jiang L, Kijewski P, Schwartz LH (2006) Automated quantification of body fat distribution on volumetric compute tomography. J Comput Assist Tomogr 30:777–783PubMedCrossRef
143.
go back to reference Ohshima S, Yamamoto S, Yamaji T et al (2008) Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT. Jpn J Radiol Tech 64:1177–1181CrossRef Ohshima S, Yamamoto S, Yamaji T et al (2008) Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT. Jpn J Radiol Tech 64:1177–1181CrossRef
144.
go back to reference Makrogiannis S, Caturegli G, Davatzikos C, Ferrucci L (2013) Computer-aided assessment of regional abdominal fat with food residue removal in CT. Acad Radiol 20:1413–1421PubMedPubMedCentralCrossRef Makrogiannis S, Caturegli G, Davatzikos C, Ferrucci L (2013) Computer-aided assessment of regional abdominal fat with food residue removal in CT. Acad Radiol 20:1413–1421PubMedPubMedCentralCrossRef
146.
go back to reference Liou TH, Chan WP, Pan LC, Lin PW, Chou P (2006) Chen CH (2006) Fully automated large-scale assessment of visceral and subcutaneous abdominal adipose tissue by magnetic resonance imaging. Int J Obes (Lond) 30:844–852CrossRef Liou TH, Chan WP, Pan LC, Lin PW, Chou P (2006) Chen CH (2006) Fully automated large-scale assessment of visceral and subcutaneous abdominal adipose tissue by magnetic resonance imaging. Int J Obes (Lond) 30:844–852CrossRef
147.
go back to reference Armao D, Guyon JP, Firat Z, Brown MA, Semelka RC (2006) Accurate quantification of visceral adipose tissue (VAT) using water-saturation MRI and computer segmentation: preliminary results. J Magn Reson Imaging 23:736–741PubMedCrossRef Armao D, Guyon JP, Firat Z, Brown MA, Semelka RC (2006) Accurate quantification of visceral adipose tissue (VAT) using water-saturation MRI and computer segmentation: preliminary results. J Magn Reson Imaging 23:736–741PubMedCrossRef
148.
go back to reference Kullberg J, Johansson L, Ahlström H, Courivaud F, Koken P, Eggers H, Börnert P (2009) Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging 30:185–193PubMedCrossRef Kullberg J, Johansson L, Ahlström H, Courivaud F, Koken P, Eggers H, Börnert P (2009) Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging 30:185–193PubMedCrossRef
149.
go back to reference Kullberg J, Karlsson AK, Stokland E, Svensson PA, Dahlgren J (2010) Adipose tissue distribution in children: automated quantification using water and fat MRI. J Magn Reson Imaging 32:204–210PubMedCrossRef Kullberg J, Karlsson AK, Stokland E, Svensson PA, Dahlgren J (2010) Adipose tissue distribution in children: automated quantification using water and fat MRI. J Magn Reson Imaging 32:204–210PubMedCrossRef
150.
go back to reference Nakai R, Azuma T, Kishimoto T, Hirata T, Takizawa O, Hyon SH, Tsutsumi S (2010) Development of a high-precision image-processing automatic measurement system for MRI visceral fat images acquired using a binomial RF-excitation pulse. Magn Reson Imaging 28:520–526PubMedCrossRef Nakai R, Azuma T, Kishimoto T, Hirata T, Takizawa O, Hyon SH, Tsutsumi S (2010) Development of a high-precision image-processing automatic measurement system for MRI visceral fat images acquired using a binomial RF-excitation pulse. Magn Reson Imaging 28:520–526PubMedCrossRef
151.
go back to reference Würslin C, Machann J, Rempp H, Claussen C, Yang B, Schick F (2010) Topography mapping of whole body adipose tissue using a fully automated and standardized procedure. J Magn Reson Imaging 31:430–439PubMedCrossRef Würslin C, Machann J, Rempp H, Claussen C, Yang B, Schick F (2010) Topography mapping of whole body adipose tissue using a fully automated and standardized procedure. J Magn Reson Imaging 31:430–439PubMedCrossRef
152.
go back to reference Zhou A, Murillo H, Peng Q (2011) Novel segmentation method for abdominal fat quantification by MRI. J Magn Reson Imaging 34:852–860PubMedCrossRef Zhou A, Murillo H, Peng Q (2011) Novel segmentation method for abdominal fat quantification by MRI. J Magn Reson Imaging 34:852–860PubMedCrossRef
153.
go back to reference Wald D, Teucher B, Dinkel J et al (2012) Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J Magn Reson Imaging 36:1421–1434PubMedCrossRef Wald D, Teucher B, Dinkel J et al (2012) Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J Magn Reson Imaging 36:1421–1434PubMedCrossRef
154.
go back to reference Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS (2013) Automatic intra-subject registration-based segmentation of abdominal fat from water–fat MRI. J Magn Reson Imaging 37:423–430PubMedPubMedCentralCrossRef Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS (2013) Automatic intra-subject registration-based segmentation of abdominal fat from water–fat MRI. J Magn Reson Imaging 37:423–430PubMedPubMedCentralCrossRef
155.
go back to reference Thörmer G, Bertram HH, Garnov N et al (2013) Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients. J Magn Reson Imaging 37:1144–1150PubMedCrossRef Thörmer G, Bertram HH, Garnov N et al (2013) Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients. J Magn Reson Imaging 37:1144–1150PubMedCrossRef
156.
go back to reference Sadananthan SA, Prakash B, Leow MK et al (2015) Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging 41:924–934PubMedCrossRef Sadananthan SA, Prakash B, Leow MK et al (2015) Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging 41:924–934PubMedCrossRef
157.
go back to reference Senseney J, Hemler PF, McAuliffe MJ (2009) Automated segmentation of computed tomography images. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems, pp 1–7. doi:10.1109/CBMS.2009.5255342 Senseney J, Hemler PF, McAuliffe MJ (2009) Automated segmentation of computed tomography images. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems, pp 1–7. doi:10.1109/CBMS.2009.5255342
158.
go back to reference Positano V, Christiansen T, Santarelli MF, Ringgaard S, Landini L, Gastaldelli A (2009) Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh. J Magn Reson Imaging 29:677–684PubMedCrossRef Positano V, Christiansen T, Santarelli MF, Ringgaard S, Landini L, Gastaldelli A (2009) Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh. J Magn Reson Imaging 29:677–684PubMedCrossRef
159.
go back to reference Prescott JW, Priddy M, Best TM et al (2009) An automated method to detect interstitial adipose tissue in thigh muscles for patients with osteoarthritis. In: Conference Proceedings of IEEE Engineering in Medicine and Biology Society, pp 6360–6363 Prescott JW, Priddy M, Best TM et al (2009) An automated method to detect interstitial adipose tissue in thigh muscles for patients with osteoarthritis. In: Conference Proceedings of IEEE Engineering in Medicine and Biology Society, pp 6360–6363
160.
go back to reference Makrogiannis S, Serai S, Fishbein KW, Schreiber C, Ferrucci L, Spencer RG (2012) Automated quantification of muscle and fat in the thigh from water-, fat- and nonsuppressed MR images. J Magn Reson Imaging 35:1152–1161PubMedPubMedCentralCrossRef Makrogiannis S, Serai S, Fishbein KW, Schreiber C, Ferrucci L, Spencer RG (2012) Automated quantification of muscle and fat in the thigh from water-, fat- and nonsuppressed MR images. J Magn Reson Imaging 35:1152–1161PubMedPubMedCentralCrossRef
161.
go back to reference Valentinitsch A, Karmapinos DC, Alizai H, Subburaj K, Kumar D, Link TM, Majumdar S (2013) Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle. J Magn Reson Imaging 37:917–927PubMedPubMedCentralCrossRef Valentinitsch A, Karmapinos DC, Alizai H, Subburaj K, Kumar D, Link TM, Majumdar S (2013) Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle. J Magn Reson Imaging 37:917–927PubMedPubMedCentralCrossRef
162.
go back to reference Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef
163.
go back to reference Sezgin M, Bülent S (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:146–168CrossRef Sezgin M, Bülent S (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:146–168CrossRef
164.
go back to reference Bonekamp S, Ghosh P, Crawford S (2008) Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging. Int J Obes (Lond) 32:100–111CrossRef Bonekamp S, Ghosh P, Crawford S (2008) Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging. Int J Obes (Lond) 32:100–111CrossRef
165.
go back to reference Karlsson A, Rosander J, Romu T et al (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water–fat MRI. J Magn Reson Imaging 41:1558–1569PubMedCrossRef Karlsson A, Rosander J, Romu T et al (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water–fat MRI. J Magn Reson Imaging 41:1558–1569PubMedCrossRef
166.
go back to reference Heckemann RA, Keihaninejad S, Alijabar P, Rueckert D, Hajnal JV, Hammers A (2010) Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. NeuroImage 51:221–227PubMedCrossRef Heckemann RA, Keihaninejad S, Alijabar P, Rueckert D, Hajnal JV, Hammers A (2010) Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. NeuroImage 51:221–227PubMedCrossRef
167.
go back to reference Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24:205–219PubMedCrossRef Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24:205–219PubMedCrossRef
168.
go back to reference Devi CN, Chandrasekharan A, Sundararaman VK, Alex ZC (2015) Neonatal brain MRI segmentation: a review. Comput Biol Med 64:163–178PubMedCrossRef Devi CN, Chandrasekharan A, Sundararaman VK, Alex ZC (2015) Neonatal brain MRI segmentation: a review. Comput Biol Med 64:163–178PubMedCrossRef
169.
go back to reference Kullberg J, Angelhed JE, Lönn L et al (2006) Whole-body T1 mapping improves the definition of adipose tissue: consequences for automated image analysis. J Magn Reson Imaging 24:394–401PubMedCrossRef Kullberg J, Angelhed JE, Lönn L et al (2006) Whole-body T1 mapping improves the definition of adipose tissue: consequences for automated image analysis. J Magn Reson Imaging 24:394–401PubMedCrossRef
170.
go back to reference Garnov N, Linder N, Schaudinn A et al (2014) Comparison of T1 relaxation times in adipose tissue of severly obese patients and healthy lean subjects measured by 1.5T MRI. NMR Biomed 27:1123–1128PubMedCrossRef Garnov N, Linder N, Schaudinn A et al (2014) Comparison of T1 relaxation times in adipose tissue of severly obese patients and healthy lean subjects measured by 1.5T MRI. NMR Biomed 27:1123–1128PubMedCrossRef
171.
go back to reference Gensanne D, Josse G, Theunis J, Lagarde JM, Vincensini D (2009) Quantitative magnetic resonance imaging of subcutaneous adipose tissue. Skin Res Technol 15:45–50PubMedCrossRef Gensanne D, Josse G, Theunis J, Lagarde JM, Vincensini D (2009) Quantitative magnetic resonance imaging of subcutaneous adipose tissue. Skin Res Technol 15:45–50PubMedCrossRef
172.
go back to reference Phinney SD, Stern JS, Burke KE, Tang AB, Miller G, Holman RT (1994) Human subcutaneous adipose tissue shows site-specific differences in fatty acid composition. Am J Clin Nutr 60:725–729PubMed Phinney SD, Stern JS, Burke KE, Tang AB, Miller G, Holman RT (1994) Human subcutaneous adipose tissue shows site-specific differences in fatty acid composition. Am J Clin Nutr 60:725–729PubMed
173.
go back to reference Machann J, Stefan N, Schabel C et al (2013) Fraction of unsaturated fatty acids in visceral adipose tissue (VAT) is lower in subjects with high total VAT volume—a combined 1H MRS and volumetric MRI study in male subjects. NMR Biomed 26:232–236PubMedCrossRef Machann J, Stefan N, Schabel C et al (2013) Fraction of unsaturated fatty acids in visceral adipose tissue (VAT) is lower in subjects with high total VAT volume—a combined 1H MRS and volumetric MRI study in male subjects. NMR Biomed 26:232–236PubMedCrossRef
174.
go back to reference Brunner G, Nambia V, Yang E et al (2011) Automatic quantification of muscle volumes in magnetic resonance imaging scans of the lower extremities. Magn Reson Imaging 29:1065–1075PubMedCrossRef Brunner G, Nambia V, Yang E et al (2011) Automatic quantification of muscle volumes in magnetic resonance imaging scans of the lower extremities. Magn Reson Imaging 29:1065–1075PubMedCrossRef
175.
go back to reference Commean PK, Tuttle LJ, Hastings MK, Strube MJ, Mueller MJ (2011) Magnetic resonance imaging measurement reproducibility for calf muscle and adipose tissue volume. J Magn Reson Imaging 34:1285–1294PubMedPubMedCentralCrossRef Commean PK, Tuttle LJ, Hastings MK, Strube MJ, Mueller MJ (2011) Magnetic resonance imaging measurement reproducibility for calf muscle and adipose tissue volume. J Magn Reson Imaging 34:1285–1294PubMedPubMedCentralCrossRef
176.
go back to reference Thomas MS, Newman D, Leinhard OD et al (2014) Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system. Eur Radiol 24:2279–2291PubMedCrossRef Thomas MS, Newman D, Leinhard OD et al (2014) Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system. Eur Radiol 24:2279–2291PubMedCrossRef
177.
go back to reference Tong T, Wolz R, Wang Z et al (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. Med Image Anal 23:92–104PubMedCrossRef Tong T, Wolz R, Wang Z et al (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. Med Image Anal 23:92–104PubMedCrossRef
178.
go back to reference Xu Z, Burke RP, Lee CP et al (2015) Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med Image Anal 24:18–27PubMedCrossRef Xu Z, Burke RP, Lee CP et al (2015) Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med Image Anal 24:18–27PubMedCrossRef
179.
go back to reference Borga M, Virtanen KA, Romu T et al (2014) Brown adipose tissue in humans: detection and functional analysis using PET, MRI, and DECT. Methods Enzymol 537:141–159PubMedCrossRef Borga M, Virtanen KA, Romu T et al (2014) Brown adipose tissue in humans: detection and functional analysis using PET, MRI, and DECT. Methods Enzymol 537:141–159PubMedCrossRef
180.
181.
go back to reference Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB (2015) Human brown adipose tissue depots automatically segmented by positron emission tomography/computed tomography and registered magnetic resonance images. J Vis Exp. doi:10.3791/52415 PubMedPubMedCentral Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB (2015) Human brown adipose tissue depots automatically segmented by positron emission tomography/computed tomography and registered magnetic resonance images. J Vis Exp. doi:10.​3791/​52415 PubMedPubMedCentral
182.
go back to reference Lidell ME, Betz MJ, Leinhard OD et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634PubMedCrossRef Lidell ME, Betz MJ, Leinhard OD et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634PubMedCrossRef
183.
go back to reference Betz MJ, Enerbäck S (2015) Human brown adipose tissue: what we have learned so far. Diabetes 64:2352–2360PubMedCrossRef Betz MJ, Enerbäck S (2015) Human brown adipose tissue: what we have learned so far. Diabetes 64:2352–2360PubMedCrossRef
Metadata
Title
Segmentation and quantification of adipose tissue by magnetic resonance imaging
Authors
Houchun Harry Hu
Jun Chen
Wei Shen
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2016
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-015-0498-z

Other articles of this Issue 2/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016 Go to the issue