Skip to main content
Top
Published in: Clinical and Experimental Medicine 4/2019

01-11-2019 | Radiotherapy | Review Article

Radiation-induced lung injury: latest molecular developments, therapeutic approaches, and clinical guidance

Authors: Lina Lu, Chao Sun, Qiong Su, Yanbin Wang, Jia Li, Zhong Guo, Lihua Chen, Hong Zhang

Published in: Clinical and Experimental Medicine | Issue 4/2019

Login to get access

Abstract

Cancer research has advanced throughout the years with respect to the personalization of the treatments and to targeting cancer-related molecular signatures on different organs. Still, the adverse events of the treatments such as radiotherapy are of high concern as they may increase the mortality rate due to their severity. With the improved efficiency of cancer treatments, patient survival has been increasing. Consequently, the number of patients with adverse effects from radiotherapy is also expected to increase in the forthcoming years. Therefore, approaches for personalized treatments include the elimination of adverse events and decreasing the toxicity in healthy tissues while increasing the efficiency of cancer cytotoxicity. In this context, this paper aims to discuss the recent advances in the field of thorax irradiation therapy and its related toxicities leading to radiation pneumonitis in cancer patients. Molecular mechanisms involved in the radiation-induced lung injury and approaches used to overcome this lung injury are discussed. The discourse covers approaches such as therapeutic administration of natural products, current and prospective radioprotective drugs, and applications of mesenchymal stem cells for radiation-induced lung injury.
Literature
1.
go back to reference Yahyapour R, Motevaseli E, Rezaeyan A, et al. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol. 2018;20(8):975–88.CrossRef Yahyapour R, Motevaseli E, Rezaeyan A, et al. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol. 2018;20(8):975–88.CrossRef
6.
go back to reference Cao K, Lei X, Liu H, et al. Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial–mesenchymal transition. J Cell Mol Med. 2017;21(12):3264–76.CrossRef Cao K, Lei X, Liu H, et al. Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial–mesenchymal transition. J Cell Mol Med. 2017;21(12):3264–76.CrossRef
8.
go back to reference Verma V, Simone C, Werner-Wasik M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers. 2017;9(9):120.CrossRef Verma V, Simone C, Werner-Wasik M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers. 2017;9(9):120.CrossRef
9.
go back to reference Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal. 2017;26(11):563–82.CrossRef Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal. 2017;26(11):563–82.CrossRef
10.
go back to reference Yahyapour R, Motevaseli E, Rezaeyan A, et al. Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy. Curr Radiopharm. 2018;11(1):34–45.CrossRef Yahyapour R, Motevaseli E, Rezaeyan A, et al. Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy. Curr Radiopharm. 2018;11(1):34–45.CrossRef
11.
go back to reference Hall J, Jeggo PA, West C, et al. Ionizing radiation biomarkers in epidemiological studies—an update. Mutation Res Rev Mutation Res. 2017;771:59–84.CrossRef Hall J, Jeggo PA, West C, et al. Ionizing radiation biomarkers in epidemiological studies—an update. Mutation Res Rev Mutation Res. 2017;771:59–84.CrossRef
12.
go back to reference Yahyapour R, Shabeeb D, Cheki M, et al. Radiation protection and mitigation by natural antioxidants and flavonoids: implications to radiotherapy and radiation disasters. Curr Mol Pharmacol. 2018;11(4):285–304.CrossRef Yahyapour R, Shabeeb D, Cheki M, et al. Radiation protection and mitigation by natural antioxidants and flavonoids: implications to radiotherapy and radiation disasters. Curr Mol Pharmacol. 2018;11(4):285–304.CrossRef
13.
go back to reference Meziani L, Mondini M, Petit B, et al. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. Eur Respir J. 2018;51(3):1702120.CrossRef Meziani L, Mondini M, Petit B, et al. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. Eur Respir J. 2018;51(3):1702120.CrossRef
14.
go back to reference Lee HJ Jr, Zeng J, Vesselle HJ, Patel SA, Rengan R, Bowen SR. Correlation of functional lung heterogeneity and dosimetry to radiation pneumonitis using perfusion SPECT/CT and FDG PET/CT imaging. Int J Radiat Oncol Biol Phys. 2018;102(4):1255–64.CrossRef Lee HJ Jr, Zeng J, Vesselle HJ, Patel SA, Rengan R, Bowen SR. Correlation of functional lung heterogeneity and dosimetry to radiation pneumonitis using perfusion SPECT/CT and FDG PET/CT imaging. Int J Radiat Oncol Biol Phys. 2018;102(4):1255–64.CrossRef
15.
go back to reference Chia BSH, Master Z. Pitfalls in lung stereotactic body radiotherapy—a review of organ toxicities and dose constraints. J Xiangya Med. 2018;3. Chia BSH, Master Z. Pitfalls in lung stereotactic body radiotherapy—a review of organ toxicities and dose constraints. J Xiangya Med. 2018;3.
16.
go back to reference Dhami G, Zeng J, Vesselle HJ, et al. Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry. Strahlenther Onkol. 2017;193(5):410–8.CrossRef Dhami G, Zeng J, Vesselle HJ, et al. Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry. Strahlenther Onkol. 2017;193(5):410–8.CrossRef
17.
go back to reference Kim K, Lee J, Cho Y, et al. Predictive factors of symptomatic radiation pneumonitis in primary and metastatic lung tumors treated with stereotactic ablative body radiotherapy. Radiat Oncol J. 2017;35(2):163.CrossRef Kim K, Lee J, Cho Y, et al. Predictive factors of symptomatic radiation pneumonitis in primary and metastatic lung tumors treated with stereotactic ablative body radiotherapy. Radiat Oncol J. 2017;35(2):163.CrossRef
18.
go back to reference Lu C, Lei Z, Wu H, Lu H. Evaluating risk factors of radiation pneumonitis after stereotactic body radiation therapy in lung tumor: meta-analysis of 9 observational studies. PLoS ONE. 2018;13(12):e0208637.CrossRef Lu C, Lei Z, Wu H, Lu H. Evaluating risk factors of radiation pneumonitis after stereotactic body radiation therapy in lung tumor: meta-analysis of 9 observational studies. PLoS ONE. 2018;13(12):e0208637.CrossRef
19.
go back to reference Dess RT, Sun Y, Matuszak MM, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol. 2017;35(13):1395.CrossRef Dess RT, Sun Y, Matuszak MM, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol. 2017;35(13):1395.CrossRef
20.
go back to reference Wang K, Eblan MJ, Deal AM, et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387.CrossRef Wang K, Eblan MJ, Deal AM, et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387.CrossRef
23.
go back to reference MacVittie TJ, Gibbs A, Farese AM, et al. AEOL 10150 mitigates radiation-induced lung injury in the nonhuman primate: morbidity and mortality are administration schedule-dependent. Radiat Res. 2017;187(3):298–318.CrossRef MacVittie TJ, Gibbs A, Farese AM, et al. AEOL 10150 mitigates radiation-induced lung injury in the nonhuman primate: morbidity and mortality are administration schedule-dependent. Radiat Res. 2017;187(3):298–318.CrossRef
24.
go back to reference Jain V, Berman A. Radiation pneumonitis: old problem, new tricks. Cancers. 2018;10(7):222.CrossRef Jain V, Berman A. Radiation pneumonitis: old problem, new tricks. Cancers. 2018;10(7):222.CrossRef
27.
go back to reference Haddadi GH, Rezaeyan A, Mosleh-Shirazi MA, et al. Hesperidin as radioprotector against radiation-induced lung damage in rat: a histopathological study. J Med Phys. 2017;42(1):25.CrossRef Haddadi GH, Rezaeyan A, Mosleh-Shirazi MA, et al. Hesperidin as radioprotector against radiation-induced lung damage in rat: a histopathological study. J Med Phys. 2017;42(1):25.CrossRef
28.
go back to reference Najafi M, Shirazi A, Motevaseli E, Rezaeyan A, Salajegheh A, Rezapoor S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology. 2017;25(4):403–13.CrossRef Najafi M, Shirazi A, Motevaseli E, Rezaeyan A, Salajegheh A, Rezapoor S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology. 2017;25(4):403–13.CrossRef
29.
go back to reference Ghobadi A, Shirazi A, Najafi M, Kahkesh MH, Rezapoor S. Melatonin ameliorates radiation-induced oxidative stress at targeted and nontargeted lung tissue. J Med Phys. 2017;42(4):241.CrossRef Ghobadi A, Shirazi A, Najafi M, Kahkesh MH, Rezapoor S. Melatonin ameliorates radiation-induced oxidative stress at targeted and nontargeted lung tissue. J Med Phys. 2017;42(4):241.CrossRef
30.
go back to reference Pan J, Li D, Xu Y, et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys. 2017;99(2):353–61.CrossRef Pan J, Li D, Xu Y, et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys. 2017;99(2):353–61.CrossRef
33.
go back to reference Small W, James JL, Moore TD, et al. Utility of the ACE inhibitor captopril in mitigating radiation-associated pulmonary toxicity in lung cancer. Am J Clin Oncol. 2018;41(4):396–401.PubMedPubMedCentral Small W, James JL, Moore TD, et al. Utility of the ACE inhibitor captopril in mitigating radiation-associated pulmonary toxicity in lung cancer. Am J Clin Oncol. 2018;41(4):396–401.PubMedPubMedCentral
35.
go back to reference Moran A, Daly ME, Yip SS, Yamamoto T. Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy. Clin Lung Cancer. 2017;18(6):e425–31.CrossRef Moran A, Daly ME, Yip SS, Yamamoto T. Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy. Clin Lung Cancer. 2017;18(6):e425–31.CrossRef
37.
go back to reference Lao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):10.CrossRef Lao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):10.CrossRef
38.
go back to reference Verma V. Relationship and interactions of curcumin with radiation therapy. World J Clin Oncol. 2016;7(3):275.CrossRef Verma V. Relationship and interactions of curcumin with radiation therapy. World J Clin Oncol. 2016;7(3):275.CrossRef
39.
go back to reference Lissoni P, Meregalli S, Nosetto L, et al. Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology. 1996;53(1):43–6.CrossRef Lissoni P, Meregalli S, Nosetto L, et al. Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology. 1996;53(1):43–6.CrossRef
40.
go back to reference Ben-David MA, Elkayam R, Gelernter I, Pfeffer RM. Melatonin for prevention of breast radiation dermatitis: a phase II, prospective, double-blind randomized trial. Isr Med Assoc J. 2016;18(3–4):188–92.PubMed Ben-David MA, Elkayam R, Gelernter I, Pfeffer RM. Melatonin for prevention of breast radiation dermatitis: a phase II, prospective, double-blind randomized trial. Isr Med Assoc J. 2016;18(3–4):188–92.PubMed
41.
go back to reference Wasserman TH, Brizel DM. The role of amifostine as a radioprotector. Oncol Williston Park Then Huntington. 2001;15(10):1349–56. Wasserman TH, Brizel DM. The role of amifostine as a radioprotector. Oncol Williston Park Then Huntington. 2001;15(10):1349–56.
42.
go back to reference Phillips TL. Rationale for initial clinical trials and future development of radioprotectors. Cancer Clin Trials. 1980;3(2):165–73.PubMed Phillips TL. Rationale for initial clinical trials and future development of radioprotectors. Cancer Clin Trials. 1980;3(2):165–73.PubMed
43.
go back to reference Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010;15(4):360–71.CrossRef Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010;15(4):360–71.CrossRef
Metadata
Title
Radiation-induced lung injury: latest molecular developments, therapeutic approaches, and clinical guidance
Authors
Lina Lu
Chao Sun
Qiong Su
Yanbin Wang
Jia Li
Zhong Guo
Lihua Chen
Hong Zhang
Publication date
01-11-2019
Publisher
Springer International Publishing
Keyword
Radiotherapy
Published in
Clinical and Experimental Medicine / Issue 4/2019
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-019-00571-w

Other articles of this Issue 4/2019

Clinical and Experimental Medicine 4/2019 Go to the issue