Skip to main content
Top
Published in: Clinical and Experimental Nephrology 1/2019

Open Access 01-01-2019 | Original article

Age- and height-adjusted total kidney volume growth rate in autosomal dominant polycystic kidney diseases

Authors: Eiji Higashihara, Kouji Yamamoto, Shinya Kaname, Takatsugu Okegawa, Mitsuhiro Tanbo, Tsuyoshi Yamaguchi, Kaori Shigemori, Isao Miyazaki, Kenichi Yokoyama, Kikuo Nutahara

Published in: Clinical and Experimental Nephrology | Issue 1/2019

Login to get access

Abstract

Background

The Mayo Clinic Image Classification (MIC) was proposed as a renal prognosis prediction model for autosomal dominant polycystic kidney disease (ADPKD). MIC is based on the assumption of exponential constant increase in height-adjusted total kidney volume (HtTKV). HtTKV growth rate is calculated by one-time measurement of HtTKV and age. We named it as an age-adjusted HtTKV growth rate (AHTKV-α). AHTKV-α was compared with HtTKV slope measured by at least two HtTKV values.

Methods

Comparison of repeatability between AHTKV-α and HtTKV slope, correlation of subgroups divided according to baseline AHTKV-α and HtTKV slope with disease manifestations, estimated glomerular filtration rate (eGFR) slope, and renal survival were analyzed in 296 patients with ADPKD. PKD genotype influences were compared between AHTKV-α and HtTKV slope in 88 patients with characterized PKD mutations.

Results

Absolute differences between baseline and follow-up measures were significantly larger for the HtTKV slope than for AHTKV-α (P < 0.0001). From baseline AHTKV-α-based subgroups A–E according to MIC, disease manifestations occurred earlier and future eGFR slopes became steeper (P < 0.0001). Multivariate hazard ratios of renal survival differed significantly among baseline AHTKV-α-based subgroups. Inter-subgroup differences in these predictors were less evident during baseline HtTKV slope-based classification. AHTKV-α values, but not HtTKV slopes, were significantly higher for PKD1 mutation carriers than for PKD2 mutation carriers (P < 0.0001).

Conclusion

MIC is a good renal prediction model applicable to Japanese patients also. AHTKV-α can be a more sensitive and reliable indicator in TKV growth rate than HtTKV slope.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grantham JJ, Geiser JL, Evan AP. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 1987;31:1145–52.CrossRefPubMed Grantham JJ, Geiser JL, Evan AP. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 1987;31:1145–52.CrossRefPubMed
2.
go back to reference Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57.CrossRefPubMed Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57.CrossRefPubMed
3.
go back to reference Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 2003;64:1035–45.CrossRefPubMed Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 2003;64:1035–45.CrossRefPubMed
4.
go back to reference Grantham JJ, Torres VE, Chapman AB, Guay-Woodford LM, Bae KT, King BF Jr, et al. Volume progression in polycystic kidney disease. N Engl J Med. 2006;354:2122–30.CrossRef Grantham JJ, Torres VE, Chapman AB, Guay-Woodford LM, Bae KT, King BF Jr, et al. Volume progression in polycystic kidney disease. N Engl J Med. 2006;354:2122–30.CrossRef
5.
go back to reference Grantham JJ, Cook LT, Torres VE, Bost JE, Chapman AB, Harris PC, et al. Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int. 2008;73:108–16.CrossRefPubMed Grantham JJ, Cook LT, Torres VE, Bost JE, Chapman AB, Harris PC, et al. Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int. 2008;73:108–16.CrossRefPubMed
6.
go back to reference Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7:479–86.CrossRefPubMedPubMedCentral Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7:479–86.CrossRefPubMedPubMedCentral
7.
go back to reference Higashihara E, Nutahara K, Okegawa T, Shishido T, Tanbo M, Kobayashi K, et al. Kidney volume and function in autosomal dominant polycystic kidney disease. Clin Exp Nephrol. 2014;18:157–65.CrossRefPubMed Higashihara E, Nutahara K, Okegawa T, Shishido T, Tanbo M, Kobayashi K, et al. Kidney volume and function in autosomal dominant polycystic kidney disease. Clin Exp Nephrol. 2014;18:157–65.CrossRefPubMed
8.
go back to reference Perico N, Antiga L, Caroli A, Ruggenenti P, Fasolini G, Cafaro M, et al. Sirolimus therapy to halt progression of ADPKD. J Am Soc Nephrol. 2010;21:1031–40.CrossRefPubMedPubMedCentral Perico N, Antiga L, Caroli A, Ruggenenti P, Fasolini G, Cafaro M, et al. Sirolimus therapy to halt progression of ADPKD. J Am Soc Nephrol. 2010;21:1031–40.CrossRefPubMedPubMedCentral
9.
go back to reference Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:820–29.CrossRefPubMed Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:820–29.CrossRefPubMed
10.
go back to reference Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:830–40.CrossRefPubMed Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:830–40.CrossRefPubMed
11.
go back to reference Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–18.CrossRefPubMedPubMedCentral Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–18.CrossRefPubMedPubMedCentral
12.
go back to reference Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26:160–72.CrossRefPubMed Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26:160–72.CrossRefPubMed
13.
go back to reference Higashihara E, Horie S, Kinoshita M, Harris P, Okegawa T, Tanbo M, et al. A potentially crucial role of the PKD1 C-terminal tail in renal prognosis. Clin Exp Nephrol. 2017;22:395–404.CrossRefPubMedPubMedCentral Higashihara E, Horie S, Kinoshita M, Harris P, Okegawa T, Tanbo M, et al. A potentially crucial role of the PKD1 C-terminal tail in renal prognosis. Clin Exp Nephrol. 2017;22:395–404.CrossRefPubMedPubMedCentral
14.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
15.
go back to reference Harris PC, Bae KT, Rossetti S, Torres VE, Grantham JJ, Chapman AB, et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2006;17:3013–19.CrossRefPubMed Harris PC, Bae KT, Rossetti S, Torres VE, Grantham JJ, Chapman AB, et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2006;17:3013–19.CrossRefPubMed
16.
go back to reference Cornec-Le Gall E, Audrézet MP, Chen JM, Hourmant M, Morin MP, Perrichot R, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013;24:1006–13.CrossRefPubMedPubMedCentral Cornec-Le Gall E, Audrézet MP, Chen JM, Hourmant M, Morin MP, Perrichot R, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013;24:1006–13.CrossRefPubMedPubMedCentral
17.
go back to reference Bergmann C, von Bothmer J, Ortiz Brüchle N, Venghaus A, Frank V, Fehrenbach H, et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol. 2011;22:2047–56.CrossRefPubMedPubMedCentral Bergmann C, von Bothmer J, Ortiz Brüchle N, Venghaus A, Frank V, Fehrenbach H, et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol. 2011;22:2047–56.CrossRefPubMedPubMedCentral
18.
go back to reference Cornec-Le Gall E, Audrézet MP, Rousseau A, Hourmant M, Renaudineau E, Charasse C, et al. The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27:942–51.CrossRefPubMed Cornec-Le Gall E, Audrézet MP, Rousseau A, Hourmant M, Renaudineau E, Charasse C, et al. The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27:942–51.CrossRefPubMed
19.
go back to reference Torres VE, Abebe KZ, Schrier RW, Perrone RD, Chapman AB, Yu AS, et al. Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease. Kidney Int. 2017;91:493–500.CrossRefPubMed Torres VE, Abebe KZ, Schrier RW, Perrone RD, Chapman AB, Yu AS, et al. Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease. Kidney Int. 2017;91:493–500.CrossRefPubMed
20.
go back to reference Gansevoort RT, Arici M, Benzing T, Birn H, Capasso G, Covic A, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA–EDTA working groups on inherited kidney disorders and European renal best practice. Nephrol Dial Transplant. 2016;31:337–48.CrossRefPubMedPubMedCentral Gansevoort RT, Arici M, Benzing T, Birn H, Capasso G, Covic A, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA–EDTA working groups on inherited kidney disorders and European renal best practice. Nephrol Dial Transplant. 2016;31:337–48.CrossRefPubMedPubMedCentral
21.
go back to reference Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol. 2012;23:915–33.CrossRefPubMedPubMedCentral Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol. 2012;23:915–33.CrossRefPubMedPubMedCentral
22.
go back to reference Rossetti S, Harris PC. Genotype–phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol. 2007;18:1374–80.CrossRefPubMed Rossetti S, Harris PC. Genotype–phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol. 2007;18:1374–80.CrossRefPubMed
23.
go back to reference Irazabal MV, Blais JD, Perrone RD, Gansevoort RT, Chapman AB, Devuyst O, et al. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the TEMPO 3:4 clinical trial. Kidney Int Rep. 2016;1:213–20.CrossRefPubMedPubMedCentral Irazabal MV, Blais JD, Perrone RD, Gansevoort RT, Chapman AB, Devuyst O, et al. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the TEMPO 3:4 clinical trial. Kidney Int Rep. 2016;1:213–20.CrossRefPubMedPubMedCentral
24.
go back to reference Yoshimura M, Furutani A, Konishi S, Sano Y, Tatsumi S, Yamaguchi M, et al. Normal weight of the heart, liver and kidneys in Japanese (1988–1992). Med J Kinki sUniv. 1994;19:297–302. Yoshimura M, Furutani A, Konishi S, Sano Y, Tatsumi S, Yamaguchi M, et al. Normal weight of the heart, liver and kidneys in Japanese (1988–1992). Med J Kinki sUniv. 1994;19:297–302.
25.
go back to reference MacKay EM. Kidney weight, body size and renal function. Arch Intern Med. 1932;50:590–4.CrossRef MacKay EM. Kidney weight, body size and renal function. Arch Intern Med. 1932;50:590–4.CrossRef
Metadata
Title
Age- and height-adjusted total kidney volume growth rate in autosomal dominant polycystic kidney diseases
Authors
Eiji Higashihara
Kouji Yamamoto
Shinya Kaname
Takatsugu Okegawa
Mitsuhiro Tanbo
Tsuyoshi Yamaguchi
Kaori Shigemori
Isao Miyazaki
Kenichi Yokoyama
Kikuo Nutahara
Publication date
01-01-2019
Publisher
Springer Singapore
Published in
Clinical and Experimental Nephrology / Issue 1/2019
Print ISSN: 1342-1751
Electronic ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-018-1617-8

Other articles of this Issue 1/2019

Clinical and Experimental Nephrology 1/2019 Go to the issue