Skip to main content
Top
Published in: Gastric Cancer 5/2018

01-09-2018 | Original Article

HOTAIR induces the ubiquitination of Runx3 by interacting with Mex3b and enhances the invasion of gastric cancer cells

Authors: Meng Xue, Lu-yi Chen, Wei-jia Wang, Ting-ting Su, Liu-hong Shi, Lan Wang, Wen Zhang, Jian-min Si, Liang-jing Wang, Shu-jie Chen

Published in: Gastric Cancer | Issue 5/2018

Login to get access

Abstract

Background

Long non-coding RNAs (LncRNAs) exert their functions mainly by binding to their corresponding proteins. Runt-related transcription factor 3 (Runx3) is an important transcription factor that functions as a tumor suppressor in gastric cancer. Whether there is an interplay between LncRNAs and Runx3 remains unclear.

Methods

RPISeq was applied to screen the LncRNAs that potentially bind to Runx3. The interaction between LncRNA HOX antisense intergenic RNA (HOTAIR) and Runx3 was validated by RNA Immunoprecipitation and RNA pull-down assays. The role of Mex3b in the ubiquitination of Runx3 induced by HOTAIR was assessed by immunoprecipitation. Pearson’s correlation between HOTAIR mRNA expression and Runx3 protein expression was analyzed. Cell migration and invasion were explored by transwell assays.

Results

We found that HOTAIR was bound to Runx3 protein and identified the fragment of HOTAIR spanning 1951–2100 bp as the specific binding site. In addition, mex-3 RNA binding family member B (Mex3b) was an E3 ligase involved in HOTAIR-induced ubiquitous degradation of Runx3. Silencing the expression of HOTAIR or Mex3b attenuated the degradation of Runx3. In human gastric cancer tissues, HOTAIR was negatively associated with the expression level of Runx3 protein (Pearson coefficient − 0.501, p = 0.025). Inhibition of HOTAIR significantly suppressed gastric cancer cell migration and invasion through upregulating claudin1, which could be reversed by co-deficiency of Runx3.

Conclusions

These results uncovered the novel interaction between HOTAIR and Runx3, and provided potential therapeutic targets on the metastasis of gastric cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen F, Liu X, Bai J, Pei D, Zheng J. The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep. 2016;35:1227–36.CrossRefPubMed Chen F, Liu X, Bai J, Pei D, Zheng J. The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep. 2016;35:1227–36.CrossRefPubMed
2.
go back to reference Chuang LS, Ito Y. RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene. 2010;29:2605–15.CrossRefPubMed Chuang LS, Ito Y. RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene. 2010;29:2605–15.CrossRefPubMed
3.
go back to reference Cheng HC, Liu YP, Shan YS, Huang CY, Lin FC, Lin LC, et al. Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer. Carcinogenesis. 2013;34:2452–9.CrossRefPubMed Cheng HC, Liu YP, Shan YS, Huang CY, Lin FC, Lin LC, et al. Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer. Carcinogenesis. 2013;34:2452–9.CrossRefPubMed
4.
go back to reference Liu X, Wang L, Guo Y. The association between runt-related transcription factor 3 gene promoter methylation and gastric cancer: a meta-analysis. J Cancer Res Ther. 2016;12(Suppl):50–3.CrossRefPubMed Liu X, Wang L, Guo Y. The association between runt-related transcription factor 3 gene promoter methylation and gastric cancer: a meta-analysis. J Cancer Res Ther. 2016;12(Suppl):50–3.CrossRefPubMed
5.
go back to reference Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek RM Jr, et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene. 2010;29:5643–50.CrossRefPubMedPubMedCentral Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek RM Jr, et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene. 2010;29:5643–50.CrossRefPubMedPubMedCentral
7.
go back to reference Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36:5661–7.CrossRefPubMed Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36:5661–7.CrossRefPubMed
9.
10.
go back to reference Liu YW, Sun M, Xia R, Zhang EB, Liu XH, Zhang ZH, et al. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer. Cell Death Dis. 2015;6:e1802.CrossRefPubMedPubMedCentral Liu YW, Sun M, Xia R, Zhang EB, Liu XH, Zhang ZH, et al. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer. Cell Death Dis. 2015;6:e1802.CrossRefPubMedPubMedCentral
11.
go back to reference Zhang ZZ, Shen ZY, Shen YY, Zhao EH, Wang M, Wang CJ, et al. HOTAIR long noncoding RNA promotes gastric cancer metastasis through suppression of poly r(C)-binding protein (PCBP) 1. Mol Cancer Ther. 2015;14:1162–70.CrossRefPubMed Zhang ZZ, Shen ZY, Shen YY, Zhao EH, Wang M, Wang CJ, et al. HOTAIR long noncoding RNA promotes gastric cancer metastasis through suppression of poly r(C)-binding protein (PCBP) 1. Mol Cancer Ther. 2015;14:1162–70.CrossRefPubMed
12.
go back to reference Katayama Y, Takahashi M, Kuwayama H. Helicobacter pylori causes Runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun. 2009;388:496–500.CrossRefPubMed Katayama Y, Takahashi M, Kuwayama H. Helicobacter pylori causes Runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun. 2009;388:496–500.CrossRefPubMed
13.
go back to reference Chen Y, Wang X, Cheng J, Wang Z, Jiang T, Hou N, et al. MicroRNA-20a-5p targets Runx3 to regulate proliferation and migration of human hepatocellular cancer cells. Oncol Rep. 2016;36:3379–86.CrossRefPubMed Chen Y, Wang X, Cheng J, Wang Z, Jiang T, Hou N, et al. MicroRNA-20a-5p targets Runx3 to regulate proliferation and migration of human hepatocellular cancer cells. Oncol Rep. 2016;36:3379–86.CrossRefPubMed
14.
go back to reference Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, et al. Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem. 2004;279:29409–17.CrossRefPubMed Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, et al. Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem. 2004;279:29409–17.CrossRefPubMed
15.
go back to reference Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J Biosci. 2006;31:137–55.CrossRefPubMed Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J Biosci. 2006;31:137–55.CrossRefPubMed
16.
go back to reference Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939.CrossRefPubMedPubMedCentral Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939.CrossRefPubMedPubMedCentral
17.
go back to reference Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRefPubMed Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRefPubMed
18.
go back to reference Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23:4211–9.CrossRefPubMed Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23:4211–9.CrossRefPubMed
20.
go back to reference Emadi-Andani E, Nikpour P, Emadi-Baygi M, Bidmeshkipour A. Association of HOTAIR expression in gastric carcinoma with invasion and distant metastasis. Adv Biomed Res. 2014;3:135.CrossRefPubMedPubMedCentral Emadi-Andani E, Nikpour P, Emadi-Baygi M, Bidmeshkipour A. Association of HOTAIR expression in gastric carcinoma with invasion and distant metastasis. Adv Biomed Res. 2014;3:135.CrossRefPubMedPubMedCentral
21.
go back to reference Xia M, Yao L, Zhang Q, Wang F, Mei H, Guo X, et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3. Oncotarget. 2017;8:19795–802.PubMedPubMedCentral Xia M, Yao L, Zhang Q, Wang F, Mei H, Guo X, et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3. Oncotarget. 2017;8:19795–802.PubMedPubMedCentral
22.
go back to reference Wang B, Su Y, Yang Q, Lv D, Zhang W, Tang K, et al. Overexpression of long non-coding RNA HOTAIR promotes tumor growth and metastasis in human osteosarcoma. Mol Cells. 2015;38(5):432–40.CrossRefPubMedPubMedCentral Wang B, Su Y, Yang Q, Lv D, Zhang W, Tang K, et al. Overexpression of long non-coding RNA HOTAIR promotes tumor growth and metastasis in human osteosarcoma. Mol Cells. 2015;38(5):432–40.CrossRefPubMedPubMedCentral
23.
go back to reference Dou J, Ni Y, He X, Wu D, Li M, Wu S, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells. Am J Transl Res. 2016;8:98–108.PubMedPubMedCentral Dou J, Ni Y, He X, Wu D, Li M, Wu S, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells. Am J Transl Res. 2016;8:98–108.PubMedPubMedCentral
25.
go back to reference Chang TL, Ito K, Ko TK, Liu Q, Salto-Tellez M, Yeoh KG, et al. Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology. 2010;138:255–265.e1–3. Chang TL, Ito K, Ko TK, Liu Q, Salto-Tellez M, Yeoh KG, et al. Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology. 2010;138:255–265.e1–3.
Metadata
Title
HOTAIR induces the ubiquitination of Runx3 by interacting with Mex3b and enhances the invasion of gastric cancer cells
Authors
Meng Xue
Lu-yi Chen
Wei-jia Wang
Ting-ting Su
Liu-hong Shi
Lan Wang
Wen Zhang
Jian-min Si
Liang-jing Wang
Shu-jie Chen
Publication date
01-09-2018
Publisher
Springer Japan
Published in
Gastric Cancer / Issue 5/2018
Print ISSN: 1436-3291
Electronic ISSN: 1436-3305
DOI
https://doi.org/10.1007/s10120-018-0801-6

Other articles of this Issue 5/2018

Gastric Cancer 5/2018 Go to the issue