Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

RUNX3 is multifunctional in carcinogenesis of multiple solid tumors

Abstract

The study of RUNX3 in tumor pathogenesis is a rapidly expanding area of cancer research. Functional inactivation of RUNX3—through mutation, epigenetic silencing, or cytoplasmic mislocalization—is frequently observed in solid tumors of diverse origins. This alone indicates that RUNX3 inactivation is a major risk factor in tumorigenesis and that it occurs early during progression to malignancy. Conversely, RUNX3 has also been described to have an oncogenic function in a subset of tumors. Although the mechanism of how RUNX3 switches from tumor suppressive to oncogenic activity is unclear, this is of clinical relevance with implications for cancer detection and prognosis. Recent developments have significantly contributed to our understanding of the pleiotropic tumor suppressive properties of RUNX3 that regulate major signaling pathways. This review summarizes the important findings that link RUNX3 to tumor suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS et al. (2008). Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer 7: 94.

    PubMed  PubMed Central  Google Scholar 

  • Aho TL, Sandholm J, Peltola KJ, Ito Y, Koskinen PJ . (2006). Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity. BMC Cell Biol 7: 21.

    PubMed  PubMed Central  Google Scholar 

  • Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP . (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol 17: 5581–5587.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashcroft M, Vousden KH . (1999). Regulation of p53 stability. Oncogene 18: 7637–7643.

    CAS  PubMed  Google Scholar 

  • Bae SC, Ito Y . (2003). Comment on Levanon et al., ‘Runx3 knockouts and stomach cancer’, in EMBO reports (June 2003). EMBO Rep 4: 538–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagchi A, Mills AA . (2008). The quest for the 1p36 tumor suppressor. Cancer Res 68: 2551–2556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    CAS  PubMed  Google Scholar 

  • Brady G, Farrell PJ . (2009). RUNX3-mediated repression of RUNX1 in B cells. J Cell Physiol 221: 283–287.

    CAS  PubMed  Google Scholar 

  • Brady G, Whiteman HJ, Spender LC, Farrell PJ . (2009). Downregulation of RUNX1 by RUNX3 requires the RUNX3 VWRPY sequence and is essential for Epstein-Barr virus-driven B-cell proliferation. J Virol 83: 6909–6916.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E et al. (2004). Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci USA 101: 16016–16021.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    CAS  PubMed  Google Scholar 

  • Cameron ER, Blyth K, Hanlon L, Kilbey A, Mackay N, Stewart M et al. (2003). The Runx genes as dominant oncogenes. Blood Cells Mol Dis 30: 194–200.

    CAS  PubMed  Google Scholar 

  • Cameron ER, Neil JC . (2004). The Runx genes: lineage-specific oncogenes and tumor suppressors. Oncogene 23: 4308–4314.

    CAS  PubMed  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Chang TL, Ito K, Ko TK, Liu Q, Salto-Tellez M, Yeoh KG et al. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology 138: 255–265 e1-3.

    CAS  PubMed  Google Scholar 

  • Chen PC, Kuraguchi M, Velasquez J, Wang Y, Yang K, Edwards R et al. (2008). Novel roles for MLH3 deficiency and TLE6-like amplification in DNA mismatch repair-deficient gastrointestinal tumorigenesis and progression. PLoS Genet 4: e1000092.

    PubMed  PubMed Central  Google Scholar 

  • Chen W, Salto-Tellez M, Palanisamy N, Ganesan K, Hou Q, Tan LK et al. (2007). Targets of genome copy number reduction in primary breast cancers identified by integrative genomics. Genes Chromosomes Cancer 46: 288–301.

    CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M, Nasir A et al. (2008). Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res 68: 1786–1796.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chi XZ, Kim J, Lee YH, Lee JW, Lee KS, Wee H et al. (2009). Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Res 69: 8111–8119.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expressi. Mol Cell Biol 25: 8097–8107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cormier RT, Hong KH, Halberg RB, Hawkins TL, Richardson P, Mulherkar R et al. (1997). Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet 17: 88–91.

    CAS  PubMed  Google Scholar 

  • Coussens LM, Werb Z . (2002). Inflammation and cancer. Nature 420: 860–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    CAS  PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al. (2009). Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458: 780–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS . (2004). Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430: 1034–1039.

    CAS  PubMed  Google Scholar 

  • Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA . (2005). Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436: 221–226.

    CAS  PubMed  Google Scholar 

  • Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14: 518–527.

    CAS  PubMed  Google Scholar 

  • Fujii S, Ito K, Ito Y, Ochiai A . (2008). Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 283: 17324–17332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima-Nakase Y, Naoe Y, Taniuchi I, Hosoi H, Sugimoto T, Okuda T . (2005). Shared and distinct roles mediated through C-terminal subdomains of acute myeloid leukemia/Runt-related transcription factor molecules in murine development. Blood 105: 4298–4307.

    CAS  PubMed  Google Scholar 

  • Gao F, Huang C, Lin M, Wang Z, Shen J, Zhang H et al. (2009). Frequent inactivation of RUNX3 by promoter hypermethylation and protein mislocalization in oral squamous cell carcinomas. J Cancer Res Clin Oncol 135: 739–747.

    CAS  PubMed  Google Scholar 

  • Geiger TR, Peeper DS . (2007). Critical role for TrkB kinase function in anoikis suppression, tumorigenesis, and metastasis. Cancer Res 67: 6221–6229.

    CAS  PubMed  Google Scholar 

  • Goh YM, Cinghu S, Hwee Hong ET, Lee YS, Kim JH, Zhang JW et al. (2010). Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J Biol Chem (e-pub ahead of print 25 January 2010; doi:10.1074/jbc.M109.071381).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanai J, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo WH et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem 274: 31577–31582.

    CAS  PubMed  Google Scholar 

  • Imai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K et al. (1998). TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem Biophys Res Commun 252: 582–589.

    CAS  PubMed  Google Scholar 

  • Inman GJ, Nicolas FJ, Hill CS . (2002). Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10: 283–294.

    CAS  PubMed  Google Scholar 

  • Inoue K, Ito K, Osato M, Lee B, Bae SC, Ito Y . (2007). The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons. J Biol Chem 282: 24175–24184.

    CAS  PubMed  Google Scholar 

  • Ito K, Inoue KI, Bae SC, Ito Y . (2009). Runx3 expression in gastrointestinal tract epithelium: resolving the controversy. Oncogene 28: 1379–1384.

    CAS  PubMed  Google Scholar 

  • Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS et al. (2008). RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14: 226–237.

    CAS  PubMed  Google Scholar 

  • Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H et al. (2005). RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res 65: 7743–7750.

    CAS  PubMed  Google Scholar 

  • Jiang Y, Tong D, Lou G, Zhang Y, Geng J . (2008). Expression of RUNX3 gene, methylation status and clinicopathological significance in breast cancer and breast cancer cell lines. Pathobiology 75: 244–251.

    CAS  PubMed  Google Scholar 

  • Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ et al. (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem 279: 29409–29417.

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    CAS  PubMed  Google Scholar 

  • Katayama Y, Takahashi M, Kuwayama H . (2009). Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun 388: 496–500.

    CAS  PubMed  Google Scholar 

  • Kilbey A, Blyth K, Wotton S, Terry A, Jenkins A, Bell M et al. (2007). Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Res 67: 11263–11271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilbey A, Terry A, Cameron ER, Neil JC . (2008). Oncogene-induced senescence: an essential role for Runx. Cell Cycle 7: 2333–2340.

    CAS  PubMed  Google Scholar 

  • Kim HR, Oh BC, Choi JK, Bae SC . (2008). Pim-1 kinase phosphorylates and stabilizes RUNX3 and alters its subcellular localization. J Cell Biochem 105: 1048–1058.

    CAS  PubMed  Google Scholar 

  • Kim JH, Choi JK, Cinghu S, Jang JW, Lee YS, Li YH et al. (2009). Jab1/CSN5 induces the cytoplasmic localization and degradation of RUNX3. J Cell Biochem 107: 557–565.

    CAS  PubMed  Google Scholar 

  • Kim TY, Lee HJ, Hwang KS, Lee M, Kim JW, Bang YJ et al. (2004). Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Lab Invest 84: 479–484.

    CAS  PubMed  Google Scholar 

  • Kim WJ, Kim EJ, Jeong P, Quan C, Kim J, Li QL et al. (2005). RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65: 9347–9354.

    CAS  PubMed  Google Scholar 

  • Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M et al. (2006). RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res 66: 6512–6520.

    CAS  PubMed  Google Scholar 

  • Lee SH, Kim J, Kim WH, Lee YM . (2009). Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28: 184–194.

    CAS  PubMed  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon D, Brenner O, Otto F, Groner Y . (2003). Runx3 knockouts and stomach cancer. EMBO Rep 4: 560–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S et al. (1998). Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 95: 11590–11595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon D, Groner Y . (2009). Runx3-deficient mouse strains circa 2008: resemblance and dissimilarity. Blood Cells Mol Dis 43: 1–5.

    CAS  PubMed  Google Scholar 

  • Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y . (1994). AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 23: 425–432.

    CAS  PubMed  Google Scholar 

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109: 113–124.

    CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Estrada OM, Culleres A, Soriano FX, Peinado H, Bolos V, Martinez FO et al. (2006). The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 394: 449–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miething C, Grundler R, Mugler C, Brero S, Hoepfl J, Geigl J et al. (2007). Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment. Proc Natl Acad Sci USA 104: 4594–4599.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motoda L, Osato M, Yamashita N, Jacob B, Chen LQ, Yanagida M et al. (2007). Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells 25: 2976–2986.

    CAS  PubMed  Google Scholar 

  • Mueller W, Nutt CL, Ehrich M, Riemenschneider MJ, von Deimling A, van den Boom D et al. (2007). Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 26: 583–593.

    CAS  PubMed  Google Scholar 

  • Nevadunsky NS, Barbieri JS, Kwong J, Merritt MA, Welch WR, Berkowitz RS et al. (2009). RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol Oncol 112: 325–330.

    CAS  PubMed  Google Scholar 

  • Oshimo Y, Oue N, Mitani Y, Nakayama H, Kitadai Y, Yoshida K et al. (2004). Frequent loss of RUNX3 expression by promoter hypermethylation in gastric carcinoma. Pathobiology 71: 137–143.

    CAS  PubMed  Google Scholar 

  • Pande S, Ali SA, Dowdy C, Zaidi SK, Ito K, Ito Y et al. (2009). Subnuclear targeting of the Runx3 tumor suppressor and its epigenetic association with mitotic chromosomes. J Cell Physiol 218: 473–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pockwinse SM, Rajgopal A, Young DW, Mujeeb KA, Nickerson J, Javed A et al. (2006). Microtubule-dependent nuclear-cytoplasmic shuttling of Runx2. J Cell Physiol 206: 354–362.

    CAS  PubMed  Google Scholar 

  • Rahrmann EP, Collier LS, Knutson TP, Doyal ME, Kuslak SL, Green LE et al. (2009). Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon-based somatic mutagenesis screen. Cancer Res 69: 4388–4397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakura C, Miyagawa K, Fukuda KI, Nakashima S, Yoshikawa T, Kin S et al. (2007). Frequent silencing of RUNX3 in esophageal squamous cell carcinomas is associated with radioresistance and poor prognosis. Oncogene 26: 5927–5938.

    CAS  PubMed  Google Scholar 

  • Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han HC et al. (2006). RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene 25: 7646–7649.

    CAS  PubMed  Google Scholar 

  • Sato K, Tomizawa Y, Iijima H, Saito R, Ishizuka T, Nakajima T et al. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncol Rep 15: 129–135.

    CAS  PubMed  Google Scholar 

  • Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. (2007). Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39: 232–236.

    CAS  PubMed  Google Scholar 

  • Shi MJ, Stavnezer J . (1998). CBF alpha3 (AML2) is induced by TGF-beta1 to bind and activate the mouse germline Ig alpha promoter. J Immunol 161: 6751–6760.

    CAS  PubMed  Google Scholar 

  • Snoeks L, Weber CR, Wasland K, Turner JR, Vainder C, Qi W et al. (2009). Tumor suppressor FOXO3 participates in the regulation of intestinal inflammation. Lab Invest 89: 1053–1062.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soong R, Shah N, Peh BK, Chong PY, Ng SS, Zeps N et al. (2009). The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome. Br J Cancer 100: 676–679.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spender LC, Whiteman HJ, Karstegl CE, Farrell PJ . (2005). Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells. Oncogene 24: 1873–1881.

    CAS  PubMed  Google Scholar 

  • Stewart M, MacKay N, Cameron ER, Neil JC . (2002). The common retroviral insertion locus Dsi1 maps 30 kilobases upstream of the P1 promoter of the murine Runx3/Cbfa3/Aml2 gene. J Virol 76: 4364–4369.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart M, Terry A, O'Hara M, Cameron E, Onions D, Neil JC . (1996). til-1: a novel proviral insertion locus for Moloney murine leukaemia virus in lymphomas of CD2-myc transgenic mice. J Gen Virol 77 (Part 3): 443–446.

    CAS  PubMed  Google Scholar 

  • Stifani S, Blaumueller CM, Redhead NJ, Hill RE, Artavanis-Tsakonas S . (1992). Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet 2: 119–127.

    CAS  PubMed  Google Scholar 

  • Subramaniam MM, Chan JY, Soong R, Ito K, Yeoh KG, Wong R et al. (2009). RUNX3 inactivation in colorectal polyps arising through different pathways of colonic carcinogenesis. Am J Gastroenterol 104: 426–436.

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Imamura J, Kanai F, Ichimura T, Isobe T, Koike M et al. (2007). Runx3 interacts with DNA repair protein Ku70. Exp Cell Res 313: 3251–3260.

    CAS  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    CAS  PubMed  Google Scholar 

  • Tothova Z, Gilliland DG . (2007). FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1: 140–152.

    CAS  PubMed  Google Scholar 

  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE et al. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128: 325–339.

    CAS  PubMed  Google Scholar 

  • Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC . (2008). Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat Cell Biol 10: 460–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunematsu T, Kudo Y, Iizuka S, Ogawa I, Fujita T, Kurihara H et al. (2009). RUNX3 has an oncogenic role in head and neck cancer. PLoS One 4: e5892.

    PubMed  PubMed Central  Google Scholar 

  • Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B et al. (2008). Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14: 408–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322: 1695–1699.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871–874.

    CAS  PubMed  Google Scholar 

  • Wada M, Yazumi S, Takaishi S, Hasegawa K, Sawada M, Tanaka H et al. (2004). Frequent loss of RUNX3 gene expression in human bile duct and pancreatic cancer cell lines. Oncogene 23: 2401–2407.

    CAS  PubMed  Google Scholar 

  • Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al. (2006). CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38: 787–793.

    CAS  PubMed  Google Scholar 

  • Wolff EM, Liang G, Cortez CC, Tsai YC, Castelao JE, Cortessis VK et al. (2008). RUNX3 methylation reveals that bladder tumors are older in patients with a history of smoking. Cancer Res 68: 6208–6214.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wotton S, Terry A, Kilbey A, Jenkins A, Herzyk P, Cameron E et al. (2008). Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival. Oncogene 27: 5856–5866.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y . (1999). A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18: 2551–2562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamura Y, Lee WL, Inoue K, Ida H, Ito Y . (2006). RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem 281: 5267–5276.

    CAS  PubMed  Google Scholar 

  • Yanada M, Yaoi T, Shimada J, Sakakura C, Nishimura M, Ito K et al. (2005). Frequent hemizygous deletion at 1p36 and hypermethylation downregulate RUNX3 expression in human lung cancer cell lines. Oncol Rep 14: 817–822.

    CAS  PubMed  Google Scholar 

  • Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol 26: 4474–4488.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi SK, Sullivan AJ, van Wijnen AJ, Stein JL, Stein GS, Lian JB . (2002). Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci USA 99: 8048–8053.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang S, Wang M, Tong N, Fu G . (2008). Genetic variants in RUNX3 and risk of bladder cancer: a haplotype-based analysis. Carcinogenesis 29: 1973–1978.

    CAS  PubMed  Google Scholar 

  • Zhao B, Kim J, Ye X, Lai ZC, Guan KL . (2009). Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Res 69: 1089–1098.

    CAS  PubMed  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21: 2747–2761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Chen Y, Zhou L, Thirunavukkarasu K, Hecht J, Chitayat D et al. (1999). CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum Mol Genet 8: 2311–2316.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Education (MOE) and National Research Foundation (NRF), Singapore. We give special thanks to Dr Kazuyoshi Kohu for his contribution of Figure 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Ito.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, L., Ito, Y. RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene 29, 2605–2615 (2010). https://doi.org/10.1038/onc.2010.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.88

Keywords

This article is cited by

Search

Quick links