Skip to main content
Top
Published in: Lasers in Medical Science 8/2020

01-10-2020 | Pigmentary Retinopathy | Review Article

Laser treatment in retinitis pigmentosa-a review

Author: Maciej Gawęcki

Published in: Lasers in Medical Science | Issue 8/2020

Login to get access

Abstract

Retinitis pigmentosa (RP) is a common inherited retinal disease for which effective treatment is not yet known. This review sought to analyze the available medical literature covering the efficacy of different forms of laser treatment for RP in laboratory and clinical trials. The PubMed database was searched using the following phrases: “laser photocoagulation”, “subthreshold laser”, “nanolaser”, “micropulse laser”, “retinitis pigmentosa”, “rod–cone dystrophy”, and “retinal dystrophy”. Results were stratified as clinical or experimental studies. Six studies involving animal models and three studies involving human subjects that examined laser treatment in RP were found. Laboratory studies on rodents favored classic laser photocoagulation as the most effective therapy for slowing the progression of proto-oncogene tyrosine-protein kinase MER–related RP. Two clinical studies on humans suggested transient but robust functional benefits of subthreshold micropulse laser treatment in RP. The available material is too scarce to define laser treatment as a standard procedure to treat RP in humans. Nondamaging retinal laser therapy should be tested more intensively in clinical trials as there is no proven negative side effect of that treatment and the theoretical background, especially the chaperone and reparative roles of heat shock proteins elicited during the procedure, supports this form of RP management.
Literature
2.
go back to reference Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84:132–141PubMedCrossRef Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84:132–141PubMedCrossRef
3.
go back to reference Garafalo AV, Cideciyan AV, Heon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, Jacobson SG (2019) Progress in treating inherited retinal diseases: early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res 30:100827 Garafalo AV, Cideciyan AV, Heon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, Jacobson SG (2019) Progress in treating inherited retinal diseases: early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res 30:100827
4.
5.
go back to reference Lavinsky D, Wang J, Huie P et al (2016) Nondamaging retinal laser therapy: rationale and applications to the macula. Invest Ophthalmol Vis Sci 57:2488–2500PubMedPubMedCentralCrossRef Lavinsky D, Wang J, Huie P et al (2016) Nondamaging retinal laser therapy: rationale and applications to the macula. Invest Ophthalmol Vis Sci 57:2488–2500PubMedPubMedCentralCrossRef
6.
go back to reference Yang JH et al (2016) Morphologic changes in the retina after selective retina therapy. Graefes Arch Clin Exp Ophthalmol 254(6):1099–1109PubMedCrossRef Yang JH et al (2016) Morphologic changes in the retina after selective retina therapy. Graefes Arch Clin Exp Ophthalmol 254(6):1099–1109PubMedCrossRef
8.
go back to reference Mullen RJ, LaVail MM (1976) Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science 192:799–801PubMedCrossRef Mullen RJ, LaVail MM (1976) Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science 192:799–801PubMedCrossRef
9.
go back to reference D’Cruz PM et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Human molecular genetics 9:645–651PubMedCrossRef D’Cruz PM et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Human molecular genetics 9:645–651PubMedCrossRef
10.
go back to reference Mackay DS et al (2010) Novel mutations in MERTK associated with childhood onset rod-cone dystrophy. Molecular vision 16:369–377PubMedPubMedCentral Mackay DS et al (2010) Novel mutations in MERTK associated with childhood onset rod-cone dystrophy. Molecular vision 16:369–377PubMedPubMedCentral
11.
go back to reference Evans DR, Green JS, Johnson GJ et al (2017) Novel 25 kb deletion of MERTK causes retinitis pigmentosa with severe progression. Invest Ophthalmol Vis Sci 58:1736–1737PubMedCrossRef Evans DR, Green JS, Johnson GJ et al (2017) Novel 25 kb deletion of MERTK causes retinitis pigmentosa with severe progression. Invest Ophthalmol Vis Sci 58:1736–1737PubMedCrossRef
12.
go back to reference Kang S, Lorach H, Bhuckory MB, Quan Y, Dalal R, Palanker D (2019) Retinal laser therapy preserves photoreceptors in a rodent model of MERTK-related retinitis pigmentosa. Transl Vis Sci Technol 8(4):19PubMedPubMedCentralCrossRef Kang S, Lorach H, Bhuckory MB, Quan Y, Dalal R, Palanker D (2019) Retinal laser therapy preserves photoreceptors in a rodent model of MERTK-related retinitis pigmentosa. Transl Vis Sci Technol 8(4):19PubMedPubMedCentralCrossRef
13.
go back to reference Lorach H, Kang S, Dalal R, Bhuckory MB, Quan Y, Palanker D (2018) Long-term rescue of photoreceptors in a rodent model of retinitis pigmentosa associated with MERTK mutation. Sci Rep 8(1):11312PubMedPubMedCentralCrossRef Lorach H, Kang S, Dalal R, Bhuckory MB, Quan Y, Palanker D (2018) Long-term rescue of photoreceptors in a rodent model of retinitis pigmentosa associated with MERTK mutation. Sci Rep 8(1):11312PubMedPubMedCentralCrossRef
14.
go back to reference Quinn R (2005) Comparing rat’s to human’s age: how old is my rat in people years? Nutrition 21:775–777PubMedCrossRef Quinn R (2005) Comparing rat’s to human’s age: how old is my rat in people years? Nutrition 21:775–777PubMedCrossRef
15.
go back to reference Andreollo NA, dos Santos EF, Araújo MR, Lopes LR (2012) Rat’s age versus human’s age: what is the relationship? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo) 25(1):49–51CrossRef Andreollo NA, dos Santos EF, Araújo MR, Lopes LR (2012) Rat’s age versus human’s age: what is the relationship? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo) 25(1):49–51CrossRef
17.
go back to reference Ma J, Norton JC, Allen AC, Burns JB, Hasel KW, Burns JL, Sutcliffe JG, Travis GH (1995) Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into protein-coding exon II. Genomics 28(2):212–219PubMedCrossRef Ma J, Norton JC, Allen AC, Burns JB, Hasel KW, Burns JL, Sutcliffe JG, Travis GH (1995) Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into protein-coding exon II. Genomics 28(2):212–219PubMedCrossRef
18.
go back to reference Xiao M, Sastry SM, Li ZY, Possin DE, Chang JH, Klock IB, Milam AH (1998) Effects of retinal laser photocoagulation on photoreceptor basic fibroblast growth factor and survival. Invest Ophthalmol Vis Sci 39(3):618–630PubMed Xiao M, Sastry SM, Li ZY, Possin DE, Chang JH, Klock IB, Milam AH (1998) Effects of retinal laser photocoagulation on photoreceptor basic fibroblast growth factor and survival. Invest Ophthalmol Vis Sci 39(3):618–630PubMed
19.
go back to reference Humphrey MF, Parker C, Chu Y, Constable IJ (1993) Transient preservation of photoreceptors on the flanks of argon laser lesions in the RCS rat. Curr Eye Res 12(4):367–372PubMedCrossRef Humphrey MF, Parker C, Chu Y, Constable IJ (1993) Transient preservation of photoreceptors on the flanks of argon laser lesions in the RCS rat. Curr Eye Res 12(4):367–372PubMedCrossRef
20.
go back to reference Behbehani MM, Bowyer DW, Ruffolo JJ, Kranias G (1984) Preservation of retinal function in the RCS rat by laser treatment. Retina 4:257–263PubMedCrossRef Behbehani MM, Bowyer DW, Ruffolo JJ, Kranias G (1984) Preservation of retinal function in the RCS rat by laser treatment. Retina 4:257–263PubMedCrossRef
21.
22.
go back to reference Luttrull JK (2018) Improved retinal and visual function following panmacular subthreshold diode micropulse laser for retinitis pigmentosa. Eye (Lond) 32(6):1099–1110CrossRef Luttrull JK (2018) Improved retinal and visual function following panmacular subthreshold diode micropulse laser for retinitis pigmentosa. Eye (Lond) 32(6):1099–1110CrossRef
23.
go back to reference Luttrull JK, Margolis BW (2016) Functionally guided retinal protective therapy for dry age-related macular and inherited retinal degenerations: a pilot study. Invest Ophthalmol Vis Sci 57(1):265–275PubMedCrossRef Luttrull JK, Margolis BW (2016) Functionally guided retinal protective therapy for dry age-related macular and inherited retinal degenerations: a pilot study. Invest Ophthalmol Vis Sci 57(1):265–275PubMedCrossRef
24.
go back to reference Williams LL, Shannon BT, Chambers RB, Leguire LE, Davidorf FH (1992) Systemic immunostimulation after retinal laser treatment in retinitis pigmentosa. Clin Immunol Immunopathol 64(1):78–83PubMedCrossRef Williams LL, Shannon BT, Chambers RB, Leguire LE, Davidorf FH (1992) Systemic immunostimulation after retinal laser treatment in retinitis pigmentosa. Clin Immunol Immunopathol 64(1):78–83PubMedCrossRef
25.
go back to reference Lewis GP, Erickson PA, Guérin CJ, Anderson DH, Fisher SK (1992) Basic fibroblast growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J Neurosci 12(10):3968–3978PubMedPubMedCentralCrossRef Lewis GP, Erickson PA, Guérin CJ, Anderson DH, Fisher SK (1992) Basic fibroblast growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J Neurosci 12(10):3968–3978PubMedPubMedCentralCrossRef
26.
go back to reference Pittack C, Jones M, Reh TA (1991) Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development 113(2):577–588PubMed Pittack C, Jones M, Reh TA (1991) Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development 113(2):577–588PubMed
29.
go back to reference Olteanu M et al (1986) Laser applications in ophthalmology. In: Prokhorov AM, Ursu I (eds) Trends in quantum electronics. Springer, Berlin, Heidelberg Olteanu M et al (1986) Laser applications in ophthalmology. In: Prokhorov AM, Ursu I (eds) Trends in quantum electronics. Springer, Berlin, Heidelberg
30.
go back to reference Stefánsson E (2006) Ocular oxygenation and the treatment of diabetic retinopathy. Surv Ophthalmol 51(4):364–380PubMedCrossRef Stefánsson E (2006) Ocular oxygenation and the treatment of diabetic retinopathy. Surv Ophthalmol 51(4):364–380PubMedCrossRef
31.
go back to reference Stefánsson E (2001) The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79(5):435–440PubMedCrossRef Stefánsson E (2001) The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79(5):435–440PubMedCrossRef
32.
go back to reference Chhablani J, Roh YJ, Jobling AI, Fletcher EL, Lek JJ, Bansal P, Guymer R, Luttrull JK (2018) Restorative retinal laser therapy: present state and future directions. Surv Ophthalmol 63(3):307–328PubMedCrossRef Chhablani J, Roh YJ, Jobling AI, Fletcher EL, Lek JJ, Bansal P, Guymer R, Luttrull JK (2018) Restorative retinal laser therapy: present state and future directions. Surv Ophthalmol 63(3):307–328PubMedCrossRef
33.
go back to reference Ishida K, Yoshimura N, Yoshida M, Honda Y (1998) Upregulation of transforming growth factor-beta after panretinal photocoagulation. Invest Ophthalmol Vis Sci 39(5):801–807PubMed Ishida K, Yoshimura N, Yoshida M, Honda Y (1998) Upregulation of transforming growth factor-beta after panretinal photocoagulation. Invest Ophthalmol Vis Sci 39(5):801–807PubMed
34.
go back to reference Tababat-Khani P, de la Torre C, Canals F, Bennet H, Simo R, Hernandez C, Fex M, Agardh CD, Hansson O, Agardh E (2015) Photocoagulation of human retinal pigment epithelium in vitro: unravelling the effects on ARPE-19 by transcriptomics and proteomics. Acta Ophthalmol 93(4):348–354PubMedCrossRef Tababat-Khani P, de la Torre C, Canals F, Bennet H, Simo R, Hernandez C, Fex M, Agardh CD, Hansson O, Agardh E (2015) Photocoagulation of human retinal pigment epithelium in vitro: unravelling the effects on ARPE-19 by transcriptomics and proteomics. Acta Ophthalmol 93(4):348–354PubMedCrossRef
35.
go back to reference Luttrull JK, Musch DC, Mainster MA (2005) Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol 89(1):74–80PubMedPubMedCentralCrossRef Luttrull JK, Musch DC, Mainster MA (2005) Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol 89(1):74–80PubMedPubMedCentralCrossRef
36.
go back to reference Luttrull JK, Dorin G (2012) Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev 8(4):274–284PubMedPubMedCentralCrossRef Luttrull JK, Dorin G (2012) Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev 8(4):274–284PubMedPubMedCentralCrossRef
37.
go back to reference Luttrull JK, Chang DB, Margolis BW, Dorin G, Luttrull DK (2015) Laser resensitization of medically unresponsive neovascular age-related macular degeneration: efficacy and implications. Retina 35(6):1184–1194PubMedCrossRef Luttrull JK, Chang DB, Margolis BW, Dorin G, Luttrull DK (2015) Laser resensitization of medically unresponsive neovascular age-related macular degeneration: efficacy and implications. Retina 35(6):1184–1194PubMedCrossRef
39.
go back to reference Lüders J, Demand J, Höhfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. The Journal of Biological Chemistry 275(7):4613–4617 Lüders J, Demand J, Höhfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. The Journal of Biological Chemistry 275(7):4613–4617
40.
go back to reference Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology 2(8):469–475PubMedCrossRef Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology 2(8):469–475PubMedCrossRef
41.
go back to reference Kern K, Mertineit CL, Brinkmann R, Miura Y (2018) Expression of heat shock protein 70 and cell death kinetics after different thermal impacts on cultured retinal pigment epithelial cells. Exp Eye Res 170:117–126PubMedCrossRef Kern K, Mertineit CL, Brinkmann R, Miura Y (2018) Expression of heat shock protein 70 and cell death kinetics after different thermal impacts on cultured retinal pigment epithelial cells. Exp Eye Res 170:117–126PubMedCrossRef
42.
go back to reference Sramek C, Mackanos M, Spitler R, Leung LS, Nomoto H, Contag CH, Palanker D (2011) Non-damaging retinal phototherapy: dynamic range of heat shock protein expression. Invest Ophthalmol Vis Sci 52(3):1780–1787PubMedCrossRef Sramek C, Mackanos M, Spitler R, Leung LS, Nomoto H, Contag CH, Palanker D (2011) Non-damaging retinal phototherapy: dynamic range of heat shock protein expression. Invest Ophthalmol Vis Sci 52(3):1780–1787PubMedCrossRef
43.
go back to reference Wang J, Quan Y, Dalal R, Palanker D (2017) Comparison of continuous-wave and micropulse modulation in retinal laser therapy. Invest Ophthalmol Vis Sci 58(11):4722–4732PubMedCrossRef Wang J, Quan Y, Dalal R, Palanker D (2017) Comparison of continuous-wave and micropulse modulation in retinal laser therapy. Invest Ophthalmol Vis Sci 58(11):4722–4732PubMedCrossRef
44.
go back to reference Inagaki K, Shuo T, Katakura K, Ebihara N, Murakami A, Ohkoshi K (2015) Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells. J Ophthalmol 2015:729792PubMedPubMedCentralCrossRef Inagaki K, Shuo T, Katakura K, Ebihara N, Murakami A, Ohkoshi K (2015) Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells. J Ophthalmol 2015:729792PubMedPubMedCentralCrossRef
45.
go back to reference Luttrull JK, Sinclair SH (2014) Safety of transfoveal subthreshold diode micropulse laser for fovea-involving diabetic macular edema in eyes with good visual acuity. Retina 34(10):2010–2020PubMedCrossRef Luttrull JK, Sinclair SH (2014) Safety of transfoveal subthreshold diode micropulse laser for fovea-involving diabetic macular edema in eyes with good visual acuity. Retina 34(10):2010–2020PubMedCrossRef
46.
go back to reference Desmettre TJ, Mordon SR, Buzawa DM, Mainster MA (2006) Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters. Br J Ophthalmol 90(6):709–712PubMedPubMedCentralCrossRef Desmettre TJ, Mordon SR, Buzawa DM, Mainster MA (2006) Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters. Br J Ophthalmol 90(6):709–712PubMedPubMedCentralCrossRef
47.
go back to reference Koriyama Y, Furukawa A (2015) Role of heat shock protein 70 in retinitis pigmentosa and a novel strategy for treatment. Brain Nerve 67(12):1523–1531PubMed Koriyama Y, Furukawa A (2015) Role of heat shock protein 70 in retinitis pigmentosa and a novel strategy for treatment. Brain Nerve 67(12):1523–1531PubMed
48.
go back to reference Valdés-Sánchez L, Calado SM, de la Cerda B, Aramburu A, García-Delgado AB, Massalini S, Montero-Sánchez A, Bhatia V, Rodríguez-Bocanegra E, Diez-Lloret A, Rodríguez-Martínez D, Chakarova C, Bhattacharya SS, Díaz-Corrales FJ (2019) Retinal pigment epithelium degeneration caused by aggregation of PRPF31 and the role of HSP70 family of proteins. Mol Med 26(1):1PubMedPubMedCentralCrossRef Valdés-Sánchez L, Calado SM, de la Cerda B, Aramburu A, García-Delgado AB, Massalini S, Montero-Sánchez A, Bhatia V, Rodríguez-Bocanegra E, Diez-Lloret A, Rodríguez-Martínez D, Chakarova C, Bhattacharya SS, Díaz-Corrales FJ (2019) Retinal pigment epithelium degeneration caused by aggregation of PRPF31 and the role of HSP70 family of proteins. Mol Med 26(1):1PubMedPubMedCentralCrossRef
49.
go back to reference Subrizi A, Toropainen E, Ramsay E, Airaksinen AJ, Kaarniranta K, Urtti A (2015) Oxidative stress protection by exogenous delivery of rhHsp70 chaperone to the retinal pigment epithelium (RPE), a possible therapeutic strategy against RPE degeneration. Pharm Res 32(1):211–221PubMedCrossRef Subrizi A, Toropainen E, Ramsay E, Airaksinen AJ, Kaarniranta K, Urtti A (2015) Oxidative stress protection by exogenous delivery of rhHsp70 chaperone to the retinal pigment epithelium (RPE), a possible therapeutic strategy against RPE degeneration. Pharm Res 32(1):211–221PubMedCrossRef
50.
go back to reference Koyama Y, Kaidzu S, Kim YC, Matsuoka Y, Ishihara T, Ohira A, Tanito M (2019) Suppression of light-induced retinal degeneration by quercetin via the AP-1 pathway in rats. Antioxidants (Basel) 8(4) Koyama Y, Kaidzu S, Kim YC, Matsuoka Y, Ishihara T, Ohira A, Tanito M (2019) Suppression of light-induced retinal degeneration by quercetin via the AP-1 pathway in rats. Antioxidants (Basel) 8(4)
51.
go back to reference Mainster MA (1986) Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems. Ophthalmology 93:952–958PubMedCrossRef Mainster MA (1986) Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems. Ophthalmology 93:952–958PubMedCrossRef
52.
go back to reference Luttrull JK, Sramek C, Palanker D, Spink CJ, Musch DC (2012) Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina 32(2):375–386PubMedCrossRef Luttrull JK, Sramek C, Palanker D, Spink CJ, Musch DC (2012) Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina 32(2):375–386PubMedCrossRef
53.
go back to reference Vujosevic S, Martini F, Longhin E, Convento E, Cavarzeran F, Midena E (2015) Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety. Retina 35(8):1594–1603PubMedCrossRef Vujosevic S, Martini F, Longhin E, Convento E, Cavarzeran F, Midena E (2015) Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety. Retina 35(8):1594–1603PubMedCrossRef
54.
go back to reference Vujosevic S, Martini F, Convento E, Longhin E, Kotsafti O, Parrozzani R, Midena E (2013) Subthreshold laser therapy for diabetic macular edema: metabolic and safety issues. Curr Med Chem 20(26):3267–3271PubMedCrossRef Vujosevic S, Martini F, Convento E, Longhin E, Kotsafti O, Parrozzani R, Midena E (2013) Subthreshold laser therapy for diabetic macular edema: metabolic and safety issues. Curr Med Chem 20(26):3267–3271PubMedCrossRef
55.
go back to reference Gawęcki M (2015) Increase in central retinal edema after subthreshold diode micropulse laser treatment of chronic central serous chorioretinopathy. Case Rep Ophthalmol Med 2015:813414PubMedPubMedCentral Gawęcki M (2015) Increase in central retinal edema after subthreshold diode micropulse laser treatment of chronic central serous chorioretinopathy. Case Rep Ophthalmol Med 2015:813414PubMedPubMedCentral
Metadata
Title
Laser treatment in retinitis pigmentosa-a review
Author
Maciej Gawęcki
Publication date
01-10-2020
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 8/2020
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-03036-9

Other articles of this Issue 8/2020

Lasers in Medical Science 8/2020 Go to the issue