Skip to main content
Top
Published in: Lasers in Medical Science 1/2012

01-01-2012 | Original Article

Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro

Authors: Hideyuki Murayama, Kei Sadakane, Banri Yamanoha, Shinichi Kogure

Published in: Lasers in Medical Science | Issue 1/2012

Login to get access

Abstract

It has been reported that low-power laser irradiation (LLI) can modulate various biological processes including cell proliferation. Some reports suggest that LLI interferes with the cell cycle and inhibits cell proliferation, while others suggest that LLI has a stimulatory effect. Mechanisms underlying the effects of LLI remain unclear. Since the effects of LLI on cancer cells are not well understood, with the aim of developing an LLI therapy for malignant glioblastoma, we investigated the effects of LLI on the cell proliferation of the human-derived glioblastoma cell line A-172. Glioblastoma cell cultures were irradiated with a diode laser at a wavelength of 808 nm and the effects on cell viability and proliferation were examined. Cell counting at 24 and 48 h after irradiation showed that LLI (at 18, 36 and 54 J/cm2) suppressed proliferation of A-172 cells in a fluence-dependent manner (irradiation for 20, 40 and 60 min). A reduction in the number of viable cells was also demonstrated by a fluorescent marker for viable cells, calcein acetoxymethylester (calcein-AM). The reduction in cell viability was not associated with morphological changes in the cells or with necrotic cell death as demonstrated by propidium iodide staining. LLI also had little effect on cell proliferation as shown by 5-bromo-2′-deoxyuridine staining. We discuss possible mechanisms underlying the suppressive effect of 808-nm LLI on the viability of human-derived glioblastoma A-172 cells.
Literature
1.
go back to reference Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4:278–299PubMed Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4:278–299PubMed
2.
go back to reference Wollmann G, Tattersall P, van den Pol AN (2005) Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 79:6005–6022PubMedCrossRef Wollmann G, Tattersall P, van den Pol AN (2005) Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 79:6005–6022PubMedCrossRef
3.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 332:987–996CrossRef Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 332:987–996CrossRef
4.
go back to reference Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E et al (1984) Increase in proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett 175:95–99PubMedCrossRef Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E et al (1984) Increase in proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett 175:95–99PubMedCrossRef
5.
go back to reference Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ (1997) Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 66:866–871PubMedCrossRef Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ (1997) Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 66:866–871PubMedCrossRef
6.
go back to reference Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496PubMedCrossRef Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496PubMedCrossRef
7.
go back to reference Oron U, Yaakobi T, Oron A, Mordechovitz D, Shofti R et al (2001) Low-energy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs. Circulation 103:296–301PubMed Oron U, Yaakobi T, Oron A, Mordechovitz D, Shofti R et al (2001) Low-energy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs. Circulation 103:296–301PubMed
8.
go back to reference Ben-Dov N, Shefer G, Irintchev A, Wemig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochem Biophys Acta 1448:372–381PubMedCrossRef Ben-Dov N, Shefer G, Irintchev A, Wemig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochem Biophys Acta 1448:372–381PubMedCrossRef
9.
go back to reference Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low energy laser irradiation: a role for the MAP/ERK pathway. J Cell Physiol 187:73–80PubMedCrossRef Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low energy laser irradiation: a role for the MAP/ERK pathway. J Cell Physiol 187:73–80PubMedCrossRef
10.
go back to reference Stadler I, Evans R, Kolb B, Naim JO, Narayan V et al (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Med Sci 3:255–261 Stadler I, Evans R, Kolb B, Naim JO, Narayan V et al (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Med Sci 3:255–261
11.
go back to reference Jia YL, Guo ZY (2004) Effect of low power He-Ne laser irradiation on rabbit articular chondrocytes in vitro. Lasers Surg Med 34:323–328PubMedCrossRef Jia YL, Guo ZY (2004) Effect of low power He-Ne laser irradiation on rabbit articular chondrocytes in vitro. Lasers Surg Med 34:323–328PubMedCrossRef
12.
go back to reference Van Breugel HH, Bar PR (1993) He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose dependent manner. J Neurocytol 22:185–190PubMedCrossRef Van Breugel HH, Bar PR (1993) He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose dependent manner. J Neurocytol 22:185–190PubMedCrossRef
13.
go back to reference Pourzarandian A, Watanabe H, Ruwanpura SM, Aoki A, Ishikawa I (2005) Effect of low level Er:YAG laser irradiation on cultured human gingival fibroblasts. J Periodontol 76:187–193PubMedCrossRef Pourzarandian A, Watanabe H, Ruwanpura SM, Aoki A, Ishikawa I (2005) Effect of low level Er:YAG laser irradiation on cultured human gingival fibroblasts. J Periodontol 76:187–193PubMedCrossRef
14.
go back to reference Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12PubMedCrossRef Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12PubMedCrossRef
15.
go back to reference Taniguchi D, Dai P, Hojo T, Yamaoka Y, Kubo T et al (2009) Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 41:232–239PubMedCrossRef Taniguchi D, Dai P, Hojo T, Yamaoka Y, Kubo T et al (2009) Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 41:232–239PubMedCrossRef
16.
go back to reference Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127:2048–2057PubMedCrossRef Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127:2048–2057PubMedCrossRef
17.
go back to reference Aimbire F, Bjordal JM, Iversen VV, Albertini R, Frigo L et al (2006) Low level laser therapy partially restores trachea muscle relaxation response in rats with tumor necrosis factor α-mediated smooth airway muscle dysfunction. Lasers Surg Med 38:773–778PubMedCrossRef Aimbire F, Bjordal JM, Iversen VV, Albertini R, Frigo L et al (2006) Low level laser therapy partially restores trachea muscle relaxation response in rats with tumor necrosis factor α-mediated smooth airway muscle dysfunction. Lasers Surg Med 38:773–778PubMedCrossRef
18.
go back to reference Franco W, Leite RS, Parizotto NA (2003) Effects of low intensity infrared laser radiation on the water transport in the isolated toad urinary bladder. Lasers Surg Med 32:299–304PubMedCrossRef Franco W, Leite RS, Parizotto NA (2003) Effects of low intensity infrared laser radiation on the water transport in the isolated toad urinary bladder. Lasers Surg Med 32:299–304PubMedCrossRef
19.
go back to reference Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40:726–733PubMedCrossRef Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40:726–733PubMedCrossRef
20.
go back to reference Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23:277–282PubMedCrossRef Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23:277–282PubMedCrossRef
21.
go back to reference Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378PubMedCrossRef Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378PubMedCrossRef
22.
go back to reference Karu TI, Pyatibrat LV, Kalendo GS, Esenaliev RO (1995) Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. Lasers Surg Med 18:171–177CrossRef Karu TI, Pyatibrat LV, Kalendo GS, Esenaliev RO (1995) Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. Lasers Surg Med 18:171–177CrossRef
23.
go back to reference Sroka R, Schaffer M, Fuchs C, Pongratz T, Schrader-Reichard U et al (1999) Effects on the mitosis of normal and tumor cells induced by light treatment of different wavelengths. Lasers Surg Med 25:263–271PubMedCrossRef Sroka R, Schaffer M, Fuchs C, Pongratz T, Schrader-Reichard U et al (1999) Effects on the mitosis of normal and tumor cells induced by light treatment of different wavelengths. Lasers Surg Med 25:263–271PubMedCrossRef
24.
go back to reference Liu YH, Ho CC, Cheng CC, Hsu YH, Lai YS (2006) Photoradiation could influence the cytoskeleton organization and inhibit the survival of human hepatoma cells in vitro. Lasers Med Sci 21:42–48PubMedCrossRef Liu YH, Ho CC, Cheng CC, Hsu YH, Lai YS (2006) Photoradiation could influence the cytoskeleton organization and inhibit the survival of human hepatoma cells in vitro. Lasers Med Sci 21:42–48PubMedCrossRef
25.
go back to reference Murayama H, Sadakane K, Yamanoha B, Kogure S (2009) Effects of 808 nm low-power laser irradiation on the proliferation of human-derived glioblastoma (in Japanese). J Jpn Soc Laser Surg Med 30:135–140 Murayama H, Sadakane K, Yamanoha B, Kogure S (2009) Effects of 808 nm low-power laser irradiation on the proliferation of human-derived glioblastoma (in Japanese). J Jpn Soc Laser Surg Med 30:135–140
26.
go back to reference Horvat-Karajz K, Balogh Z, Kovacs V, Drrernat AH, Sreter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41:463–469PubMedCrossRef Horvat-Karajz K, Balogh Z, Kovacs V, Drrernat AH, Sreter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41:463–469PubMedCrossRef
27.
go back to reference Novikoff AB, Shin WY, Drucker J (1961) Mitochondrial localization of oxidative enzymes: staining results with tetrazolium salts. J Biophys Biochem Cytol 9:47–61PubMedCrossRef Novikoff AB, Shin WY, Drucker J (1961) Mitochondrial localization of oxidative enzymes: staining results with tetrazolium salts. J Biophys Biochem Cytol 9:47–61PubMedCrossRef
28.
go back to reference Karu T, Andreichunk T, Ryabykh T (1993) Changes in oxidative metabolism of murine spleen following laser and superluminous diode (660–950 nm) irradiation: effects on cellular composition and radiation parameters. Lasers Surg Med 13:453–462PubMedCrossRef Karu T, Andreichunk T, Ryabykh T (1993) Changes in oxidative metabolism of murine spleen following laser and superluminous diode (660–950 nm) irradiation: effects on cellular composition and radiation parameters. Lasers Surg Med 13:453–462PubMedCrossRef
29.
go back to reference Karu TI (2008) Mitochondrial signalling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099PubMedCrossRef Karu TI (2008) Mitochondrial signalling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099PubMedCrossRef
30.
go back to reference Lubart R, Friedmann H, Sinyakov M, Cohen N, Breitbart H (1997) Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation. Lasers Surg Med 21:493–499PubMedCrossRef Lubart R, Friedmann H, Sinyakov M, Cohen N, Breitbart H (1997) Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation. Lasers Surg Med 21:493–499PubMedCrossRef
31.
go back to reference Purschke M, Anderson RR, Zurakowski D, Manstein D (2011) Cell-cycle-dependent active thermal bystander effect (ATBE). Lasers Surg Med 43:230–235PubMedCrossRef Purschke M, Anderson RR, Zurakowski D, Manstein D (2011) Cell-cycle-dependent active thermal bystander effect (ATBE). Lasers Surg Med 43:230–235PubMedCrossRef
Metadata
Title
Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro
Authors
Hideyuki Murayama
Kei Sadakane
Banri Yamanoha
Shinichi Kogure
Publication date
01-01-2012
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 1/2012
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-011-0924-z

Other articles of this Issue 1/2012

Lasers in Medical Science 1/2012 Go to the issue