Skip to main content
Top
Published in: Neurological Sciences 7/2020

01-07-2020 | Nystagmus | Review Article

Eye movement changes in autosomal dominant spinocerebellar ataxias

Authors: Francesca Rosini, Elena Pretegiani, Carla Battisti, Maria Teresa Dotti, Antonio Federico, Alessandra Rufa

Published in: Neurological Sciences | Issue 7/2020

Login to get access

Abstract

Oculomotor abnormalities are common findings in spinocerebellar ataxias (SCAs), a clinically heterogeneous group of neurodegenerative disorders with an autosomal dominant pattern of inheritance. Usually, cerebellar impairment accounts for most of the eye movement changes encountered; as the disease progresses, the involvement of extracerebellar structures typically seen in later stages may modify the oculomotor progression. However, ocular movement changes are rarely specific. In this regard, some important exceptions include the prominent slowing of horizontal eye movements in SCA2 and, to a lesser extent, in SCA3, SCA4, and SCA28, or the executive deficit in SCA2 and SCA17. Here, we report the eye movement abnormalities and neurological pictures of SCAs through a review of the literature. Genetic and neuropathological/neuroimaging aspects are also briefly discussed. Overall, the findings reported indicate that oculomotor analysis could be of help in differential diagnosis among SCAs and contribute to clarify the role of brain structures, particularly the cerebellum, in oculomotor control.
Literature
1.
go back to reference Bettencourt C, Hensman-Moss D, Flower M, Wiethoff S, Brice A, Goizet C, Stevanin G, Koutsis G, Karadima G, Panas M, Yescas-Gómez P, García-Velázquez LE, Alonso-Vilatela ME, Lima M, Raposo M, Traynor B, Sweeney M, Wood N, Giunti P, Network SPATAX, Durr A, Holmans P, Houlden H, Tabrizi SJ, Jones L (2016) DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Ann Neurol 79:983–990 Bettencourt C, Hensman-Moss D, Flower M, Wiethoff S, Brice A, Goizet C, Stevanin G, Koutsis G, Karadima G, Panas M, Yescas-Gómez P, García-Velázquez LE, Alonso-Vilatela ME, Lima M, Raposo M, Traynor B, Sweeney M, Wood N, Giunti P, Network SPATAX, Durr A, Holmans P, Houlden H, Tabrizi SJ, Jones L (2016) DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Ann Neurol 79:983–990
2.
go back to reference Jones L, Houlden H, Tabrizi SJ (2017) DNA repair in the trinucleotide repeat disorders. Lancet Neurol 16:88–96 Jones L, Houlden H, Tabrizi SJ (2017) DNA repair in the trinucleotide repeat disorders. Lancet Neurol 16:88–96
3.
go back to reference Manto M (2010) Cerebellar disorders. A practical approach to diagnosis and management. Cambridge University Press, New York Manto M (2010) Cerebellar disorders. A practical approach to diagnosis and management. Cambridge University Press, New York
4.
go back to reference Klockgether T (2008) The clinical diagnosis of autosomal dominant spinocerebellar ataxias. The Cerebellum 7:101–105 Klockgether T (2008) The clinical diagnosis of autosomal dominant spinocerebellar ataxias. The Cerebellum 7:101–105
5.
go back to reference McIntosh CS, Aung-Htut MT, Fletcher S, Wilton SD (2017) Polyglutamine ataxias: from clinical and molecular features to current therapeutic strategies. J Genet Syndr Gene Ther 8:2 McIntosh CS, Aung-Htut MT, Fletcher S, Wilton SD (2017) Polyglutamine ataxias: from clinical and molecular features to current therapeutic strategies. J Genet Syndr Gene Ther 8:2
6.
go back to reference Shakkottai VG, Fogel BL (2013) Clinical neurogenetics: autosomal dominant spinocerebellar ataxias. Neurol Clin 31:487–1007 Shakkottai VG, Fogel BL (2013) Clinical neurogenetics: autosomal dominant spinocerebellar ataxias. Neurol Clin 31:487–1007
7.
go back to reference Williams AJ, Paulson HL (2008) Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 31:521–528 Williams AJ, Paulson HL (2008) Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 31:521–528
8.
go back to reference Shakkottai VG, Paulson HL (2009) Physiologic alterations in ataxia: channeling changes into novel therapies. Arch Neurol 66:1196–1201 Shakkottai VG, Paulson HL (2009) Physiologic alterations in ataxia: channeling changes into novel therapies. Arch Neurol 66:1196–1201
9.
go back to reference Todd PK, Paulson HL (2010) RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol 67:291–300 Todd PK, Paulson HL (2010) RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol 67:291–300
10.
go back to reference Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226 Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226
11.
go back to reference Adachi M, Kawanami T, Ohshima H, Hosoya T (2006) Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology 48:8–13 Adachi M, Kawanami T, Ohshima H, Hosoya T (2006) Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology 48:8–13
12.
go back to reference Alexandre MF, Rivaud-Péchoux S, Challe G, Durr A, Gaymard B (2013) Functional consequences of oculomotor disorders in hereditary cerebellar ataxias. Cerebellum 12:396–405 Alexandre MF, Rivaud-Péchoux S, Challe G, Durr A, Gaymard B (2013) Functional consequences of oculomotor disorders in hereditary cerebellar ataxias. Cerebellum 12:396–405
13.
go back to reference Kim JS, Kim JS, Youn J, Seo DW, Jeong Y, Kang JH, Park JH, Cho JW (2013) Ocular motor characteristics of different subtypes of spinocerebellar ataxia: distinguishing features. Mov Disord 28:1271–1277 Kim JS, Kim JS, Youn J, Seo DW, Jeong Y, Kang JH, Park JH, Cho JW (2013) Ocular motor characteristics of different subtypes of spinocerebellar ataxia: distinguishing features. Mov Disord 28:1271–1277
14.
go back to reference Teive HA, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, Ashizawa T (2012) Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics (Sao Paulo) 67:443–449 Teive HA, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, Ashizawa T (2012) Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics (Sao Paulo) 67:443–449
15.
go back to reference Bürk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, Klockgether T (1999) Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol 246:789–797 Bürk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, Klockgether T (1999) Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol 246:789–797
16.
go back to reference Moscovich M, Okun MS, Favilla C, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez C, Schmahmann J, Paulson H, Shakkottai V, Ying S, Zesiewicz T, Kuo SH, Mazzoni P, Bushara K, Xia G, Ashizawa T, Subramony SH (2015) Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J Neuroophthalmol 35:16–21 Moscovich M, Okun MS, Favilla C, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez C, Schmahmann J, Paulson H, Shakkottai V, Ying S, Zesiewicz T, Kuo SH, Mazzoni P, Bushara K, Xia G, Ashizawa T, Subramony SH (2015) Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J Neuroophthalmol 35:16–21
17.
go back to reference Rivaud-Pechoux S, Dürr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, Brice A, Pierrot-Deseilligny C (1998) Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol 43:297–302 Rivaud-Pechoux S, Dürr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, Brice A, Pierrot-Deseilligny C (1998) Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol 43:297–302
18.
go back to reference Vale J, Bugalho P, Silveira I, Sequeiros J, Guimarães J, Coutinho P (2010) Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from Portugal. Eur J Neurol 17:124–128 Vale J, Bugalho P, Silveira I, Sequeiros J, Guimarães J, Coutinho P (2010) Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from Portugal. Eur J Neurol 17:124–128
19.
go back to reference Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW (1998) Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol 55:1353–1357 Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW (1998) Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol 55:1353–1357
20.
go back to reference Klostermann W, Zühlke C, Heide W, Kömpf D, Wessel K (1997) Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1. J Neurol 244:105–111 Klostermann W, Zühlke C, Heide W, Kömpf D, Wessel K (1997) Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1. J Neurol 244:105–111
21.
go back to reference Orr HT (2012) Cell biology of spinocerebellar ataxia. J Cell Biol 197:167–177 Orr HT (2012) Cell biology of spinocerebellar ataxia. J Cell Biol 197:167–177
22.
go back to reference Scherzed W, Brunt ER, Heinsen H, de Vos RA, Seidel K, Bürk K, Schöls L, Auburger G, Del Turco D, Deller T, Korf HW, den Dunnen WF, Rüb U (2012) Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Cerebellum 11:749–760 Scherzed W, Brunt ER, Heinsen H, de Vos RA, Seidel K, Bürk K, Schöls L, Auburger G, Del Turco D, Deller T, Korf HW, den Dunnen WF, Rüb U (2012) Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Cerebellum 11:749–760
23.
go back to reference Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rüb U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21 Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rüb U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21
24.
go back to reference Magaña JJ, Velázquez-Pérez L, Cisneros B (2013) Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol 47:90–104 Magaña JJ, Velázquez-Pérez L, Cisneros B (2013) Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol 47:90–104
25.
go back to reference Rufa A, Dotti MT, Galli L, Orrico A, Sicurelli F, Federico A (2002) Spinocerebellar ataxia type 2 (SCA2) associated with retinal pigmentary degeneration. Eur Neurol 47:128–129 Rufa A, Dotti MT, Galli L, Orrico A, Sicurelli F, Federico A (2002) Spinocerebellar ataxia type 2 (SCA2) associated with retinal pigmentary degeneration. Eur Neurol 47:128–129
26.
go back to reference Rufa A, Federighi P (2011) Fast versus slow: different saccadic behavior in cerebellar ataxias. Ann N Y Acad Sci 1233:148–154 Rufa A, Federighi P (2011) Fast versus slow: different saccadic behavior in cerebellar ataxias. Ann N Y Acad Sci 1233:148–154
27.
go back to reference Velázquez-Pérez L, Seifried C, Santos-Falcón N, Abele M, Ziemann U, Almaguer LE, Martínez-Góngora E, Sánchez-Cruz G, Canales N, Pérez-González R, Velázquez-Manresa M, Viebahn B, von Stuckrad-Barre S, Fetter M, Klockgether T, Auburger G (2004) Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol 56:444–447 Velázquez-Pérez L, Seifried C, Santos-Falcón N, Abele M, Ziemann U, Almaguer LE, Martínez-Góngora E, Sánchez-Cruz G, Canales N, Pérez-González R, Velázquez-Manresa M, Viebahn B, von Stuckrad-Barre S, Fetter M, Klockgether T, Auburger G (2004) Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol 56:444–447
28.
go back to reference Wadia NH, Swami RK (1971) A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain 94:359–374 Wadia NH, Swami RK (1971) A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain 94:359–374
29.
go back to reference Zee DS, Optican LM, Cook JD, Robinson DA, Engel WK (1976) Slow saccades in spinocerebellar degeneration. Arch Neurol 33:243–251 Zee DS, Optican LM, Cook JD, Robinson DA, Engel WK (1976) Slow saccades in spinocerebellar degeneration. Arch Neurol 33:243–251
30.
go back to reference Federighi P, Cevenini G, Dotti MT, Rosini F, Pretegiani E, Federico A, Rufa A (2011) Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias. Brain 134(Pt 3):879–891 Federighi P, Cevenini G, Dotti MT, Rosini F, Pretegiani E, Federico A, Rufa A (2011) Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias. Brain 134(Pt 3):879–891
31.
go back to reference Rodríguez-Labrada R, Velázquez-Pérez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, Vázquez-Mojena Y, González-Zaldivar Y (2016) Spinocerebellar ataxia type 2: Measures of saccade changes improve power for clinical trials. Mov Disord 31:570–578 Rodríguez-Labrada R, Velázquez-Pérez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, Vázquez-Mojena Y, González-Zaldivar Y (2016) Spinocerebellar ataxia type 2: Measures of saccade changes improve power for clinical trials. Mov Disord 31:570–578
32.
go back to reference Rodríguez-Labrada R, Velázquez-Pérez L, Seigfried C, Canales-Ochoa N, Auburger G, Medrano-Montero J, Sánchez-Cruz G, Aguilera-Rodríguez R, Laffita-Mesa J, Vázquez-Mojena Y, Verdecia-Ramirez M, Motta M, Quevedo-Batista Y (2011) Saccadic latency is prolonged in Spinocerebellar Ataxia type 2 and correlates with the frontal-executive dysfunctions. J Neurol Sci 306:103–107 Rodríguez-Labrada R, Velázquez-Pérez L, Seigfried C, Canales-Ochoa N, Auburger G, Medrano-Montero J, Sánchez-Cruz G, Aguilera-Rodríguez R, Laffita-Mesa J, Vázquez-Mojena Y, Verdecia-Ramirez M, Motta M, Quevedo-Batista Y (2011) Saccadic latency is prolonged in Spinocerebellar Ataxia type 2 and correlates with the frontal-executive dysfunctions. J Neurol Sci 306:103–107
33.
go back to reference Rodríguez-Labrada R, Velázquez-Pérez L, Aguilera-Rodríguez R, Seifried-Oberschmidt C, Peña-Acosta A, Canales-Ochoa N, Medrano-Montero J, Estupiñan-Rodríguez A, Vázquez-Mojena Y, González-Zaldivar Y, Laffita Mesa JM (2014) Executive deficit in spinocerebellar ataxia type 2 is related to expanded CAG repeats: evidence from antisaccadic eye movements. Brain Cogn 91:28–34 Rodríguez-Labrada R, Velázquez-Pérez L, Aguilera-Rodríguez R, Seifried-Oberschmidt C, Peña-Acosta A, Canales-Ochoa N, Medrano-Montero J, Estupiñan-Rodríguez A, Vázquez-Mojena Y, González-Zaldivar Y, Laffita Mesa JM (2014) Executive deficit in spinocerebellar ataxia type 2 is related to expanded CAG repeats: evidence from antisaccadic eye movements. Brain Cogn 91:28–34
34.
go back to reference Pretegiani E, Piu P, Rosini F, Federighi P, Serchi V, Tumminelli G, Dotti MT, Federico A, Rufa A (2018) Anti-saccades in cerebellar ataxias reveal a contribution of the cerebellum in executive functions. Front Neurol 9:274 Pretegiani E, Piu P, Rosini F, Federighi P, Serchi V, Tumminelli G, Dotti MT, Federico A, Rufa A (2018) Anti-saccades in cerebellar ataxias reveal a contribution of the cerebellum in executive functions. Front Neurol 9:274
35.
go back to reference Sequeiros J, Coutinho P (1993) Epidemiology and clinical aspects of Machado-Joseph disease. Adv Neurol 61:139–153 Sequeiros J, Coutinho P (1993) Epidemiology and clinical aspects of Machado-Joseph disease. Adv Neurol 61:139–153
36.
go back to reference Wang G, Sawai N, Kotliarova S, Kanazawa I, Nukina N (2000) Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeastDNA repair protein RAD23, HHR23A and HHR23B. Hum Mol Genet 9:1795–1803 Wang G, Sawai N, Kotliarova S, Kanazawa I, Nukina N (2000) Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeastDNA repair protein RAD23, HHR23A and HHR23B. Hum Mol Genet 9:1795–1803
37.
go back to reference Rüb U, Brunt ER, Gierga K, Schultz C, Paulson H, de Vos RA, Braak H (2003) The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat 25:115–127 Rüb U, Brunt ER, Gierga K, Schultz C, Paulson H, de Vos RA, Braak H (2003) The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat 25:115–127
38.
go back to reference Gordon CR, Joffe V, Vainstein G, Gadoth N (2003) Vestibulo-ocular arreflexia in families with spinocerebellar ataxia type 3 (Machado-Joseph disease). J Neurol Neurosurg Psychiatry 74:1403–1406 Gordon CR, Joffe V, Vainstein G, Gadoth N (2003) Vestibulo-ocular arreflexia in families with spinocerebellar ataxia type 3 (Machado-Joseph disease). J Neurol Neurosurg Psychiatry 74:1403–1406
39.
go back to reference Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, Kaplan C, Ptácek LJ (1996) Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 59:392–399 Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, Kaplan C, Ptácek LJ (1996) Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 59:392–399
40.
go back to reference Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N, Ptacek LJ, Gomez CM (2005) Clinical feature profile of spinocerebellar ataxia type 1-8 predicts genetically defined subtypes. Mov Disord 20:1405–1412 Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N, Ptacek LJ, Gomez CM (2005) Clinical feature profile of spinocerebellar ataxia type 1-8 predicts genetically defined subtypes. Mov Disord 20:1405–1412
41.
go back to reference Nagaoka U, Takashima M, Ishikawa K, Yoshizawa K, Yoshizawa T, Ishikawa M, Yamawaki T, Shoji S, Mizusawa H (2000) A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 54:1971–1975 Nagaoka U, Takashima M, Ishikawa K, Yoshizawa K, Yoshizawa T, Ishikawa M, Yamawaki T, Shoji S, Mizusawa H (2000) A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 54:1971–1975
42.
go back to reference Hirano R, Takashima H, Okubo R, Okamoto Y, Maki Y, Ishida S, Suehara M, Hokezu Y, Arimura K (2009) Clinical and genetic characterization of 16q-linked autosomal dominant spinocerebellar ataxia in South Kyushu, Japan. J Hum Genet 54:377–381 Hirano R, Takashima H, Okubo R, Okamoto Y, Maki Y, Ishida S, Suehara M, Hokezu Y, Arimura K (2009) Clinical and genetic characterization of 16q-linked autosomal dominant spinocerebellar ataxia in South Kyushu, Japan. J Hum Genet 54:377–381
43.
go back to reference Ouyang Y, Sakoe K, Shimazaki H, Namekawa M, Ogawa T, Ando Y, Kawakami T, Kaneko J, Hasegawa Y, Yoshizawa K, Amino T, Ishikawa K, Mizusawa H, Nakano I, Takiyama Y (2006) 16q-linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci 247:180–186 Ouyang Y, Sakoe K, Shimazaki H, Namekawa M, Ogawa T, Ando Y, Kawakami T, Kaneko J, Hasegawa Y, Yoshizawa K, Amino T, Ishikawa K, Mizusawa H, Nakano I, Takiyama Y (2006) 16q-linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci 247:180–186
44.
go back to reference Ranum LPW, Schut LJ, Lundgren JK, Orr HT, Livingston DM (1994) Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 8:280–284 Ranum LPW, Schut LJ, Lundgren JK, Orr HT, Livingston DM (1994) Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 8:280–284
45.
go back to reference Bürk K, Zühlke C, König IR, Ziegler A, Schwinger E, Globas C, Dichgans J, Hellenbroich Y (2004) Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology 62:327–329 Bürk K, Zühlke C, König IR, Ziegler A, Schwinger E, Globas C, Dichgans J, Hellenbroich Y (2004) Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology 62:327–329
46.
go back to reference Mondal B, Paul P, Paul M, Kumar H (2013) An update on Spino-cerebellar ataxias. Ann Indian Acad Neurol 16:295–303 Mondal B, Paul P, Paul M, Kumar H (2013) An update on Spino-cerebellar ataxias. Ann Indian Acad Neurol 16:295–303
47.
go back to reference Zhang XY, Wang JJ, Zhu JN (2016) Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum Ataxias 3:9 Zhang XY, Wang JJ, Zhu JN (2016) Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum Ataxias 3:9
48.
go back to reference Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–950 Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–950
49.
go back to reference Zee DS, Yee RD, Cogan DG, Robinson DA, Engel WK (1976) Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 99:207–234 Zee DS, Yee RD, Cogan DG, Robinson DA, Engel WK (1976) Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 99:207–234
50.
go back to reference Liang L, Chen T, Wu Y (2016) The electrophysiology of spinocerebellar ataxias. Neurophysiol Clin 46:27–34 Liang L, Chen T, Wu Y (2016) The electrophysiology of spinocerebellar ataxias. Neurophysiol Clin 46:27–34
51.
go back to reference Johansson J, Forsgren L, Sandgren O, Brice A, Holmgren G, Holmberg M (1998) Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 7:171–176 Johansson J, Forsgren L, Sandgren O, Brice A, Holmgren G, Holmberg M (1998) Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 7:171–176
52.
go back to reference Michalik A, Martin JJ, Van Broeckhoven C (2004) Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 12:2–15 Michalik A, Martin JJ, Van Broeckhoven C (2004) Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 12:2–15
53.
go back to reference Schöls L, Linnemann C, Globas C (2008) Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum 7:198–203 Schöls L, Linnemann C, Globas C (2008) Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum 7:198–203
54.
go back to reference Oh AK, Jacobson KM, Jen JC, Baloh RW (2001) Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol 49:801–804 Oh AK, Jacobson KM, Jen JC, Baloh RW (2001) Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol 49:801–804
55.
go back to reference Sun YM, Lu C, Wu ZY (2016) Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet 90:305–314 Sun YM, Lu C, Wu ZY (2016) Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet 90:305–314
56.
go back to reference Ito H, Kawakami H, Wate R, Matsumoto S, Imai T, Hirano A, Kusaka H (2006) Clinicopathologic investigation of a family with expanded SCA8 CTA/CTG repeats. Neurology 67:1479–1481 Ito H, Kawakami H, Wate R, Matsumoto S, Imai T, Hirano A, Kusaka H (2006) Clinicopathologic investigation of a family with expanded SCA8 CTA/CTG repeats. Neurology 67:1479–1481
57.
go back to reference Kim JS, Son TO, Youn J, Ki CS, Cho JW (2013) Non-ataxic phenotypes of SCA8 mimicking amyotrophic lateral sclerosis and Parkinson disease. J Clin Neurol 9:274–279 Kim JS, Son TO, Youn J, Ki CS, Cho JW (2013) Non-ataxic phenotypes of SCA8 mimicking amyotrophic lateral sclerosis and Parkinson disease. J Clin Neurol 9:274–279
58.
go back to reference Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M (2000) Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 54:950–955 Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M (2000) Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 54:950–955
59.
go back to reference Zee DS, Leigh RJ (2015) The neurology of eye movements, 5th edn. Oxford University Press, New York Zee DS, Leigh RJ (2015) The neurology of eye movements, 5th edn. Oxford University Press, New York
60.
go back to reference Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191–194 Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191–194
61.
go back to reference Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, Alonso E (2001) Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 50:234–239 Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, Alonso E (2001) Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 50:234–239
62.
go back to reference Teive HA, Munhoz RP, Raskin S, Arruda WO, de Paola L, Werneck LC, Ashizawa T (2010) Spinocerebellar ataxia type 10: frequency of epilepsy in a large sample of Brazilian patients. Mov Disord 25:2875–2878 Teive HA, Munhoz RP, Raskin S, Arruda WO, de Paola L, Werneck LC, Ashizawa T (2010) Spinocerebellar ataxia type 10: frequency of epilepsy in a large sample of Brazilian patients. Mov Disord 25:2875–2878
63.
go back to reference Lin X, Ashizawa T (2005) Recent progress in spinocerebellar ataxia type-10 (SCA10). Cerebellum 4:37–42 Lin X, Ashizawa T (2005) Recent progress in spinocerebellar ataxia type-10 (SCA10). Cerebellum 4:37–42
64.
go back to reference Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW (1999) Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet 65:420–426 Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW (1999) Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet 65:420–426
65.
go back to reference Johnson J, Wood N, Giunti P, Houlden H (2008) Clinical and genetic analysis of spinocerebellar ataxia type 11. Cerebellum 7:159–164 Johnson J, Wood N, Giunti P, Houlden H (2008) Clinical and genetic analysis of spinocerebellar ataxia type 11. Cerebellum 7:159–164
66.
go back to reference O’Hearn E, Holmes SE, Calvert PC, Ross CA, Margolis RL (2001) SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 56:299–303 O’Hearn E, Holmes SE, Calvert PC, Ross CA, Margolis RL (2001) SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 56:299–303
67.
go back to reference Herman-Bert A, Stevanin G, Netter JC, Rascol O, Brassat D, Calvas P, Camuzat A, Yuan Q, Schalling M, Dürr A, Brice A (2000) Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet 67:229–235 Herman-Bert A, Stevanin G, Netter JC, Rascol O, Brassat D, Calvas P, Camuzat A, Yuan Q, Schalling M, Dürr A, Brice A (2000) Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet 67:229–235
68.
go back to reference Figueroa KP, Minassian NA, Stevanin G, Waters M, Garibyan V, Forlani S, Strzelczyk A, Bürk K, Brice A, Dürr A, Papazian DM, Pulst SM (2010) KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients. Hum Mutat 31:191–196 Figueroa KP, Minassian NA, Stevanin G, Waters M, Garibyan V, Forlani S, Strzelczyk A, Bürk K, Brice A, Dürr A, Papazian DM, Pulst SM (2010) KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients. Hum Mutat 31:191–196
69.
go back to reference Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, Mock AF, Evidente VG, Fee DB, Müller U, Dürr A, Brice A, Papazian DM, Pulst SM (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nature Genetics 38:447–451 Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, Mock AF, Evidente VG, Fee DB, Müller U, Dürr A, Brice A, Papazian DM, Pulst SM (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nature Genetics 38:447–451
70.
go back to reference Khare S, Nick JA, Zhang Y, Galeano K, Butler B, Khoshbouei H, Rayaprolu S, Hathorn T, Ranum LPW, Smithson L, Golde TE, Paucar M, Morse R, Raff M, Simon J, Nordenskjöld M, Wirdefeldt K, Rincon-Limas DE, Lewis J, Kaczmarek LK, Fernandez-Funez P, Nick HS, Waters MF (2017) A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking. PLoS One 12:e0173565 Khare S, Nick JA, Zhang Y, Galeano K, Butler B, Khoshbouei H, Rayaprolu S, Hathorn T, Ranum LPW, Smithson L, Golde TE, Paucar M, Morse R, Raff M, Simon J, Nordenskjöld M, Wirdefeldt K, Rincon-Limas DE, Lewis J, Kaczmarek LK, Fernandez-Funez P, Nick HS, Waters MF (2017) A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking. PLoS One 12:e0173565
71.
go back to reference Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K, Takada A, Shiraishi K, Takiyama Y, Nishizawa M, Kaneko J, Tanaka H, Tsuji S, Tashiro K (2000) A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 48:156–163 Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K, Takada A, Shiraishi K, Takiyama Y, Nishizawa M, Kaneko J, Tanaka H, Tsuji S, Tashiro K (2000) A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 48:156–163
72.
go back to reference Chen DH, Cimino PJ, Ranum LP, Zoghbi HY, Yabe I, Schut L, Margolis RL, Lipe HP, Feleke A, Matsushita M, Wolff J, Morgan C, Lau D, Fernandez M, Sasaki H, Raskind WH, Bird TD (2005) The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology 64:1258–1260 Chen DH, Cimino PJ, Ranum LP, Zoghbi HY, Yabe I, Schut L, Margolis RL, Lipe HP, Feleke A, Matsushita M, Wolff J, Morgan C, Lau D, Fernandez M, Sasaki H, Raskind WH, Bird TD (2005) The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology 64:1258–1260
73.
go back to reference Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, Welter ML, Ollagnon-Roman E, Lemainque A, Ruberg M, Brice A, Durr A (2004) Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 61:1242–1248 Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, Welter ML, Ollagnon-Roman E, Lemainque A, Ruberg M, Brice A, Durr A (2004) Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 61:1242–1248
74.
go back to reference Hiramoto K, Kawakami H, Inoue K, Seki T, Maruyama H, Morino H, Matsumoto M, Kurisu K, Sakai N (2006) Identification of a new family of spinocerebellar ataxia type 14 in the Japanese spinocerebellar ataxia population by the screening of PRKCG exon 4. Mov Disord 21:1355–1360 Hiramoto K, Kawakami H, Inoue K, Seki T, Maruyama H, Morino H, Matsumoto M, Kurisu K, Sakai N (2006) Identification of a new family of spinocerebellar ataxia type 14 in the Japanese spinocerebellar ataxia population by the screening of PRKCG exon 4. Mov Disord 21:1355–1360
75.
go back to reference van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, Kremer HP, Sinke RJ (2003) Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 61:1760–1765 van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, Kremer HP, Sinke RJ (2003) Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 61:1760–1765
76.
go back to reference Gardner RJ, Knight MA, Hara K, Tsuji S, Forrest SM, Storey E (2005) Spinocerebellar ataxia type 15. Cerebellum 4:47–50 Gardner RJ, Knight MA, Hara K, Tsuji S, Forrest SM, Storey E (2005) Spinocerebellar ataxia type 15. Cerebellum 4:47–50
77.
go back to reference Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D, Li W, Furuya H, Ohyagi Y, Taniwaki T, Kira J, Fukumaki Y (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35 Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D, Li W, Furuya H, Ohyagi Y, Taniwaki T, Kira J, Fukumaki Y (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35
78.
go back to reference Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H, Yomono H, Kurisaki H, Goto J, Ikeuchi T, Tsuji S, Nishizawa M, Onodera O (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71:547–551 Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H, Yomono H, Kurisaki H, Goto J, Ikeuchi T, Tsuji S, Nishizawa M, Onodera O (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71:547–551
79.
go back to reference Storey E, Gardner RJ (2012) Spinocerebellar ataxia type 15. Handb Clin Neurol 103:561–565 Storey E, Gardner RJ (2012) Spinocerebellar ataxia type 15. Handb Clin Neurol 103:561–565
80.
go back to reference Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63:2288–2292 Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63:2288–2292
81.
go back to reference Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, Furuya H, Yamamoto K, Sakai K, Sasazuki T, Kira J (2001) A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 57:96–100 Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, Furuya H, Yamamoto K, Sakai K, Sasazuki T, Kira J (2001) A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 57:96–100
82.
go back to reference Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8:2047–2053 Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8:2047–2053
83.
go back to reference Stevanin G, Brice A (2008) Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum 7:170–178 Stevanin G, Brice A (2008) Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum 7:170–178
84.
go back to reference Hübner J, Sprenger A, Klein C, Hagenah J, Rambold H, Zühlke C, Kömpf D, Rolfs A, Kimmig H, Helmchen C (2007) Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology 69:1160–1168 Hübner J, Sprenger A, Klein C, Hagenah J, Rambold H, Zühlke C, Kömpf D, Rolfs A, Kimmig H, Helmchen C (2007) Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology 69:1160–1168
85.
go back to reference Mariotti C, Alpini D, Fancellu R, Soliveri P, Grisoli M, Ravaglia S, Lovati C, Fetoni V, Giaccone G, Castucci A, Taroni F, Gellera C, Di Donato S (2007) Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol 254:1538–1546 Mariotti C, Alpini D, Fancellu R, Soliveri P, Grisoli M, Ravaglia S, Lovati C, Fetoni V, Giaccone G, Castucci A, Taroni F, Gellera C, Di Donato S (2007) Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol 254:1538–1546
86.
go back to reference Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K (2007) The SCA17 phenotype can include features of MSA-C. PSP and cognitive impairment. Parkinsonism Relat Disord 13:246–249 Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K (2007) The SCA17 phenotype can include features of MSA-C. PSP and cognitive impairment. Parkinsonism Relat Disord 13:246–249
87.
go back to reference Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD, Raskind WH (2002) Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): linkage to chromosome 7q22-q32. Am J Med Genet 114:450–457 Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD, Raskind WH (2002) Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): linkage to chromosome 7q22-q32. Am J Med Genet 114:450–457
88.
go back to reference Schelhaas HJ, Ippel PF, Hageman G, Sinke RJ, van der Laan EN, Beemer FA (2001) Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. J Neurol 248:113–120 Schelhaas HJ, Ippel PF, Hageman G, Sinke RJ, van der Laan EN, Beemer FA (2001) Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. J Neurol 248:113–120
89.
go back to reference Chung MY, Lu YC, Cheng NC, Soong BW (2003) A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 126(Pt 6):1293–1299 Chung MY, Lu YC, Cheng NC, Soong BW (2003) A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 126(Pt 6):1293–1299
90.
go back to reference Knight MA, Gardner RJ, Bahlo M, Matsuura T, Dixon JA, Forrest SM, Storey E (2004) Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 127(Pt 5):1172–1181 Knight MA, Gardner RJ, Bahlo M, Matsuura T, Dixon JA, Forrest SM, Storey E (2004) Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 127(Pt 5):1172–1181
91.
go back to reference Knight MA, Hernandez D, Diede SJ, Dauwerse HG, Rafferty I, van de Leemput J, Forrest SM, Gardner RJ, Storey E, van Ommen GJ, Tapscott SJ, Fischbeck KH, Singleton AB (2008) A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Hum Mol Genet 17:3847–3853 Knight MA, Hernandez D, Diede SJ, Dauwerse HG, Rafferty I, van de Leemput J, Forrest SM, Gardner RJ, Storey E, van Ommen GJ, Tapscott SJ, Fischbeck KH, Singleton AB (2008) A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Hum Mol Genet 17:3847–3853
92.
go back to reference Storey E, Knight MA, Forrest SM, Gardner RJ (2005) Spinocerebellar ataxia type 20. Cerebellum 4:55–57 Storey E, Knight MA, Forrest SM, Gardner RJ (2005) Spinocerebellar ataxia type 20. Cerebellum 4:55–57
93.
go back to reference Delplanque J, Devos D, Vuillaume I, De Becdelievre A, Vangelder E, Maurage CA, Dujardin K, Destée A, Sablonnière B (2008) Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). Cerebellum 7:179–183 Delplanque J, Devos D, Vuillaume I, De Becdelievre A, Vangelder E, Maurage CA, Dujardin K, Destée A, Sablonnière B (2008) Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). Cerebellum 7:179–183
94.
go back to reference Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13–12.3. Brain 127:2551–2557 Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13–12.3. Brain 127:2551–2557
95.
go back to reference Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J, Goas JY, Bertrand P, Robin C, Brice A, Bakalkin G, Durr A, Verbeek DS (2013) Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol 260:1807–1812 Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J, Goas JY, Bertrand P, Robin C, Brice A, Bakalkin G, Durr A, Verbeek DS (2013) Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol 260:1807–1812
96.
go back to reference Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A, Schalling M, Broussolle E, Dürr A, Brice A (2004) Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 55:97–104 Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A, Schalling M, Broussolle E, Dürr A, Brice A (2004) Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 55:97–104
97.
go back to reference Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM (2005) Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 57:349–354 Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM (2005) Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 57:349–354
98.
go back to reference Coebergh JA, Fransen van de Putte DE, Snoeck IN, Ruivenkamp C, van Haeringen A, Smit LM (2014) A new variable phenotype in spinocerebellar ataxia 27 (SCA 27) caused by a deletion in the FGF14 gene. Eur J Paediatr Neurol 18:413–415 Coebergh JA, Fransen van de Putte DE, Snoeck IN, Ruivenkamp C, van Haeringen A, Smit LM (2014) A new variable phenotype in spinocerebellar ataxia 27 (SCA 27) caused by a deletion in the FGF14 gene. Eur J Paediatr Neurol 18:413–415
99.
go back to reference Mariotti C, Brusco A, Di Bella D, Cagnoli C, Seri M, Gellera C, Di Donato S, Taroni F (2008) Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum 7:184–188 Mariotti C, Brusco A, Di Bella D, Cagnoli C, Seri M, Gellera C, Di Donato S, Taroni F (2008) Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum 7:184–188
100.
go back to reference Politi LS, Bianchi Marzoli S, Godi C, Panzeri M, Ciasca P, Brugnara G, Castaldo A, Di Bella D, Taroni F, Nanetti L, Mariotti C (2016) MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases. Invest Ophthalmol Vis Sci 57:2714–2720 Politi LS, Bianchi Marzoli S, Godi C, Panzeri M, Ciasca P, Brugnara G, Castaldo A, Di Bella D, Taroni F, Nanetti L, Mariotti C (2016) MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases. Invest Ophthalmol Vis Sci 57:2714–2720
101.
go back to reference Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, Zou R, Schofield PW, Douglas S, Bulman DE, Boycott KM (2012) Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 7:67 Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, Zou R, Schofield PW, Douglas S, Bulman DE, Boycott KM (2012) Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 7:67
102.
go back to reference Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJ (2009) A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 80:408–411 Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJ (2009) A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 80:408–411
103.
go back to reference Cadieux-Dion M, Turcotte-Gauthier M, Noreau A, Martin C, Meloche C, Gravel M, Drouin CA, Rouleau GA, Nguyen DK, Cossette P (2014) Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol 71:470–475 Cadieux-Dion M, Turcotte-Gauthier M, Noreau A, Martin C, Meloche C, Gravel M, Drouin CA, Rouleau GA, Nguyen DK, Cossette P (2014) Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol 71:470–475
104.
go back to reference Ozaki K, Doi H, Mitsui J, Sato N, Iikuni Y, Majima T, Yamane K, Irioka T, Ishiura H, Doi K, Morishita S, Higashi M, Sekiguchi T, Koyama K, Ueda N, Miura Y, Miyatake S, Matsumoto N, Yokota T, Tanaka F, Tsuji S, Mizusawa H, Ishikawa K (2015) A novel mutation in ELOVL4 leading to spinocerebellar ataxia (SCA) with the hot cross bun sign but lacking erythrokeratodermia: a broadened spectrum of SCA34. JAMA Neurol 72:797–805 Ozaki K, Doi H, Mitsui J, Sato N, Iikuni Y, Majima T, Yamane K, Irioka T, Ishiura H, Doi K, Morishita S, Higashi M, Sekiguchi T, Koyama K, Ueda N, Miura Y, Miyatake S, Matsumoto N, Yokota T, Tanaka F, Tsuji S, Mizusawa H, Ishikawa K (2015) A novel mutation in ELOVL4 leading to spinocerebellar ataxia (SCA) with the hot cross bun sign but lacking erythrokeratodermia: a broadened spectrum of SCA34. JAMA Neurol 72:797–805
105.
go back to reference Guo YC, Lin JJ, Liao YC, Tsai PC, Lee YC, Soong BW (2014) Spinocerebellar ataxia 35: novel mutations in TGM6 with clinical and genetic characterization. Neurology 83:1554–1561 Guo YC, Lin JJ, Liao YC, Tsai PC, Lee YC, Soong BW (2014) Spinocerebellar ataxia 35: novel mutations in TGM6 with clinical and genetic characterization. Neurology 83:1554–1561
106.
go back to reference Ikeda Y, Ohta Y, Kobayashi H, Okamoto M, Takamatsu K, Ota T, Manabe Y, Okamoto K, Koizumi A, Abe K (2012) Clinical features of SCA36: a novel spinocerebellar ataxia with motor neuron involvement (Asidan). Neurology 79:333–341 Ikeda Y, Ohta Y, Kobayashi H, Okamoto M, Takamatsu K, Ota T, Manabe Y, Okamoto K, Koizumi A, Abe K (2012) Clinical features of SCA36: a novel spinocerebellar ataxia with motor neuron involvement (Asidan). Neurology 79:333–341
107.
go back to reference García-Murias M, Quintáns B, Arias M, Seixas AI, Cacheiro P, Tarrío R, Pardo J, Millán MJ, Arias-Rivas S, Blanco-Arias P, Dapena D, Moreira R, Rodríguez-Trelles F, Sequeiros J, Carracedo A, Silveira I, Sobrido MJ (2012) ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain 135(Pt 5):1423–1435 García-Murias M, Quintáns B, Arias M, Seixas AI, Cacheiro P, Tarrío R, Pardo J, Millán MJ, Arias-Rivas S, Blanco-Arias P, Dapena D, Moreira R, Rodríguez-Trelles F, Sequeiros J, Carracedo A, Silveira I, Sobrido MJ (2012) ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain 135(Pt 5):1423–1435
108.
go back to reference Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolás H, Roig C, Corral J, Campos B, de Jorge L, Morcillo-Suárez C, Navarro A, Forlani S, Durr A, Kulisevsky J, Brice A, Sánchez I, Volpini V, Matilla-Dueñas A (2013) New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA Neurol 70:764–771 Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolás H, Roig C, Corral J, Campos B, de Jorge L, Morcillo-Suárez C, Navarro A, Forlani S, Durr A, Kulisevsky J, Brice A, Sánchez I, Volpini V, Matilla-Dueñas A (2013) New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA Neurol 70:764–771
109.
go back to reference Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, Loureiro JL, Dhingra A, Brandão E, Cruz VT, Timóteo A, Quintáns B, Rouleau GA, Rizzu P, Carracedo Á, Bessa J, Heutink P, Sequeiros J, Sobrido MJ, Coutinho P, Silveira I (2017) A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet 101:87–103 Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, Loureiro JL, Dhingra A, Brandão E, Cruz VT, Timóteo A, Quintáns B, Rouleau GA, Rizzu P, Carracedo Á, Bessa J, Heutink P, Sequeiros J, Sobrido MJ, Coutinho P, Silveira I (2017) A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet 101:87–103
110.
go back to reference Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, Ragusa N, Mancini C, Gaussen M, Calcia A, Mitro N, Hoxha E, Mura I, Coviello DA, Moon YA, Tesson C, Vaula G, Couarch P, Orsi L, Duregon E, Papotti MG, Deleuze JF, Imbert J, Costanzi C, Padovani A, Giunti P, Maillet-Vioud M, Durr A, Brice A, Tempia F, Funaro A, Boccone L, Caruso D, Stevanin G, Brusco A (2014) ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet 95:209–217 Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, Ragusa N, Mancini C, Gaussen M, Calcia A, Mitro N, Hoxha E, Mura I, Coviello DA, Moon YA, Tesson C, Vaula G, Couarch P, Orsi L, Duregon E, Papotti MG, Deleuze JF, Imbert J, Costanzi C, Padovani A, Giunti P, Maillet-Vioud M, Durr A, Brice A, Tempia F, Funaro A, Boccone L, Caruso D, Stevanin G, Brusco A (2014) ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet 95:209–217
111.
go back to reference Tsoi H, Yu AC, Chen ZS, Ng NK, Chan AY, Yuen LY, Abrigo JM, Tsang SY, Tsui SK, Tong TM, Lo IF, Lam ST, Mok VC, Wong LK, Ngo JC, Lau KF, Chan TF, Chan HY (2014) A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet 51:590–595 Tsoi H, Yu AC, Chen ZS, Ng NK, Chan AY, Yuen LY, Abrigo JM, Tsang SY, Tsui SK, Tong TM, Lo IF, Lam ST, Mok VC, Wong LK, Ngo JC, Lau KF, Chan TF, Chan HY (2014) A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet 51:590–595
112.
go back to reference Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H (2015) A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 8:89 Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H (2015) A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 8:89
113.
go back to reference Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G (2015) A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am J Hum Genet 97:726–737 Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G (2015) A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am J Hum Genet 97:726–737
114.
go back to reference Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N, Pandolfo M (2016) MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet 2:e94 Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N, Pandolfo M (2016) MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet 2:e94
115.
go back to reference Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J, Jayawant S, Fawcett K, Clokie S, Wallis Y, Clouston P, Sims D, Houlden H, Becker EBE, Németh AH (2017) Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am J Hum Genet 101:451–458 Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J, Jayawant S, Fawcett K, Clokie S, Wallis Y, Clouston P, Sims D, Houlden H, Becker EBE, Németh AH (2017) Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am J Hum Genet 101:451–458
116.
go back to reference Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140:2860–2878 Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140:2860–2878
117.
go back to reference van Dijk GW, Wokke JH, Oey PL, Franssen H, Ippel PF, Veldman H (1995) A new variant of sensory ataxic neuropathy with autosomal dominant inheritance. Brain 118(Pt 6):1557–1563 van Dijk GW, Wokke JH, Oey PL, Franssen H, Ippel PF, Veldman H (1995) A new variant of sensory ataxic neuropathy with autosomal dominant inheritance. Brain 118(Pt 6):1557–1563
118.
go back to reference Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, See L, Chen CA, Schaaf CP, Rosenfeld JA, Panzer JA, Moog U, Hao S, Bye A, Kirk EP, Stankiewicz P, Breman AM, McBride A, Kandula T, Dubbs HA, Macintosh R, Cardamone M, Zhu Y, Ying K, Dias KR, Cho MT, Henderson LB, Baskin B, Morris P, Tao J, Cowley MJ, Dinger ME, Roscioli T, Caluseriu O, Suchowersky O, Sachdev RK, Lichtarge O, Tang J, Boycott KM, Holder JL Jr, Zoghbi HY (2018) A mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell 172:924–936.e11 Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, See L, Chen CA, Schaaf CP, Rosenfeld JA, Panzer JA, Moog U, Hao S, Bye A, Kirk EP, Stankiewicz P, Breman AM, McBride A, Kandula T, Dubbs HA, Macintosh R, Cardamone M, Zhu Y, Ying K, Dias KR, Cho MT, Henderson LB, Baskin B, Morris P, Tao J, Cowley MJ, Dinger ME, Roscioli T, Caluseriu O, Suchowersky O, Sachdev RK, Lichtarge O, Tang J, Boycott KM, Holder JL Jr, Zoghbi HY (2018) A mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell 172:924–936.e11
119.
go back to reference Genis D, Ortega-Cubero S, San Nicolas H, Corral J, Gardenyes J, de Jorge L, Lopez E, Campos B, Lorenzo E, Tonda R, Beltran S, Negre M, Obón M, Beltran B, Fàbregas L, Alemany B, Márquez F, Ramió-Torrentà L, Gich J, Volpini V, Pastor P (2018) Heterozygous STUB1 mutation causes familial ataxia with cognitive affective syndrome (SCA48). Neurology 91:e1988–e1998 Genis D, Ortega-Cubero S, San Nicolas H, Corral J, Gardenyes J, de Jorge L, Lopez E, Campos B, Lorenzo E, Tonda R, Beltran S, Negre M, Obón M, Beltran B, Fàbregas L, Alemany B, Márquez F, Ramió-Torrentà L, Gich J, Volpini V, Pastor P (2018) Heterozygous STUB1 mutation causes familial ataxia with cognitive affective syndrome (SCA48). Neurology 91:e1988–e1998
120.
go back to reference Smith JK, Gonda VE, Malamud N (1958) Unusual form of cerebellar ataxia combined dentato-rubral and pallido-Luysian degeneration. Neurology 8:205–209 Smith JK, Gonda VE, Malamud N (1958) Unusual form of cerebellar ataxia combined dentato-rubral and pallido-Luysian degeneration. Neurology 8:205–209
121.
go back to reference Naito H, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32:798–807 Naito H, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32:798–807
122.
go back to reference Farmer TW, Wingfield MS, Lynch SA, Vogel FS, Hulette C, Katchinoff B, Jacobson PL (1989) Ataxia, chorea, seizures, and dementia. Pathologic features of a newly defined familial disorder. Arch Neurol 46:774–779 Farmer TW, Wingfield MS, Lynch SA, Vogel FS, Hulette C, Katchinoff B, Jacobson PL (1989) Ataxia, chorea, seizures, and dementia. Pathologic features of a newly defined familial disorder. Arch Neurol 46:774–779
123.
go back to reference Connarty M, Dennis NR, Patch C, Macpherson JN, Harvey JF (1996) Molecular re-investigation of patients with Huntington's disease in Wessex reveals a family with dentatorubral and pallidoluysian atrophy. Hum Genet 97:76–78 Connarty M, Dennis NR, Patch C, Macpherson JN, Harvey JF (1996) Molecular re-investigation of patients with Huntington's disease in Wessex reveals a family with dentatorubral and pallidoluysian atrophy. Hum Genet 97:76–78
124.
go back to reference Muñoz E, Milà M, Sánchez A, Latorre P, Ariza A, Codina M, Ballesta F, Tolosa E (1999) Dentatorubropallidoluysian atrophy in a spanish family: a clinical, radiological, pathological, and genetic study. J Neurol Neurosurg Psychiatry 67:811–814 Muñoz E, Milà M, Sánchez A, Latorre P, Ariza A, Codina M, Ballesta F, Tolosa E (1999) Dentatorubropallidoluysian atrophy in a spanish family: a clinical, radiological, pathological, and genetic study. J Neurol Neurosurg Psychiatry 67:811–814
125.
go back to reference Vinton A, Fahey MC, O'Brien TJ, Shaw J, Storey E, Gardner RJ, Mitchell PJ, Du Sart D, King JO (2005) Dentatorubral-pallidoluysian atrophy in three generations, with clinical courses from nearly asymptomatic elderly to severe juvenile, in an Australian family of Macedonian descent. Am J Med Genet A 136:201–204 Vinton A, Fahey MC, O'Brien TJ, Shaw J, Storey E, Gardner RJ, Mitchell PJ, Du Sart D, King JO (2005) Dentatorubral-pallidoluysian atrophy in three generations, with clinical courses from nearly asymptomatic elderly to severe juvenile, in an Australian family of Macedonian descent. Am J Med Genet A 136:201–204
Metadata
Title
Eye movement changes in autosomal dominant spinocerebellar ataxias
Authors
Francesca Rosini
Elena Pretegiani
Carla Battisti
Maria Teresa Dotti
Antonio Federico
Alessandra Rufa
Publication date
01-07-2020
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 7/2020
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-020-04318-4

Other articles of this Issue 7/2020

Neurological Sciences 7/2020 Go to the issue