Skip to main content
Top
Published in: Clinical Rheumatology 12/2013

01-12-2013 | Review Article

Perspectives of the relationship between IL-7 and autoimmune diseases

Authors: Xiao-Song Wang, Bao-Zhu Li, Lin-Feng Hu, Peng-Fei Wen, Min Zhang, Hai-Feng Pan, Dong-Qing Ye

Published in: Clinical Rheumatology | Issue 12/2013

Login to get access

Abstract

Interleukin (IL)-7 is one of the IL-2 family cytokines comprised of IL-2, IL-4, IL-7, IL-9, IL-15, as well as IL-21. IL-7 is mainly secreted by stroma cells in primary lymphoid tissues, playing an essential role in the program of T cell development. Recently, studies have revealed that physiological function exerted by immunocytes can be influenced by aberrant IL-7 signaling, which is common in abnormal autoimmunity regulation. There is also increasing evidence that IL-7 is involved in several autoimmune diseases, such as rheumatoid arthritis, type I diabetes, multiple sclerosis and systemic lupus erythematosus, etc. Targeting components in IL-7 signaling pathways may have potential significance for treating numerous autoimmune diseases. In this review, we therefore summarize our current understandings regarding the relationship between IL-7 and autoimmune diseases so as to render more valuable information on this kind of research.
Literature
1.
go back to reference Bikker A, Hack CE, Lafeber FP, van Roon JA (2012) Interleukin-7: a key mediator in T cell-driven autoimmunity, inflammation, and tissue destruction. Curr Pharm Des 18(16):2347–2356PubMedCrossRef Bikker A, Hack CE, Lafeber FP, van Roon JA (2012) Interleukin-7: a key mediator in T cell-driven autoimmunity, inflammation, and tissue destruction. Curr Pharm Des 18(16):2347–2356PubMedCrossRef
2.
go back to reference van Roon JA, Verweij MC, Wijk MW et al (2005) Increased intraarticular interleukin-7 in rheumatoid arthritis patients stimulates cell contact-dependent activation of CD4(+) T cells and macrophages. Arthritis Rheum 52(6):1700–1710PubMedCrossRef van Roon JA, Verweij MC, Wijk MW et al (2005) Increased intraarticular interleukin-7 in rheumatoid arthritis patients stimulates cell contact-dependent activation of CD4(+) T cells and macrophages. Arthritis Rheum 52(6):1700–1710PubMedCrossRef
3.
go back to reference Harrison C (2012) Autoimmune disease: targeting IL-7 reverses type 1 diabetes. Nat Rev Drug Discov 11(8):599PubMedCrossRef Harrison C (2012) Autoimmune disease: targeting IL-7 reverses type 1 diabetes. Nat Rev Drug Discov 11(8):599PubMedCrossRef
4.
go back to reference Liu X, Leung S, Wang C et al (2010) Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease. Nat Med 16(2):191–197PubMedCrossRef Liu X, Leung S, Wang C et al (2010) Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease. Nat Med 16(2):191–197PubMedCrossRef
5.
go back to reference Gregory SG, Schmidt S, Seth P et al (2007) Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 39(9):1083–1091PubMedCrossRef Gregory SG, Schmidt S, Seth P et al (2007) Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 39(9):1083–1091PubMedCrossRef
6.
go back to reference Badot V, Luijten RK, van Roon JA et al (2013) Serum soluble interleukin 7 receptor is strongly associated with lupus nephritis in patients with systemic lupus erythematosus. Ann Rheum Dis 72(3):453–456PubMedCrossRef Badot V, Luijten RK, van Roon JA et al (2013) Serum soluble interleukin 7 receptor is strongly associated with lupus nephritis in patients with systemic lupus erythematosus. Ann Rheum Dis 72(3):453–456PubMedCrossRef
7.
go back to reference Lundström W, Highfill S, Walsh ST et al (2013) Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proc Natl Acad Sci U S A 110(19):E1761–E1770PubMedCrossRef Lundström W, Highfill S, Walsh ST et al (2013) Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proc Natl Acad Sci U S A 110(19):E1761–E1770PubMedCrossRef
8.
go back to reference Pillai M, Torok-Storb B, Iwata M (2004) Expression and function of IL-7 receptors in marrow stromal cells. Leuk Lymphoma 45(12):2403–2408PubMedCrossRef Pillai M, Torok-Storb B, Iwata M (2004) Expression and function of IL-7 receptors in marrow stromal cells. Leuk Lymphoma 45(12):2403–2408PubMedCrossRef
9.
go back to reference McElroy CA, Dohm JA, Walsh ST (2009) Structural and biophysical studies of the human IL-7/IL-7Ralpha complex. Structure 17(1):54–65PubMedCrossRef McElroy CA, Dohm JA, Walsh ST (2009) Structural and biophysical studies of the human IL-7/IL-7Ralpha complex. Structure 17(1):54–65PubMedCrossRef
10.
11.
go back to reference Hong C, Luckey MA, Park J-H (2012) Intrathymic IL-7: the where, when, and why of IL-7 signaling during T cell development. Semin Immunol 24(3):151–158PubMedCrossRef Hong C, Luckey MA, Park J-H (2012) Intrathymic IL-7: the where, when, and why of IL-7 signaling during T cell development. Semin Immunol 24(3):151–158PubMedCrossRef
12.
go back to reference Jiang Q, Huang J, Li WQ et al (2007) Role of the intracellular domain of IL-7 receptor in T cell development. J Immunol 178(1):228–234PubMed Jiang Q, Huang J, Li WQ et al (2007) Role of the intracellular domain of IL-7 receptor in T cell development. J Immunol 178(1):228–234PubMed
13.
go back to reference Mazzucchelli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7(2):144–154PubMedCrossRef Mazzucchelli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7(2):144–154PubMedCrossRef
14.
go back to reference Rose T, Pillet AH, Lavergne V et al (2010) Interleukin-7 compartmentalizes its receptor signaling complex to initiate CD4 T lymphocyte response. J Biol Chem 285(20):14898–14908PubMedCrossRef Rose T, Pillet AH, Lavergne V et al (2010) Interleukin-7 compartmentalizes its receptor signaling complex to initiate CD4 T lymphocyte response. J Biol Chem 285(20):14898–14908PubMedCrossRef
15.
go back to reference Benbernou N, Muegge K, Durum SK (2000) Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Ralpha. J Biol Chem 275(10):7060–7065PubMedCrossRef Benbernou N, Muegge K, Durum SK (2000) Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Ralpha. J Biol Chem 275(10):7060–7065PubMedCrossRef
16.
go back to reference Quintas-Cardama A, Verstovsek S (2013) Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res 19(8):1933–1940PubMedCrossRef Quintas-Cardama A, Verstovsek S (2013) Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res 19(8):1933–1940PubMedCrossRef
17.
go back to reference Palmer MJ, Mahajan VS, Trajman LC et al (2008) Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol 5(2):79–89PubMedCrossRef Palmer MJ, Mahajan VS, Trajman LC et al (2008) Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol 5(2):79–89PubMedCrossRef
18.
go back to reference Jiang Q, Li WQ, Aiello FB et al (2005) Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 16(4–5):513–533PubMedCrossRef Jiang Q, Li WQ, Aiello FB et al (2005) Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 16(4–5):513–533PubMedCrossRef
20.
go back to reference Corfe SA, Paige CJ (2012) The many roles of IL-7 in B cell development; mediator of survival, proliferation and differentiation. Semin Immunol 24(3):198–208PubMedCrossRef Corfe SA, Paige CJ (2012) The many roles of IL-7 in B cell development; mediator of survival, proliferation and differentiation. Semin Immunol 24(3):198–208PubMedCrossRef
21.
go back to reference Smyth CM, Ginn SL, Deakin CT et al (2007) Limiting {gamma}c expression differentially affects signaling via the interleukin IL-7 and IL-15 receptors. Blood 110(1):91–98PubMedCrossRef Smyth CM, Ginn SL, Deakin CT et al (2007) Limiting {gamma}c expression differentially affects signaling via the interleukin IL-7 and IL-15 receptors. Blood 110(1):91–98PubMedCrossRef
22.
go back to reference Carrette F, Surh CD (2012) IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol 24(3):209–217PubMedCrossRef Carrette F, Surh CD (2012) IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol 24(3):209–217PubMedCrossRef
23.
go back to reference Boyman O, Ramsey C, Kim DM, Sprent J et al (2008) IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol 180(11):7265–7275PubMed Boyman O, Ramsey C, Kim DM, Sprent J et al (2008) IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol 180(11):7265–7275PubMed
24.
go back to reference El-Kassar N, Flomerfelt FA, Choudhury B et al (2012) High levels of IL-7 cause dysregulation of thymocyte development. Int Immunol 24(10):661–671PubMedCrossRef El-Kassar N, Flomerfelt FA, Choudhury B et al (2012) High levels of IL-7 cause dysregulation of thymocyte development. Int Immunol 24(10):661–671PubMedCrossRef
25.
26.
go back to reference Akashi K, Kondo M, von Freeden-Jeffry U et al (1997) Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89(7):1033–1041PubMedCrossRef Akashi K, Kondo M, von Freeden-Jeffry U et al (1997) Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89(7):1033–1041PubMedCrossRef
27.
go back to reference Malin S, McManus S, Busslinger M (2010) STAT5 in B cell development and leukemia. Curr Opin Immunol 22(2):168–176PubMedCrossRef Malin S, McManus S, Busslinger M (2010) STAT5 in B cell development and leukemia. Curr Opin Immunol 22(2):168–176PubMedCrossRef
28.
go back to reference Holm AM, Aukrust P, Damås JK, Müller F et al (2005) Abnormal interleukin-7 function in common variable immunodeficiency. Blood 105(7):2887–2890PubMedCrossRef Holm AM, Aukrust P, Damås JK, Müller F et al (2005) Abnormal interleukin-7 function in common variable immunodeficiency. Blood 105(7):2887–2890PubMedCrossRef
29.
go back to reference Lundstrom W, Fewkes NM, Mackall CL (2012) IL-7 in human health and disease. Semin Immunol 24(3):218–224PubMedCrossRef Lundstrom W, Fewkes NM, Mackall CL (2012) IL-7 in human health and disease. Semin Immunol 24(3):218–224PubMedCrossRef
30.
go back to reference Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedCrossRef Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedCrossRef
31.
32.
go back to reference Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233–255PubMedCrossRef Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233–255PubMedCrossRef
33.
34.
go back to reference van Amelsfort JM, van Roon JA, Noordegraaf M et al (2007) Proinflammatory mediator-induced reversal of CD4+, CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum 56(3):732–742PubMedCrossRef van Amelsfort JM, van Roon JA, Noordegraaf M et al (2007) Proinflammatory mediator-induced reversal of CD4+, CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum 56(3):732–742PubMedCrossRef
35.
go back to reference Churchman SM, Ponchel F (2008) Interleukin-7 in rheumatoid arthritis. Rheumatology (Oxford) 47(6):753–759CrossRef Churchman SM, Ponchel F (2008) Interleukin-7 in rheumatoid arthritis. Rheumatology (Oxford) 47(6):753–759CrossRef
36.
go back to reference Natsumeda M, Nishiya K, Ota Z (1993) Stimulation by interleukin-7 of mononuclear cells in peripheral blood, synovial fluid and synovial tissue from patients with rheumatoid arthritis. Acta Med Okayama 47(6):391–397PubMed Natsumeda M, Nishiya K, Ota Z (1993) Stimulation by interleukin-7 of mononuclear cells in peripheral blood, synovial fluid and synovial tissue from patients with rheumatoid arthritis. Acta Med Okayama 47(6):391–397PubMed
37.
go back to reference Sawa S, Kamimura D, Jin GH et al (2006) Autoimmune arthritis associated with mutated interleukin (IL)-6 receptor gp130 is driven by STAT3/IL-7-dependent homeostatic proliferation of CD4+ T cells. J Exp Med 203(6):1459–1470PubMedCrossRef Sawa S, Kamimura D, Jin GH et al (2006) Autoimmune arthritis associated with mutated interleukin (IL)-6 receptor gp130 is driven by STAT3/IL-7-dependent homeostatic proliferation of CD4+ T cells. J Exp Med 203(6):1459–1470PubMedCrossRef
38.
go back to reference Harada S, Yamamura M, Okamoto H et al (1999) Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 42(7):1508–1516PubMedCrossRef Harada S, Yamamura M, Okamoto H et al (1999) Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 42(7):1508–1516PubMedCrossRef
39.
go back to reference van Roon JA, Glaudemans KA, Bijlsma JW et al (2003) Interleukin 7 stimulates tumour necrosis factor alpha and Th1 cytokine production in joints of patients with rheumatoid arthritis. Ann Rheum Dis 62(2):113–119PubMedCrossRef van Roon JA, Glaudemans KA, Bijlsma JW et al (2003) Interleukin 7 stimulates tumour necrosis factor alpha and Th1 cytokine production in joints of patients with rheumatoid arthritis. Ann Rheum Dis 62(2):113–119PubMedCrossRef
40.
go back to reference Pickens SR, Chamberlain ND, Volin MV et al (2011) Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 63(10):2884–2893PubMedCrossRef Pickens SR, Chamberlain ND, Volin MV et al (2011) Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 63(10):2884–2893PubMedCrossRef
41.
go back to reference Rekha P, Conaghan PG, Paul E et al (2012) Progression to rheumatoid arthritis in early inflammatory arthritis is associated with low IL-7 serum levels. Ann Rheum Dis 72(6):1032–1036 Rekha P, Conaghan PG, Paul E et al (2012) Progression to rheumatoid arthritis in early inflammatory arthritis is associated with low IL-7 serum levels. Ann Rheum Dis 72(6):1032–1036
42.
go back to reference Makino T, Fukushima S, Wakasugi S et al (2009) Decreased serum IL-7 levels in patients with systemic sclerosis. Clin Exp Rheumatol 27(3 Suppl 54):68–69PubMed Makino T, Fukushima S, Wakasugi S et al (2009) Decreased serum IL-7 levels in patients with systemic sclerosis. Clin Exp Rheumatol 27(3 Suppl 54):68–69PubMed
43.
go back to reference Kader HA, Tchernev VT, Satyaraj E et al (2005) Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-beta1, and IL-12p40 levels in Crohn's disease and ulcerative colitis patients in remission versus active disease. Am J Gastroenterol 100(2):414–423PubMedCrossRef Kader HA, Tchernev VT, Satyaraj E et al (2005) Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-beta1, and IL-12p40 levels in Crohn's disease and ulcerative colitis patients in remission versus active disease. Am J Gastroenterol 100(2):414–423PubMedCrossRef
44.
go back to reference Lee LF, Logronio K, Tu GH et al (2012) Anti-IL-7 receptor-α reverses established type 1 diabetes in nonobese diabetic mice by modulating effector T-cell function. Proc Natl Acad Sci U S A 109(31):12674–12679PubMedCrossRef Lee LF, Logronio K, Tu GH et al (2012) Anti-IL-7 receptor-α reverses established type 1 diabetes in nonobese diabetic mice by modulating effector T-cell function. Proc Natl Acad Sci U S A 109(31):12674–12679PubMedCrossRef
45.
go back to reference Maahs DM, West NA, Lawrence JM et al (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 39(3):481–497PubMedCrossRef Maahs DM, West NA, Lawrence JM et al (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 39(3):481–497PubMedCrossRef
46.
go back to reference Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMedCrossRef Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMedCrossRef
47.
go back to reference Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300PubMedCrossRef Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300PubMedCrossRef
48.
go back to reference Lee LF, Axtell R, Tu GH et al (2011) IL-7 promotes T(H)1 development and serum IL-7 predicts clinical response to interferon-β in multiple sclerosis. Sci Transl Med 3(93):93ra68PubMedCrossRef Lee LF, Axtell R, Tu GH et al (2011) IL-7 promotes T(H)1 development and serum IL-7 predicts clinical response to interferon-β in multiple sclerosis. Sci Transl Med 3(93):93ra68PubMedCrossRef
49.
go back to reference Penaranda C, Kuswanto W, Hofmann J et al (2012) IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci U S A 109(31):12668–12673PubMedCrossRef Penaranda C, Kuswanto W, Hofmann J et al (2012) IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci U S A 109(31):12668–12673PubMedCrossRef
50.
go back to reference Keir ME, Liang SC, Guleria I et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203(4):883–895PubMedCrossRef Keir ME, Liang SC, Guleria I et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203(4):883–895PubMedCrossRef
51.
go back to reference Hafler DA (2004) Multiple sclerosis. J Clin Invest 113(6):788–794PubMed Hafler DA (2004) Multiple sclerosis. J Clin Invest 113(6):788–794PubMed
52.
go back to reference McFarlin DE, McFarland HF (1982) Multiple sclerosis (first of two parts). N Engl J Med 307(19):1183–1188PubMedCrossRef McFarlin DE, McFarland HF (1982) Multiple sclerosis (first of two parts). N Engl J Med 307(19):1183–1188PubMedCrossRef
53.
go back to reference McFarlin DE, McFarland HF (1982) Multiple sclerosis (second of two parts). N Engl J Med 307(20):1246–1251PubMedCrossRef McFarlin DE, McFarland HF (1982) Multiple sclerosis (second of two parts). N Engl J Med 307(20):1246–1251PubMedCrossRef
54.
go back to reference Fernald GH, Yeh RF, Hauser SL et al (2005) Mapping gene activity in complex disorders: Integration of expression and genomic scans for multiple sclerosis. J Neuroimmunol 167(1–2):157–169PubMedCrossRef Fernald GH, Yeh RF, Hauser SL et al (2005) Mapping gene activity in complex disorders: Integration of expression and genomic scans for multiple sclerosis. J Neuroimmunol 167(1–2):157–169PubMedCrossRef
55.
56.
go back to reference Kreft KL, Verbraak E, Wierenga-Wolf AF et al (2012) Decreased systemic IL-7 and soluble IL-7Rα in multiple sclerosis patients. Genes Immun 13(7):587–592PubMedCrossRef Kreft KL, Verbraak E, Wierenga-Wolf AF et al (2012) Decreased systemic IL-7 and soluble IL-7Rα in multiple sclerosis patients. Genes Immun 13(7):587–592PubMedCrossRef
57.
go back to reference Walline CC, Kanakasabai S, Bright JJ (2011) IL-7Rα confers susceptibility to experimental autoimmune encephalomyelitis. Genes Immun 12(1):1–14PubMedCrossRef Walline CC, Kanakasabai S, Bright JJ (2011) IL-7Rα confers susceptibility to experimental autoimmune encephalomyelitis. Genes Immun 12(1):1–14PubMedCrossRef
58.
go back to reference Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508PubMedCrossRef Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508PubMedCrossRef
59.
go back to reference McGeachy MJ, Chen Y, Tato CM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10(3):314–324PubMedCrossRef McGeachy MJ, Chen Y, Tato CM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10(3):314–324PubMedCrossRef
60.
go back to reference Chen Y, Langrish CL, McKenzie B et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116(5):1317–1326PubMedCrossRef Chen Y, Langrish CL, McKenzie B et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116(5):1317–1326PubMedCrossRef
61.
go back to reference Tiffin N, Adeyemo A, Okpechi I (2013) A diverse array of genetic factors contribute to the pathogenesis of systemic lupus erythematosus. Orphanet J Rare Dis 8(1):2PubMedCrossRef Tiffin N, Adeyemo A, Okpechi I (2013) A diverse array of genetic factors contribute to the pathogenesis of systemic lupus erythematosus. Orphanet J Rare Dis 8(1):2PubMedCrossRef
63.
go back to reference Pons-Estel GJ, Alarcón GS, Scofield L et al (2010) Understanding the epidemiology and progression of systemic lupus erythematosus. Semin Arthritis Rheum 39(4):257–268PubMedCrossRef Pons-Estel GJ, Alarcón GS, Scofield L et al (2010) Understanding the epidemiology and progression of systemic lupus erythematosus. Semin Arthritis Rheum 39(4):257–268PubMedCrossRef
64.
go back to reference Pan HF, Ye DQ, Li XP (2008) Type 17 T-helper cells might be a promising therapeutic target for systemic lupus erythematosus. Nat Clin Pract Rheumatol 4(7):352–353PubMed Pan HF, Ye DQ, Li XP (2008) Type 17 T-helper cells might be a promising therapeutic target for systemic lupus erythematosus. Nat Clin Pract Rheumatol 4(7):352–353PubMed
65.
go back to reference Ohl K, Tenbrock K (2011) Inflammatory cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011:432595PubMedCrossRef Ohl K, Tenbrock K (2011) Inflammatory cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011:432595PubMedCrossRef
66.
go back to reference Ambrosi A, Espinosa A, Wahren-Herlenius M (2012) IL-17: a new actor in IFN-driven systemic autoimmune diseases. Eur J Immunol 42(9):2274–2284PubMedCrossRef Ambrosi A, Espinosa A, Wahren-Herlenius M (2012) IL-17: a new actor in IFN-driven systemic autoimmune diseases. Eur J Immunol 42(9):2274–2284PubMedCrossRef
67.
go back to reference Yang Y, Xiao X, Li F et al (2012) Increased IL-7 expression in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 53(2):1012–1017PubMedCrossRef Yang Y, Xiao X, Li F et al (2012) Increased IL-7 expression in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 53(2):1012–1017PubMedCrossRef
68.
go back to reference Bikker A, Moret FM, Kruize AA et al (2012) IL-7 drives Th1 and Th17 cytokine production in patients with primary SS despite an increase in CD4 T cells lacking the IL-7Rα. Rheumatology (Oxford) 51(6):996–1005CrossRef Bikker A, Moret FM, Kruize AA et al (2012) IL-7 drives Th1 and Th17 cytokine production in patients with primary SS despite an increase in CD4 T cells lacking the IL-7Rα. Rheumatology (Oxford) 51(6):996–1005CrossRef
69.
go back to reference Ben-David H, Sharabi A, Parameswaran R et al (2009) A tolerogenic peptide down-regulates mature B cells in bone marrow of lupus-afflicted mice by inhibition of interleukin-7, leading to apoptosis. Immunology 128(2):245–252PubMedCrossRef Ben-David H, Sharabi A, Parameswaran R et al (2009) A tolerogenic peptide down-regulates mature B cells in bone marrow of lupus-afflicted mice by inhibition of interleukin-7, leading to apoptosis. Immunology 128(2):245–252PubMedCrossRef
Metadata
Title
Perspectives of the relationship between IL-7 and autoimmune diseases
Authors
Xiao-Song Wang
Bao-Zhu Li
Lin-Feng Hu
Peng-Fei Wen
Min Zhang
Hai-Feng Pan
Dong-Qing Ye
Publication date
01-12-2013
Publisher
Springer London
Published in
Clinical Rheumatology / Issue 12/2013
Print ISSN: 0770-3198
Electronic ISSN: 1434-9949
DOI
https://doi.org/10.1007/s10067-013-2360-x

Other articles of this Issue 12/2013

Clinical Rheumatology 12/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.