Skip to main content
Top
Published in: neurogenetics 1/2017

01-01-2017 | Original Article

Epigenome-wide DNA methylation analysis in siblings and monozygotic twins discordant for sporadic Parkinson’s disease revealed different epigenetic patterns in peripheral blood mononuclear cells

Authors: Oliver Kaut, Ina Schmitt, Jörg Tost, Florence Busato, Yi Liu, Per Hofmann, Stephanie H. Witt, Marcella Rietschel, Holger Fröhlich, Ullrich Wüllner

Published in: Neurogenetics | Issue 1/2017

Login to get access

Abstract

Numerous studies have elucidated the genetics of Parkinson’s disease; however, the aetiology of the majority of sporadic cases has not yet been resolved. We hypothesized that epigenetic variations could be associated with PD and evaluated the DNA methylation pattern in PD patients compared to brothers or twins without PD. The methylation of DNA from peripheral blood mononuclear cells of 62 discordant siblings including 24 monozygotic twins was characterized with Illumina DNA Methylation 450K bead arrays and subsequently validated in two independent cohorts: 221 PD vs. 227 healthy individuals (cohort 1) applying Illumina’s VeraCode and 472 PD patients vs. 487 controls (cohort 2) using pyrosequencing. We choose a delta beta of >15 % and selected 62 differentially methylated CpGs in 51 genes from the discordant siblings. Among them, three displayed multiple CpGs per gene: microRNA 886 (MIR886, 10 CpGs), phosphodiesterase 4D (PDE4D, 2 CpGs) and tripartite motif-containing 34 (TRIM34, 2 CpGs). PDE4D was confirmed in both cohorts (p value 2.44e−05). In addition, for biomarker construction, we used the penalized logistic regression model, resulting in a signature of eight CpGs with an AUC of 0.77. Our findings suggest that a distinct level of PD susceptibility stems from individual, epigenetic modifications of specific genes. We identified a signature of CpGs in blood cells that could separate control from disease with a reasonable discriminatory power, holding promise for future epigenetically based biomarker development.
Literature
1.
go back to reference Sharma M, Ioannidis JP, Aasly JO, Annesi G, Brice A, Van Broeckhoven C (2012) Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79:659–667CrossRefPubMedPubMedCentral Sharma M, Ioannidis JP, Aasly JO, Annesi G, Brice A, Van Broeckhoven C (2012) Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79:659–667CrossRefPubMedPubMedCentral
2.
go back to reference Nalls MA, Pankratz N, Lill CM et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46:989–993CrossRefPubMedPubMedCentral Nalls MA, Pankratz N, Lill CM et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46:989–993CrossRefPubMedPubMedCentral
3.
go back to reference Wirdefeldt K, Gatz M, Reynolds CA, Prescott CA, Pedersen NL (2011) Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol Aging 32:1923.e1–1923.e8CrossRef Wirdefeldt K, Gatz M, Reynolds CA, Prescott CA, Pedersen NL (2011) Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol Aging 32:1923.e1–1923.e8CrossRef
4.
go back to reference Christensen BC, Houseman EA, Marsit CJ et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 14:e1000602CrossRef Christensen BC, Houseman EA, Marsit CJ et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 14:e1000602CrossRef
5.
go back to reference Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 14:413–418CrossRef Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 14:413–418CrossRef
6.
go back to reference Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068CrossRefPubMed Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068CrossRefPubMed
7.
go back to reference Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609CrossRefPubMedPubMedCentral Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609CrossRefPubMedPubMedCentral
9.
go back to reference Bell JT, Saffery R (2012) The value of twins in epigenetic epidemiology. Int J Epidemiol 41:140–150CrossRefPubMed Bell JT, Saffery R (2012) The value of twins in epigenetic epidemiology. Int J Epidemiol 41:140–150CrossRefPubMed
10.
go back to reference Champagne FA (2010) Early adversity and developmental outcomes: interaction between genetics, epigenetics, and social experiences across the life span. Perspect Psychol Sci 5:564–574CrossRefPubMed Champagne FA (2010) Early adversity and developmental outcomes: interaction between genetics, epigenetics, and social experiences across the life span. Perspect Psychol Sci 5:564–574CrossRefPubMed
11.
go back to reference Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262CrossRefPubMed Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262CrossRefPubMed
12.
go back to reference Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592CrossRefPubMedPubMedCentral Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592CrossRefPubMedPubMedCentral
14.
go back to reference Kaut O, Schmitt I, Wüllner U (2012) Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 13:87–91CrossRefPubMed Kaut O, Schmitt I, Wüllner U (2012) Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 13:87–91CrossRefPubMed
15.
go back to reference Touleimat N, Tost J (2012) Complete pipeline for Infinium ((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 4:325–341CrossRefPubMed Touleimat N, Tost J (2012) Complete pipeline for Infinium ((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 4:325–341CrossRefPubMed
16.
go back to reference Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, Robinson WP, Kobor MS (2013) Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 6:4CrossRefPubMedPubMedCentral Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, Robinson WP, Kobor MS (2013) Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 6:4CrossRefPubMedPubMedCentral
17.
go back to reference Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24:1547–1548CrossRefPubMed Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24:1547–1548CrossRefPubMed
18.
go back to reference Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, Gallinger S, Hudson TJ, Weksberg R (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8:203–209CrossRefPubMedPubMedCentral Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, Gallinger S, Hudson TJ, Weksberg R (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8:203–209CrossRefPubMedPubMedCentral
19.
go back to reference Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. doi:10.1186/1471-2105-13-86 Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. doi:10.​1186/​1471-2105-13-86
21.
go back to reference Maxx P, Horowitz J, Timothy Greenamyre J (2010) Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 20(Suppl 2):S551–S568 Maxx P, Horowitz J, Timothy Greenamyre J (2010) Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 20(Suppl 2):S551–S568
22.
go back to reference Rusconi L, Salvatoni L, Giudici L, Bertani I, Kilstrup-Nielsen C, Broccoli V (2008) CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J Biol Chem 283:30101–30111CrossRefPubMedPubMedCentral Rusconi L, Salvatoni L, Giudici L, Bertani I, Kilstrup-Nielsen C, Broccoli V (2008) CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J Biol Chem 283:30101–30111CrossRefPubMedPubMedCentral
23.
go back to reference Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI, Takahashi R (2002) CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol Cell 10:55–67CrossRefPubMed Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI, Takahashi R (2002) CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol Cell 10:55–67CrossRefPubMed
24.
go back to reference Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11:587CrossRefPubMedPubMedCentral Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11:587CrossRefPubMedPubMedCentral
25.
26.
go back to reference Cedervall P, Aulabaugh A, Geoghegan KF, McLellan TJ, Pandit J (2015) Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4. Proc Natl Acad Sci U S A 112:E1414–E1422PubMedPubMedCentral Cedervall P, Aulabaugh A, Geoghegan KF, McLellan TJ, Pandit J (2015) Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4. Proc Natl Acad Sci U S A 112:E1414–E1422PubMedPubMedCentral
27.
go back to reference Yang L, Calingasan NY, Lorenzo BJ, Beal MF (2008) Attenuation of MPTP neurotoxicity by rolipram, a specific inhibitor of phosphodiesterase IV. Exp Neurol 211:311–314CrossRefPubMed Yang L, Calingasan NY, Lorenzo BJ, Beal MF (2008) Attenuation of MPTP neurotoxicity by rolipram, a specific inhibitor of phosphodiesterase IV. Exp Neurol 211:311–314CrossRefPubMed
28.
go back to reference Bate C, Williams A (2015) cAMP-inhibits cytoplasmic phospholipase A and protects neurons against amyloid-β-induced synapse damage. Biology (Basel) 4:591–606 Bate C, Williams A (2015) cAMP-inhibits cytoplasmic phospholipase A and protects neurons against amyloid-β-induced synapse damage. Biology (Basel) 4:591–606
29.
go back to reference Hernán MA, Takkouche B, Caamaño-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52:276–284CrossRefPubMed Hernán MA, Takkouche B, Caamaño-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52:276–284CrossRefPubMed
31.
go back to reference Coupland KG, Mellick GD, Silburn PA et al (2014) DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro. Mov Disord 29:1606–1614CrossRefPubMed Coupland KG, Mellick GD, Silburn PA et al (2014) DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro. Mov Disord 29:1606–1614CrossRefPubMed
32.
go back to reference Ricciardi S, Ungaro F, Hambrock M (2012) CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 14:911–923CrossRefPubMed Ricciardi S, Ungaro F, Hambrock M (2012) CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 14:911–923CrossRefPubMed
33.
go back to reference Zhu YC, Li D, Wang L, Lu B, Zheng J, Zhao SL, Zeng R, Xiong ZQ (2013) Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci U S A 110:9118–9123CrossRefPubMedPubMedCentral Zhu YC, Li D, Wang L, Lu B, Zheng J, Zhao SL, Zeng R, Xiong ZQ (2013) Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci U S A 110:9118–9123CrossRefPubMedPubMedCentral
34.
go back to reference Mari F, Azimonti S, Bertani I et al (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum. Mol Genet 14:1935–1946 Mari F, Azimonti S, Bertani I et al (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum. Mol Genet 14:1935–1946
35.
go back to reference Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902CrossRefPubMed Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902CrossRefPubMed
36.
go back to reference Murakami T, Shoji M, Imai Y, Inoue H, Kawarabayashi T, Matsubara E, Harigaya Y, Sasaki A, Takahashi R, Abe K (2004) Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Ann Neurol 55:439–442CrossRefPubMed Murakami T, Shoji M, Imai Y, Inoue H, Kawarabayashi T, Matsubara E, Harigaya Y, Sasaki A, Takahashi R, Abe K (2004) Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Ann Neurol 55:439–442CrossRefPubMed
37.
go back to reference Meyer RC, Giddens MM, Schaefer SA, Hall RA (2013) GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc Natl Acad Sci U S A 110:9529–9534CrossRefPubMedPubMedCentral Meyer RC, Giddens MM, Schaefer SA, Hall RA (2013) GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc Natl Acad Sci U S A 110:9529–9534CrossRefPubMedPubMedCentral
39.
go back to reference Wüllner U, Klockgether T (2003) Inflammation in Parkinson’s disease. J Neurol 250 Suppl 1:I35–138CrossRefPubMed Wüllner U, Klockgether T (2003) Inflammation in Parkinson’s disease. J Neurol 250 Suppl 1:I35–138CrossRefPubMed
40.
go back to reference Chao Y, Wong, SC, Tan, EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. Biomed Res Int: 308654. Review Chao Y, Wong, SC, Tan, EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. Biomed Res Int: 308654. Review
41.
go back to reference Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 125:717–725CrossRefPubMed Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 125:717–725CrossRefPubMed
42.
go back to reference Orimo A, Tominaga N, Yoshimura K, Yamauchi Y, Nomura M, Sato M, Nogi Y, Suzuki M, Suzuki H, Ikeda K, Inoue S, Muramatsu M (2000) Molecular cloning of ring finger protein 21 (RNF21)/interferon-responsive finger protein (ifp1), which possesses two RING-B box-coiled coil domains in tandem. Genomics 69:143–149CrossRefPubMed Orimo A, Tominaga N, Yoshimura K, Yamauchi Y, Nomura M, Sato M, Nogi Y, Suzuki M, Suzuki H, Ikeda K, Inoue S, Muramatsu M (2000) Molecular cloning of ring finger protein 21 (RNF21)/interferon-responsive finger protein (ifp1), which possesses two RING-B box-coiled coil domains in tandem. Genomics 69:143–149CrossRefPubMed
43.
go back to reference Rajsbaum R, Versteeg GA, Schmid S et al (2014) Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKε kinase-mediated antiviral response. Immunity 40:880–895CrossRefPubMedPubMedCentral Rajsbaum R, Versteeg GA, Schmid S et al (2014) Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKε kinase-mediated antiviral response. Immunity 40:880–895CrossRefPubMedPubMedCentral
44.
go back to reference Candel S, Sepulcre MP, Espín-Palazón R, Tyrkalska SD, de Oliveira S, Meseguer J, Mulero V (2015) Md1 and Rp105 regulate innate immunity and viral resistance in zebrafish. Dev Comp Immunol 50:155–165CrossRefPubMed Candel S, Sepulcre MP, Espín-Palazón R, Tyrkalska SD, de Oliveira S, Meseguer J, Mulero V (2015) Md1 and Rp105 regulate innate immunity and viral resistance in zebrafish. Dev Comp Immunol 50:155–165CrossRefPubMed
45.
go back to reference Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun M, Ascherio A (2005) Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58:963–967CrossRefPubMed Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun M, Ascherio A (2005) Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58:963–967CrossRefPubMed
46.
go back to reference Eyal A, Szargel R, Avraham E, Liani E, Haskin J, Rott R, Engelender S (2006) Synphilin-1A: an aggregation-prone isoform of synphilin-1 that causes neuronal death and is present in aggregates from alpha-synucleinopathy patients. Proc Natl Acad Sci U S A 103:5917–5922CrossRefPubMedPubMedCentral Eyal A, Szargel R, Avraham E, Liani E, Haskin J, Rott R, Engelender S (2006) Synphilin-1A: an aggregation-prone isoform of synphilin-1 that causes neuronal death and is present in aggregates from alpha-synucleinopathy patients. Proc Natl Acad Sci U S A 103:5917–5922CrossRefPubMedPubMedCentral
47.
go back to reference Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41:240–245CrossRefPubMed Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41:240–245CrossRefPubMed
49.
go back to reference Masliah E, Dumaop W, Galasko D, Desplats P (2013) Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 8:1030–1038CrossRefPubMedPubMedCentral Masliah E, Dumaop W, Galasko D, Desplats P (2013) Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 8:1030–1038CrossRefPubMedPubMedCentral
50.
go back to reference Davies MN, Volta M, Pidsley R (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43CrossRefPubMedPubMedCentral Davies MN, Volta M, Pidsley R (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43CrossRefPubMedPubMedCentral
Metadata
Title
Epigenome-wide DNA methylation analysis in siblings and monozygotic twins discordant for sporadic Parkinson’s disease revealed different epigenetic patterns in peripheral blood mononuclear cells
Authors
Oliver Kaut
Ina Schmitt
Jörg Tost
Florence Busato
Yi Liu
Per Hofmann
Stephanie H. Witt
Marcella Rietschel
Holger Fröhlich
Ullrich Wüllner
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Neurogenetics / Issue 1/2017
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-016-0497-x

Other articles of this Issue 1/2017

neurogenetics 1/2017 Go to the issue