Skip to main content
Top
Published in: Journal of Artificial Organs 4/2014

01-12-2014 | Original Article

Comparison of the long-term effects on rabbit bone defects between Tetrabone® and β-tricalcium phosphate granules implantation

Authors: Sungjin Choi, I-Li Liu, Kenichi Yamamoto, Muneki Honnami, Shinsuke Ohba, Ryosuke Echigo, Takamasa Sakai, Kazuyo Igawa, Shigeki Suzuki, Ryouhei Nishimura, Ung-il Chung, Nobuo Sasaki, Manabu Mochizuki

Published in: Journal of Artificial Organs | Issue 4/2014

Login to get access

Abstract

Tetrabone® is a newly developed granular artificial bone. The 1-mm Tetrabone® has a four-legged structure. In this study, the long-term effect of implanting Tetrabone® or β-TCP granules in rabbit femoral cylindrical defects was evaluated. The rabbits were euthanized at 4, 13, and 26 weeks after implantation. Micro-CT was conducted to evaluate the residual material volume and the non-osseous tissue volume. New bone tissue areas were measured by histological analysis. Micro-CT imaging showed that the residual material volume in the β-TCP group had decreased significantly at 4 weeks after implantation (P < 0.05) and that the β-TCP granules had nearly disappeared at 26 weeks after implantation. In the Tetrabone® group, it did not significantly change until 13 weeks after implantation; it then continued to decrease slightly until 26 weeks after implantation. The non-osseous volume increased in the β-TCP group, whereas that of the Tetrabone® group decreased (P < 0.05). Histological examination showed that the new bone areas were significantly greater in the Tetrabone® group than in the β-TCP group at 13 and 26 weeks. In conclusion, resorption of β-TCP granules occurs before sufficient bone formation, thereby allowing non-osseous tissue invasion. Tetrabone® resorption progressed slowly while the new bone tissues were formed, thus allowing better healing. Tetrabone® showed better osteoconductivity, whereas the β-TCP granules lost their function over a long duration. These results may be caused by the differences in the absorption rate of the granules, intergranular pore structure, and crystallinity of each granule.
Literature
1.
go back to reference LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop. 2002;395:81–98.PubMedCrossRef LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop. 2002;395:81–98.PubMedCrossRef
2.
go back to reference Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res. 1999;44:31–43.PubMedCrossRef Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res. 1999;44:31–43.PubMedCrossRef
3.
go back to reference Merten HA, Wiltfang J, Grohmann U, Hoenig JF. Intraindividual comparative animal study of alpha- and beta-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J Craniofac Surg. 2001;12:59–68.PubMedCrossRef Merten HA, Wiltfang J, Grohmann U, Hoenig JF. Intraindividual comparative animal study of alpha- and beta-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J Craniofac Surg. 2001;12:59–68.PubMedCrossRef
4.
go back to reference Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, Inoue H, Irie H, Endo N. Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle. Biomaterials. 2005;26:5600–8.PubMedCrossRef Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, Inoue H, Irie H, Endo N. Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle. Biomaterials. 2005;26:5600–8.PubMedCrossRef
5.
go back to reference Hirota M, Matsui Y, Mizuki N, Kishi T, Watanuki K, Ozawa T, Fukui T, Shoji S, Adachi M, Monden Y, Iwai T, Tohnai I. Combination with allogenic bone reduces early absorption of beta-tricalcium phosphate (beta-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects. Dent Mater J. 2009;28:153–61.PubMedCrossRef Hirota M, Matsui Y, Mizuki N, Kishi T, Watanuki K, Ozawa T, Fukui T, Shoji S, Adachi M, Monden Y, Iwai T, Tohnai I. Combination with allogenic bone reduces early absorption of beta-tricalcium phosphate (beta-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects. Dent Mater J. 2009;28:153–61.PubMedCrossRef
6.
go back to reference Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials. 2002;23:407–12.PubMedCrossRef Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials. 2002;23:407–12.PubMedCrossRef
7.
go back to reference Brown WE, Smith JP, Frazier AW, Lehr JR. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature. 1962;196:1050–5.CrossRef Brown WE, Smith JP, Frazier AW, Lehr JR. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature. 1962;196:1050–5.CrossRef
8.
go back to reference Imaizumi H, Sakurai M, Kashimoto O, Kikawa T, Suzuki O. Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow. Calcif Tissue Int. 2006;78:45–54.PubMedCrossRef Imaizumi H, Sakurai M, Kashimoto O, Kikawa T, Suzuki O. Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow. Calcif Tissue Int. 2006;78:45–54.PubMedCrossRef
9.
go back to reference Miyatake N, Kishimoto KN, Anada T, Imaizumi H, Itoi E, Suzuki O. Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics. Biomaterials. 2009;30:1005–14.PubMedCrossRef Miyatake N, Kishimoto KN, Anada T, Imaizumi H, Itoi E, Suzuki O. Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics. Biomaterials. 2009;30:1005–14.PubMedCrossRef
10.
go back to reference Shelton RM, Liu Y, Cooper PR, Gbureck U, German MJ, Barralet JE. Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials. 2006;27:2874–81.PubMedCrossRef Shelton RM, Liu Y, Cooper PR, Gbureck U, German MJ, Barralet JE. Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials. 2006;27:2874–81.PubMedCrossRef
11.
go back to reference Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, Kamijo R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials. 2006;27:2671–81.PubMedCrossRef Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, Kamijo R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials. 2006;27:2671–81.PubMedCrossRef
12.
go back to reference Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O. Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater. 2009;5:1756–66.PubMedCrossRef Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O. Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater. 2009;5:1756–66.PubMedCrossRef
13.
go back to reference Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K. Implantation of octacalcium phosphate nucleates isolated bone formation in rat skull defects. Oral Dis. 2001;7:259–65.PubMedCrossRef Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K. Implantation of octacalcium phosphate nucleates isolated bone formation in rat skull defects. Oral Dis. 2001;7:259–65.PubMedCrossRef
14.
go back to reference Choi S, Liu IL, Yamamoto K, Igawa K, Mochizuki M, Sakai T, Echigo R, Honnami M, Suzuki S, Chung UI, Sasaki N. Development and evaluation of tetrapod-shaped granular artificial bones. Acta Biomater. 2012;8:2340–7.PubMedCrossRef Choi S, Liu IL, Yamamoto K, Igawa K, Mochizuki M, Sakai T, Echigo R, Honnami M, Suzuki S, Chung UI, Sasaki N. Development and evaluation of tetrapod-shaped granular artificial bones. Acta Biomater. 2012;8:2340–7.PubMedCrossRef
15.
go back to reference Kihara H, Shiota M, Yamashita Y, Kasugai S. Biodegradation process of alpha-TCP particles and new bone formation in a rabbit cranial defect model. J Biomed Mater Res B Appl Biomater. 2006;79:284–91.PubMedCrossRef Kihara H, Shiota M, Yamashita Y, Kasugai S. Biodegradation process of alpha-TCP particles and new bone formation in a rabbit cranial defect model. J Biomed Mater Res B Appl Biomater. 2006;79:284–91.PubMedCrossRef
16.
go back to reference Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of alpha-tricalcium phosphate, beta-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A. 2011;98:488–98.PubMedCrossRef Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of alpha-tricalcium phosphate, beta-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A. 2011;98:488–98.PubMedCrossRef
17.
go back to reference Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P. Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res. 2002;63:115–21.PubMedCrossRef Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P. Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res. 2002;63:115–21.PubMedCrossRef
18.
go back to reference Chawla K, Lamba AK, Faraz F, Tandon S. Evaluation Of beta-tricalcium phosphate in human infrabony periodontal osseous defects: a clinical study. Quintessence Int. 2011;42:291–300.PubMed Chawla K, Lamba AK, Faraz F, Tandon S. Evaluation Of beta-tricalcium phosphate in human infrabony periodontal osseous defects: a clinical study. Quintessence Int. 2011;42:291–300.PubMed
19.
go back to reference Garrido CA, Lobo SE, Turibio FM, Legeros RZ. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int J Biomater. 2011;2011:129727.PubMedCentralPubMedCrossRef Garrido CA, Lobo SE, Turibio FM, Legeros RZ. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int J Biomater. 2011;2011:129727.PubMedCentralPubMedCrossRef
20.
go back to reference Weijs WL, Siebers TJ, Kuijpers-Jagtman AM, Berge SJ, Meijer GJ, Borstlap WA. Early secondary closure of alveolar clefts with mandibular symphyseal bone grafts and beta-tri calcium phosphate (beta-TCP). Int J Oral Maxillofac Surg. 2010;39:424–9.PubMedCrossRef Weijs WL, Siebers TJ, Kuijpers-Jagtman AM, Berge SJ, Meijer GJ, Borstlap WA. Early secondary closure of alveolar clefts with mandibular symphyseal bone grafts and beta-tri calcium phosphate (beta-TCP). Int J Oral Maxillofac Surg. 2010;39:424–9.PubMedCrossRef
21.
go back to reference Chai YC, Kerckhofs G, Roberts SJ, Van Bael S, Schepers E, Vleugels J, Luyten FP, Schrooten J. Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4 V hybrids produced by perfusion electrodeposition. Biomaterials. 2012;33:4044–58.PubMedCrossRef Chai YC, Kerckhofs G, Roberts SJ, Van Bael S, Schepers E, Vleugels J, Luyten FP, Schrooten J. Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4 V hybrids produced by perfusion electrodeposition. Biomaterials. 2012;33:4044–58.PubMedCrossRef
22.
go back to reference Meleo D, Bedini R, Pecci R, Mangione F, Pacifici L. Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology. Ann Ist Super Sanita. 2012;48:59–64.PubMed Meleo D, Bedini R, Pecci R, Mangione F, Pacifici L. Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology. Ann Ist Super Sanita. 2012;48:59–64.PubMed
23.
go back to reference Wu CC, Wang CC, Lu DH, Hsu LH, Yang KC, Lin FH. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats. Biomed Mater. 2012;7:035009.PubMedCrossRef Wu CC, Wang CC, Lu DH, Hsu LH, Yang KC, Lin FH. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats. Biomed Mater. 2012;7:035009.PubMedCrossRef
24.
go back to reference Chazono M, Tanaka T, Komaki H, Fujii K. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J Biomed Mater Res A. 2004;70:542–9.PubMedCrossRef Chazono M, Tanaka T, Komaki H, Fujii K. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J Biomed Mater Res A. 2004;70:542–9.PubMedCrossRef
25.
go back to reference Kamakura S, Sasano Y, Shimizu T, Hatori K, Suzuki O, Kagayama M, Motegi K. Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and hydroxyapatite. J Biomed Mater Res. 2002;59:29–34.PubMedCrossRef Kamakura S, Sasano Y, Shimizu T, Hatori K, Suzuki O, Kagayama M, Motegi K. Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and hydroxyapatite. J Biomed Mater Res. 2002;59:29–34.PubMedCrossRef
26.
go back to reference De Groot K. Effect of porosity and physicochemical properties on the stability, resorption, and strength of calcium phosphate ceramics. Ann N Y Acad Sci. 1988;523:227–33.PubMedCrossRef De Groot K. Effect of porosity and physicochemical properties on the stability, resorption, and strength of calcium phosphate ceramics. Ann N Y Acad Sci. 1988;523:227–33.PubMedCrossRef
27.
go back to reference Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63:408–12.PubMedCrossRef Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63:408–12.PubMedCrossRef
28.
go back to reference Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29:266–71.PubMedCrossRef Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29:266–71.PubMedCrossRef
29.
go back to reference Field JR, McGee M, Wildenauer C, Kurmis A, Margerrison E. The utilization of a synthetic bone void filler (JAX) in the repair of a femoral segmental defect. Vet Comp Orthop Traumatol. 2009;22:87–95.PubMed Field JR, McGee M, Wildenauer C, Kurmis A, Margerrison E. The utilization of a synthetic bone void filler (JAX) in the repair of a femoral segmental defect. Vet Comp Orthop Traumatol. 2009;22:87–95.PubMed
30.
go back to reference Paul W, Sharma CP. Development of porous spherical hydroxyapatite granules: application towards protein delivery. J Mater Sci Mater Med. 1999;10:383–8.PubMedCrossRef Paul W, Sharma CP. Development of porous spherical hydroxyapatite granules: application towards protein delivery. J Mater Sci Mater Med. 1999;10:383–8.PubMedCrossRef
31.
go back to reference Kamakura S, Sasaki K, Homma T, Honda Y, Anada T, Echigo S, Suzuki O. The primacy of octacalcium phosphate collagen composites in bone regeneration. J Biomed Mater Res A. 2007;83:725–33.PubMedCrossRef Kamakura S, Sasaki K, Homma T, Honda Y, Anada T, Echigo S, Suzuki O. The primacy of octacalcium phosphate collagen composites in bone regeneration. J Biomed Mater Res A. 2007;83:725–33.PubMedCrossRef
32.
go back to reference Suzuki O, Kamakura S, Katagiri T. Surface chemistry and biological responses to synthetic octacalcium phosphate. J Biomed Mater Res B Appl Biomater. 2006;77:201–12.PubMedCrossRef Suzuki O, Kamakura S, Katagiri T. Surface chemistry and biological responses to synthetic octacalcium phosphate. J Biomed Mater Res B Appl Biomater. 2006;77:201–12.PubMedCrossRef
33.
go back to reference Zerbo IR, Bronckers AL, de Lange G, Burger EH. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials. 2005;26:1445–51.PubMedCrossRef Zerbo IR, Bronckers AL, de Lange G, Burger EH. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials. 2005;26:1445–51.PubMedCrossRef
Metadata
Title
Comparison of the long-term effects on rabbit bone defects between Tetrabone® and β-tricalcium phosphate granules implantation
Authors
Sungjin Choi
I-Li Liu
Kenichi Yamamoto
Muneki Honnami
Shinsuke Ohba
Ryosuke Echigo
Takamasa Sakai
Kazuyo Igawa
Shigeki Suzuki
Ryouhei Nishimura
Ung-il Chung
Nobuo Sasaki
Manabu Mochizuki
Publication date
01-12-2014
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 4/2014
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-014-0778-9

Other articles of this Issue 4/2014

Journal of Artificial Organs 4/2014 Go to the issue