Skip to main content
Top
Published in: Medical Molecular Morphology 2/2018

Open Access 01-06-2018 | Original Paper

H+-ATPase blockade reduced renal gluconeogenesis and plasma glucose in a diabetic rat model

Authors: Akihiro Tojo, Saaya Hatakeyama, Masaomi Nangaku, Toshihiko Ishimitsu

Published in: Medical Molecular Morphology | Issue 2/2018

Login to get access

Abstract

Vacuolar H+-adenosine triphosphatase (ATPase) plays important roles in urinary acid excretion, vesicular acidification to activate enzymes, and the membrane recycling of transporters in the kidney. As acidosis stimulates renal gluconeogenesis, we investigated the effect of blockade of H+-ATPase on renal gluconeogenesis in diabetic rats. Diabetes mellitus was induced by a single injection of streptozotocin, and a group of DM rats was treated with bafilomycin B1 intraperitoneally for 8 days. In diabetic rats, the renal expression and activity of H+-ATPase were increased with elevated urinary ammonium excretion. The blockade of H+-ATPase by bafilomycin B1 reduced the renal H+-ATPase activity and urinary ammonium excretion in diabetic rats. Treatment with bafilomycin suppressed the enhancement of the renal gluconeogenesis enzymes phosphoenol pyruvate carboxykinase and glucose-6-phosphatase in diabetic rats and reduced the renal cytoplasmic glucose levels, whereas hepatic gluconeogenesis did not change significantly. After a 24-h starvation period, bafilomycin decreased the plasma glucose level to a normal level in diabetic rats. The suppression of renal gluconeogenesis by an H+-ATPase inhibitor may therefore be a new therapeutic target for the treatment of diabetes mellitus.
Literature
1.
2.
go back to reference Bennett FI, Alexander JE, Roobol A, Alleyne GA (1975) Effect of starvation on renal metabolism in the rat. Kidney Int 7:380–384CrossRefPubMed Bennett FI, Alexander JE, Roobol A, Alleyne GA (1975) Effect of starvation on renal metabolism in the rat. Kidney Int 7:380–384CrossRefPubMed
3.
go back to reference Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 27:136–142CrossRefPubMedPubMedCentral Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 27:136–142CrossRefPubMedPubMedCentral
4.
go back to reference Meyer C, Stumvoll M, Dostou J, Welle S, Haymond M, Gerich J (2002) Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J Physiol Endocrinol Metab 282:E428–E434CrossRefPubMed Meyer C, Stumvoll M, Dostou J, Welle S, Haymond M, Gerich J (2002) Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J Physiol Endocrinol Metab 282:E428–E434CrossRefPubMed
5.
go back to reference Conjard A, Martin M, Guitton J, Baverel G, Ferrier B (2001) Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline. Biochem J 360:371–377CrossRefPubMedPubMedCentral Conjard A, Martin M, Guitton J, Baverel G, Ferrier B (2001) Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline. Biochem J 360:371–377CrossRefPubMedPubMedCentral
6.
go back to reference Goodman AD, Fuisz RE, Cahill GF Jr (1966) Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: its possible role in regulation of renal ammonia production. J Clin Invest 45:612–619CrossRefPubMedPubMedCentral Goodman AD, Fuisz RE, Cahill GF Jr (1966) Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: its possible role in regulation of renal ammonia production. J Clin Invest 45:612–619CrossRefPubMedPubMedCentral
7.
go back to reference Alleyne GA (1968) Concentrations of metabolic intermediates in kidneys of rats with metabolic acidosis. Nature 217:847–848CrossRefPubMed Alleyne GA (1968) Concentrations of metabolic intermediates in kidneys of rats with metabolic acidosis. Nature 217:847–848CrossRefPubMed
8.
go back to reference Alleyne GA, Scullard GH (1969) Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat. J Clin Invest 48:364–370CrossRefPubMedPubMedCentral Alleyne GA, Scullard GH (1969) Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat. J Clin Invest 48:364–370CrossRefPubMedPubMedCentral
9.
go back to reference Madsen KM, Tisher CC (1985) Structure-function relationships in H+-secreting epithelia. Fed Proc 44:2704–2709PubMed Madsen KM, Tisher CC (1985) Structure-function relationships in H+-secreting epithelia. Fed Proc 44:2704–2709PubMed
10.
go back to reference Tisher CC, Madsen KM, Verlander JW (1991) Structural adaptation of the collecting duct to acid–base disturbances. Contrib Nephrol 95:168–177CrossRefPubMed Tisher CC, Madsen KM, Verlander JW (1991) Structural adaptation of the collecting duct to acid–base disturbances. Contrib Nephrol 95:168–177CrossRefPubMed
11.
go back to reference Gluck SL, Underhill DM, Iyori M, Holliday LS, Kostrominova TY, Lee BS (1996) Physiology and biochemistry of the kidney vacuolar H+-ATPase. Annu Rev Physiol 58:427–445CrossRefPubMed Gluck SL, Underhill DM, Iyori M, Holliday LS, Kostrominova TY, Lee BS (1996) Physiology and biochemistry of the kidney vacuolar H+-ATPase. Annu Rev Physiol 58:427–445CrossRefPubMed
12.
go back to reference Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314CrossRefPubMed Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314CrossRefPubMed
13.
go back to reference Marshansky V, Bourgoin S, Londono I, Bendayan M, Maranda B, Vinay P (1997) Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 18:2661–2676CrossRefPubMed Marshansky V, Bourgoin S, Londono I, Bendayan M, Maranda B, Vinay P (1997) Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 18:2661–2676CrossRefPubMed
14.
go back to reference Sun-Wada GH, Wada Y, Futai M (2003) Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase. Cell Struct Funct 28:455–463CrossRefPubMed Sun-Wada GH, Wada Y, Futai M (2003) Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase. Cell Struct Funct 28:455–463CrossRefPubMed
15.
go back to reference Omura S, Otoguro K, Nishikiori T, Oiwa R, Iwai Y (1981) Setamycin, a new antibiotic. J Antibiot (Tokyo) 34:1253–1256CrossRef Omura S, Otoguro K, Nishikiori T, Oiwa R, Iwai Y (1981) Setamycin, a new antibiotic. J Antibiot (Tokyo) 34:1253–1256CrossRef
16.
go back to reference Tojo A, Hatakeyama S, Kinugasa S, Nangaku M (2015) Angiotensin receptor blocker telmisartan suppresses renal gluconeogenesis during starvation. Diabetes Metab Syndr Obes 8:103–113CrossRefPubMedPubMedCentral Tojo A, Hatakeyama S, Kinugasa S, Nangaku M (2015) Angiotensin receptor blocker telmisartan suppresses renal gluconeogenesis during starvation. Diabetes Metab Syndr Obes 8:103–113CrossRefPubMedPubMedCentral
17.
go back to reference Tojo A, Tisher CC, Madsen KM (1994) Angiotensin II regulates H(+)-ATPase activity in rat cortical collecting duct. Am J Physiol 267:F1045–F1051CrossRefPubMed Tojo A, Tisher CC, Madsen KM (1994) Angiotensin II regulates H(+)-ATPase activity in rat cortical collecting duct. Am J Physiol 267:F1045–F1051CrossRefPubMed
18.
go back to reference Rojas JD, Sennoune SR, Martinez GM, Bakunts K, Meininger CJ, Wu G, Wesson DE, Seftor EA, Hendrix MJ, Martinez-Zaguilan R (2004) Plasmalemmal vacuolar H+-ATPase is decreased in microvascular endothelial cells from a diabetic model. J Cell Physiol 201:190–200CrossRefPubMed Rojas JD, Sennoune SR, Martinez GM, Bakunts K, Meininger CJ, Wu G, Wesson DE, Seftor EA, Hendrix MJ, Martinez-Zaguilan R (2004) Plasmalemmal vacuolar H+-ATPase is decreased in microvascular endothelial cells from a diabetic model. J Cell Physiol 201:190–200CrossRefPubMed
19.
go back to reference Lu X, Garrelds IM, Wagner CA, Danser AH, Meima ME (2013) Pro)renin receptor is required for prorenin-dependent and -independent regulation of vacuolar H(+)-ATPase activity in MDCK. C11 collecting duct cells. Am J Physiol Renal Physiol 305:F417–F425CrossRefPubMed Lu X, Garrelds IM, Wagner CA, Danser AH, Meima ME (2013) Pro)renin receptor is required for prorenin-dependent and -independent regulation of vacuolar H(+)-ATPase activity in MDCK. C11 collecting duct cells. Am J Physiol Renal Physiol 305:F417–F425CrossRefPubMed
20.
go back to reference Tojo A, Kinugasa S, Fujita T, Wilcox CS (2016) A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab Syndr Obes 9:1–10CrossRefPubMedPubMedCentral Tojo A, Kinugasa S, Fujita T, Wilcox CS (2016) A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab Syndr Obes 9:1–10CrossRefPubMedPubMedCentral
21.
go back to reference Heyliger CE, Tahiliani AG, McNeill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477CrossRefPubMed Heyliger CE, Tahiliani AG, McNeill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477CrossRefPubMed
22.
go back to reference Meyerovitch J, Farfel Z, Sack J, Shechter Y (1987) Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem 262:6658–6662PubMed Meyerovitch J, Farfel Z, Sack J, Shechter Y (1987) Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem 262:6658–6662PubMed
23.
go back to reference Blondel O, Bailbe D, Portha B (1989) In vivo insulin resistance in streptozotocin-diabetic rats–evidence for reversal following oral vanadate treatment. Diabetologia 32:185–190CrossRefPubMed Blondel O, Bailbe D, Portha B (1989) In vivo insulin resistance in streptozotocin-diabetic rats–evidence for reversal following oral vanadate treatment. Diabetologia 32:185–190CrossRefPubMed
24.
go back to reference Valera A, Rodriguez-Gil JE, Bosch F (1993) Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats. J Clin Invest 92:4–11CrossRefPubMedPubMedCentral Valera A, Rodriguez-Gil JE, Bosch F (1993) Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats. J Clin Invest 92:4–11CrossRefPubMedPubMedCentral
25.
go back to reference Henderson GE, Evans IH, Bruce IJ (1989) Vanadate inhibition of mitochondrial respiration and H+ ATPase activity in Saccharomyces cerevisiae. Yeast 5:73–77CrossRefPubMed Henderson GE, Evans IH, Bruce IJ (1989) Vanadate inhibition of mitochondrial respiration and H+ ATPase activity in Saccharomyces cerevisiae. Yeast 5:73–77CrossRefPubMed
26.
go back to reference Chatterjee D, Chakraborty M, Leit M, Neff L, Jamsa-Kellokumpu S, Fuchs R, Baron R (1992) Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases. Proc Natl Acad Sci USA 89:6257–6261CrossRefPubMedPubMedCentral Chatterjee D, Chakraborty M, Leit M, Neff L, Jamsa-Kellokumpu S, Fuchs R, Baron R (1992) Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases. Proc Natl Acad Sci USA 89:6257–6261CrossRefPubMedPubMedCentral
27.
go back to reference David P, Horne WC, Baron R (1996) Vanadate inhibits vacuolar H(+)-ATPase-mediated proton transport in chicken kidney microsomes by an ADP-dependent mechanism. Biochim Biophys Acta 1280:155–160CrossRefPubMed David P, Horne WC, Baron R (1996) Vanadate inhibits vacuolar H(+)-ATPase-mediated proton transport in chicken kidney microsomes by an ADP-dependent mechanism. Biochim Biophys Acta 1280:155–160CrossRefPubMed
28.
go back to reference Jarzyna R, Kiersztan A, Lisowa O, Bryla J (2001) The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur J Pharmacol 428:381–388CrossRefPubMed Jarzyna R, Kiersztan A, Lisowa O, Bryla J (2001) The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur J Pharmacol 428:381–388CrossRefPubMed
29.
go back to reference Burch HB, Narins RG, Chu C, Fagioli S, Choi S, McCarthy W, Lowry OH (1978) Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. Am J Physiol 235:F246–F253PubMed Burch HB, Narins RG, Chu C, Fagioli S, Choi S, McCarthy W, Lowry OH (1978) Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. Am J Physiol 235:F246–F253PubMed
30.
go back to reference Curthoys NP, Gstraunthaler G (2014) pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+ cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 307:F1-F11CrossRefPubMedPubMedCentral Curthoys NP, Gstraunthaler G (2014) pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+ cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 307:F1-F11CrossRefPubMedPubMedCentral
31.
go back to reference Wendling O, Champy MF, Jaubert S, Pavlovic G, Dubos A, Lindner L, Jacobs H, Mark M, Combe R, Da Cruz IG, Luche H, Mudgett JS, Rosahl T, Sorg T, Malissen Reilly PT, Hérault Y (2017) Atp6ap2 ablation in adult mice impairs viability through multiple organ deficiencies. Sci Rep 7(9618):1–15 Wendling O, Champy MF, Jaubert S, Pavlovic G, Dubos A, Lindner L, Jacobs H, Mark M, Combe R, Da Cruz IG, Luche H, Mudgett JS, Rosahl T, Sorg T, Malissen Reilly PT, Hérault Y (2017) Atp6ap2 ablation in adult mice impairs viability through multiple organ deficiencies. Sci Rep 7(9618):1–15
Metadata
Title
H+-ATPase blockade reduced renal gluconeogenesis and plasma glucose in a diabetic rat model
Authors
Akihiro Tojo
Saaya Hatakeyama
Masaomi Nangaku
Toshihiko Ishimitsu
Publication date
01-06-2018
Publisher
Springer Japan
Published in
Medical Molecular Morphology / Issue 2/2018
Print ISSN: 1860-1480
Electronic ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-017-0175-6

Other articles of this Issue 2/2018

Medical Molecular Morphology 2/2018 Go to the issue