Skip to main content
Top
Published in: Clinical Oral Investigations 7/2016

01-09-2016 | Original Article

Short-term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: a randomized clinical trial

Authors: C. Cuadros-Fernández, A. I. Lorente Rodríguez, S. Sáez-Martínez, J. García-Binimelis, I. About, M. Mercadé

Published in: Clinical Oral Investigations | Issue 7/2016

Login to get access

Abstract

Introduction

An ideal pulpotomy agent for primary molars has been sought for many years. Recently, new materials that allow regeneration of residual pulp tissue have been developed. In this study, we compared the preliminary clinical results obtained using Biodentine and mineral trioxide aggregate (MTA) as pulp-dressing agents in pulpotomies of primary molars.

Methods

A randomized clinical study was performed in children aged 4–9 years with at least one primary tooth with decay or caries requiring pulp treatment. A total of 90 primary molars requiring pulpotomy were randomly allocated to the MTA or Biodentine group, and 84 pulpotomies were performed. Clinical and radiographic evaluations were undertaken 6 and 12 months after treatment. All teeth were restored with a reinforced zinc oxide–eugenol base and stainless steel crowns. Statistical analysis using Fisher’s exact test was performed to determine the significant differences between the groups.

Results

A total of four clinical failures were observed; all involved gingival inflammation. The clinical success rate in the MTA Group after 12 months was 92 % (36/39), whereas the Biodentine Group obtained 97 % (38/39) (p = 0.346). All radiographic failures were observed at the 12-month follow-up evaluation. One molar from MTA Group showed internal resorption obtaining a radiographic success rate of 97 % (38/39). Two molars from the Biodentine Group showed radiographic failure (1 internal resorption and 1 periradicular radiolucency) obtaining a radiographic success rate of 95 % (37/39).

Conclusions

Biodentine showed similar clinical results as MTA with comparable success rates when used for pulpotomies of primary molars. However, longer follow-up studies are required to confirm our findings.

Clinical relevance

This article demonstrates the effectiveness of Biodentine as a primary teeth pulpotomy material, performing similar results as MTA at 12-months evaluation.
Literature
1.
go back to reference Fuks AB (2008) Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. J Endod 34(7 Suppl):S18–S24CrossRefPubMed Fuks AB (2008) Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. J Endod 34(7 Suppl):S18–S24CrossRefPubMed
2.
go back to reference Definitions AAPD, Policies OH, Guidelines C (2013) Guideline on pulp therapy for primary and immature permanent teeth. AAPD Reference Manual 35:222–229 Definitions AAPD, Policies OH, Guidelines C (2013) Guideline on pulp therapy for primary and immature permanent teeth. AAPD Reference Manual 35:222–229
3.
go back to reference Chen JW, Jorden M (2010) Materials for primary tooth pulp treatment: the present and the future. Endod Topics 23:41–49CrossRef Chen JW, Jorden M (2010) Materials for primary tooth pulp treatment: the present and the future. Endod Topics 23:41–49CrossRef
4.
go back to reference Smaïl-Faugeron V, Courson F, Durieux P, Muller-Bolla M, Glenny AM, Fron Chabouis H (2014) Pulp treatment for extensive decay in primary teeth. Cochrane Database Syst Rev 6;8:CD003220. Smaïl-Faugeron V, Courson F, Durieux P, Muller-Bolla M, Glenny AM, Fron Chabouis H (2014) Pulp treatment for extensive decay in primary teeth. Cochrane Database Syst Rev 6;8:CD003220.
5.
go back to reference Shayegan A, Petein M, Abbeele AV (2008) Beta-tricalcium phosphate, white mineral trioxide aggregate, white Portland cement, ferric sulfate, and formocresol used as pulpotomy agents in primary pig teeth. Oral Surg Oral Med Oral Pathol 105:536–542CrossRef Shayegan A, Petein M, Abbeele AV (2008) Beta-tricalcium phosphate, white mineral trioxide aggregate, white Portland cement, ferric sulfate, and formocresol used as pulpotomy agents in primary pig teeth. Oral Surg Oral Med Oral Pathol 105:536–542CrossRef
6.
go back to reference Sakai VT, Moretti AB, Oliveira TM, Fornetti AP, Santos CF, Machado MA, et al. (2009) Pulpotomy of human primary molars with MTA and Portland cement: a randomised controlled trial. Br Dent J 207:E5discussion 128-129CrossRefPubMed Sakai VT, Moretti AB, Oliveira TM, Fornetti AP, Santos CF, Machado MA, et al. (2009) Pulpotomy of human primary molars with MTA and Portland cement: a randomised controlled trial. Br Dent J 207:E5discussion 128-129CrossRefPubMed
7.
go back to reference Torabinejad M, Parirokh M (2010) Mineral trioxide aggregate: a comprehensive literature review—part II: leakage and biocompatibility investigations. J Endod 36:190–202CrossRefPubMed Torabinejad M, Parirokh M (2010) Mineral trioxide aggregate: a comprehensive literature review—part II: leakage and biocompatibility investigations. J Endod 36:190–202CrossRefPubMed
8.
go back to reference Accorinte MLR, Loguercio AD, Reis A, et al. (2008) Response of human dental pulp capped with MTA and calcium hydroxide powder. Oper Dent 33:488–495CrossRefPubMed Accorinte MLR, Loguercio AD, Reis A, et al. (2008) Response of human dental pulp capped with MTA and calcium hydroxide powder. Oper Dent 33:488–495CrossRefPubMed
9.
go back to reference Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR (2007) Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent 35:636–642CrossRefPubMed Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR (2007) Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent 35:636–642CrossRefPubMed
10.
go back to reference Laurent P, Camps J, About I (2012) Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J 45:439–448CrossRefPubMed Laurent P, Camps J, About I (2012) Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J 45:439–448CrossRefPubMed
11.
go back to reference Begue-Kirn C, Smith AJ, Ruch JV, et al. (1992) Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int J Dev Biol 36:491–503PubMed Begue-Kirn C, Smith AJ, Ruch JV, et al. (1992) Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int J Dev Biol 36:491–503PubMed
12.
go back to reference Shirvani A, Asgary S (2014) Mineral trioxide aggregate versus formocresol pulpotomy: a systematic review and meta-analysis of randomized clinical trials. Clin Oral Investig 18:1023–1030CrossRefPubMed Shirvani A, Asgary S (2014) Mineral trioxide aggregate versus formocresol pulpotomy: a systematic review and meta-analysis of randomized clinical trials. Clin Oral Investig 18:1023–1030CrossRefPubMed
13.
go back to reference Lin PY, Chen HS, Wang YH, Tu YK (2014) Primary molar pulpotomy: a systematic review and network meta-analysis. J Dent 42:1060–1077CrossRefPubMed Lin PY, Chen HS, Wang YH, Tu YK (2014) Primary molar pulpotomy: a systematic review and network meta-analysis. J Dent 42:1060–1077CrossRefPubMed
14.
go back to reference Stringhini Junior E1, Vitcel ME, Oliveira LB (2015) Evidence of pulpotomy in primary teeth comparing MTA, calcium hydroxide, ferric sulphate, and electrosurgery with formocresol. Eur Arch Paediatr Dent 16:303–312CrossRefPubMed Stringhini Junior E1, Vitcel ME, Oliveira LB (2015) Evidence of pulpotomy in primary teeth comparing MTA, calcium hydroxide, ferric sulphate, and electrosurgery with formocresol. Eur Arch Paediatr Dent 16:303–312CrossRefPubMed
15.
go back to reference Grech L, Mallia B, Camilleri J (2013) Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 29:e20–e28CrossRefPubMed Grech L, Mallia B, Camilleri J (2013) Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 29:e20–e28CrossRefPubMed
16.
go back to reference Shayegan A, Jurysta C, Atash R, Petein M, Abbeele AV (2012) Biodentine used as a pulp-capping agent in primary pig teeth. Pediatr Dent 34:e202–e208PubMed Shayegan A, Jurysta C, Atash R, Petein M, Abbeele AV (2012) Biodentine used as a pulp-capping agent in primary pig teeth. Pediatr Dent 34:e202–e208PubMed
17.
go back to reference Nowicka A, Wilk G, Lipski M, Kołecki J, Buczkowska-Radlińska J (2015) Tomographic evaluation of reparative dentin formation after direct pulp capping with Ca(OH)2, MTA, biodentine, and dentin bonding system in human teeth. J Endod 41:1234–1240CrossRefPubMed Nowicka A, Wilk G, Lipski M, Kołecki J, Buczkowska-Radlińska J (2015) Tomographic evaluation of reparative dentin formation after direct pulp capping with Ca(OH)2, MTA, biodentine, and dentin bonding system in human teeth. J Endod 41:1234–1240CrossRefPubMed
18.
go back to reference Schulz KF, Altman DG, Moher D; CONSORT Group (2011) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg 9:672–677CrossRef Schulz KF, Altman DG, Moher D; CONSORT Group (2011) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg 9:672–677CrossRef
19.
go back to reference Definitions AAPD, Policies OH, Guidelines C (2012) 2013 Guideline on use of local anesthesia for pediatric dental patients. AAPD Reference Manual 34:183–189 Definitions AAPD, Policies OH, Guidelines C (2012) 2013 Guideline on use of local anesthesia for pediatric dental patients. AAPD Reference Manual 34:183–189
20.
go back to reference Huth KC, Paschos E, Hajek-Al-Khatar N, et al. (2005) Effectiveness of 4 pulpotomy techniques–randomized controlled trial. J Dent Res 84:1144–1148CrossRefPubMed Huth KC, Paschos E, Hajek-Al-Khatar N, et al. (2005) Effectiveness of 4 pulpotomy techniques–randomized controlled trial. J Dent Res 84:1144–1148CrossRefPubMed
21.
go back to reference Doyle TL, Casas MJ, Kenny DJ, Judd PL (2010) Mineral trioxide aggregate produces superior outcomes in vital primary molar pulpotomy. Pediatr Dent 32:41–47PubMed Doyle TL, Casas MJ, Kenny DJ, Judd PL (2010) Mineral trioxide aggregate produces superior outcomes in vital primary molar pulpotomy. Pediatr Dent 32:41–47PubMed
22.
go back to reference Mielke Jr CH, Kaneshiro MM, Maher IA, Weiner JM, Rapaport SI (1969) The standardized normal Ivy bleeding time and its prolongation by aspirin. Blood 34(2):204–215PubMed Mielke Jr CH, Kaneshiro MM, Maher IA, Weiner JM, Rapaport SI (1969) The standardized normal Ivy bleeding time and its prolongation by aspirin. Blood 34(2):204–215PubMed
24.
go back to reference Agamy HA, Bakry NS, Mounir MM, Avery DR (2004) Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr Dent 26:302–309PubMed Agamy HA, Bakry NS, Mounir MM, Avery DR (2004) Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr Dent 26:302–309PubMed
25.
go back to reference Farsi N, Alamoudi N, Balto K, Mushayt A (2005) Success of mineral trioxide aggregate in pulpotomized primary molars. J Clin Pediatr Dent 29:307–311CrossRefPubMed Farsi N, Alamoudi N, Balto K, Mushayt A (2005) Success of mineral trioxide aggregate in pulpotomized primary molars. J Clin Pediatr Dent 29:307–311CrossRefPubMed
26.
go back to reference Holan G, Eidelman E, Fuks AB (2005) Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatr Dent 27:129–136PubMed Holan G, Eidelman E, Fuks AB (2005) Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatr Dent 27:129–136PubMed
27.
go back to reference Moretti AB, Sakai VT, Oliveira TM, Fornetti AP, Santos CF, Machado MA, et al. (2008) The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J 41:547–555CrossRef Moretti AB, Sakai VT, Oliveira TM, Fornetti AP, Santos CF, Machado MA, et al. (2008) The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J 41:547–555CrossRef
28.
go back to reference Sonmez D, Sari S, Cetinbas T (2008) A comparison of four pulpotomy techniques in primary molars: a long-term follow-up. J Endod 34:950–955CrossRefPubMed Sonmez D, Sari S, Cetinbas T (2008) A comparison of four pulpotomy techniques in primary molars: a long-term follow-up. J Endod 34:950–955CrossRefPubMed
29.
go back to reference Ansari G, Ranjpour M (2010) Mineral trioxide aggregate and formocresol pulpotomy of primary teeth: a 2-year follow-up. Int Endod J 43:413–418CrossRefPubMed Ansari G, Ranjpour M (2010) Mineral trioxide aggregate and formocresol pulpotomy of primary teeth: a 2-year follow-up. Int Endod J 43:413–418CrossRefPubMed
30.
go back to reference Zealand CM, Briskie DM, Botero TM, Boynton JR, Hu JC (2010) Comparing grey mineral trioxide aggregate and diluted formocresol in pulpotomized human primary molars. Pediatr Dent 32:393–399PubMedPubMedCentral Zealand CM, Briskie DM, Botero TM, Boynton JR, Hu JC (2010) Comparing grey mineral trioxide aggregate and diluted formocresol in pulpotomized human primary molars. Pediatr Dent 32:393–399PubMedPubMedCentral
31.
go back to reference Zanini M, Sautier JM, Berdal A, Simon S (2012) Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod 38:1220–1226CrossRefPubMed Zanini M, Sautier JM, Berdal A, Simon S (2012) Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod 38:1220–1226CrossRefPubMed
32.
go back to reference Laurent P, Camps J, De Méo M, Déjou J, About I (2008) Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater 24:1486–1494CrossRefPubMed Laurent P, Camps J, De Méo M, Déjou J, About I (2008) Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater 24:1486–1494CrossRefPubMed
33.
go back to reference De Rossi A, Silva LA, Gatón-Hernández P, Sousa-Neto MD, Nelson-Filho P, Silva RA, de Queiroz AM (2014) Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. J Endod 40:1362–1369CrossRefPubMed De Rossi A, Silva LA, Gatón-Hernández P, Sousa-Neto MD, Nelson-Filho P, Silva RA, de Queiroz AM (2014) Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. J Endod 40:1362–1369CrossRefPubMed
34.
go back to reference Parirokh M, Torabinejad M (2010) Mineral trioxide aggregate: a comprehensive literature review–part III: clinical applications, drawbacks, and mechanism of action. J Endod 36:400–413CrossRefPubMed Parirokh M, Torabinejad M (2010) Mineral trioxide aggregate: a comprehensive literature review–part III: clinical applications, drawbacks, and mechanism of action. J Endod 36:400–413CrossRefPubMed
35.
go back to reference Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO, Lambert G (2013) Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth—a prospective study. Clin Oral Investig 17:243–249CrossRefPubMed Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO, Lambert G (2013) Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth—a prospective study. Clin Oral Investig 17:243–249CrossRefPubMed
36.
go back to reference Tran XV, Gorin C, Willig C, Baroukh B, Pellat B, Decup F, Opsahl Vital S, Chaussain C, Boukpessi T (2012) Effect of a calcium-silicate-based restorative cement on pulp repair. J Dent Res 91:1166–1171CrossRefPubMed Tran XV, Gorin C, Willig C, Baroukh B, Pellat B, Decup F, Opsahl Vital S, Chaussain C, Boukpessi T (2012) Effect of a calcium-silicate-based restorative cement on pulp repair. J Dent Res 91:1166–1171CrossRefPubMed
37.
go back to reference Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I (2013) Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod 39:228–235CrossRefPubMed Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I (2013) Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod 39:228–235CrossRefPubMed
38.
go back to reference Bhavana V, Chaitanya KP, Gandi P, Patil J, Dola B, Reddy RB (2015) Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement. J Conserv Dent 18:44–46CrossRefPubMedPubMedCentral Bhavana V, Chaitanya KP, Gandi P, Patil J, Dola B, Reddy RB (2015) Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement. J Conserv Dent 18:44–46CrossRefPubMedPubMedCentral
39.
go back to reference Koruyucu M, Topcuoglu N, Tuna EB, Ozel S, Gencay K, Kulekci G, Seymen F (2015) An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: an in vitro study. Eur J Dent 9:240–245CrossRefPubMedPubMedCentral Koruyucu M, Topcuoglu N, Tuna EB, Ozel S, Gencay K, Kulekci G, Seymen F (2015) An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: an in vitro study. Eur J Dent 9:240–245CrossRefPubMedPubMedCentral
40.
go back to reference Camps J, Déjou J, Rémusat M, About I (2000) Factors influencing pulpal response to cavity restorations. Dent Mater 16:432–440CrossRefPubMed Camps J, Déjou J, Rémusat M, About I (2000) Factors influencing pulpal response to cavity restorations. Dent Mater 16:432–440CrossRefPubMed
41.
go back to reference Fernandez CC, Martinez SS, Jimeno FG, Lorente Rodriguez AI, Mercade M (2013) Clinical and radiographic outcomes of the use of four dressing materials in pulpotomized primary molars: a randomized clinical trial with 2-year follow-up. Int J Paediatr Dent 23:400–407PubMed Fernandez CC, Martinez SS, Jimeno FG, Lorente Rodriguez AI, Mercade M (2013) Clinical and radiographic outcomes of the use of four dressing materials in pulpotomized primary molars: a randomized clinical trial with 2-year follow-up. Int J Paediatr Dent 23:400–407PubMed
42.
go back to reference Eidelman E, Holan G, Fuks AB (2001) Mineral trioxide aggregate vs. formocresol in pulpotomized primary molars: a preliminary report. Pediatr Dent 23:15–18PubMed Eidelman E, Holan G, Fuks AB (2001) Mineral trioxide aggregate vs. formocresol in pulpotomized primary molars: a preliminary report. Pediatr Dent 23:15–18PubMed
43.
go back to reference Erdem AP, Guven Y, Balli B, et al. (2011) Success rates of mineral trioxide aggregate, ferric sulfate, and for- mocresol pulpotomies: a 24-month study. Pediatr Dent 33:165–170PubMed Erdem AP, Guven Y, Balli B, et al. (2011) Success rates of mineral trioxide aggregate, ferric sulfate, and for- mocresol pulpotomies: a 24-month study. Pediatr Dent 33:165–170PubMed
44.
go back to reference Sharaf AA, Farsi NM (2004) A clinical and radiographic evaluation of stainless steel crowns for primary molars. J Dent 32:27–33CrossRefPubMed Sharaf AA, Farsi NM (2004) A clinical and radiographic evaluation of stainless steel crowns for primary molars. J Dent 32:27–33CrossRefPubMed
45.
go back to reference Niranjani K, Prasad MG, Vasa AA, Divya G, Thakur MS, Saujanya K (2015) Clinical evaluation of success of primary teeth pulpotomy using Mineral Trioxide Aggregate(®), Laser and Biodentine(TM)—an in vivo study. J Clin Diagn Res 9:ZC35–ZC37PubMedPubMedCentral Niranjani K, Prasad MG, Vasa AA, Divya G, Thakur MS, Saujanya K (2015) Clinical evaluation of success of primary teeth pulpotomy using Mineral Trioxide Aggregate(®), Laser and Biodentine(TM)—an in vivo study. J Clin Diagn Res 9:ZC35–ZC37PubMedPubMedCentral
Metadata
Title
Short-term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: a randomized clinical trial
Authors
C. Cuadros-Fernández
A. I. Lorente Rodríguez
S. Sáez-Martínez
J. García-Binimelis
I. About
M. Mercadé
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Clinical Oral Investigations / Issue 7/2016
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-015-1656-4

Other articles of this Issue 7/2016

Clinical Oral Investigations 7/2016 Go to the issue