Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 5/2017

01-09-2017 | Original Article

Cortical bone analysis in a predialysis population: a comparison with a dialysis population

Authors: Catarina Carvalho, J. Magalhães, R. Neto, L. Pereira, P. Branco, T. Adragão, J. M. Frazão

Published in: Journal of Bone and Mineral Metabolism | Issue 5/2017

Login to get access

Abstract

This study was designed to characterize cortical bone by histomorphometry in a predialysis population, to correlate turnover, mineralization, and volume between cortical and trabecular bone, and to compare the findings with those in patients treated with maintenance dialysis. We evaluated cortical bone by histomorphometry in 16 patients with stage 3 or stage 4 chronic kidney disease and in 16 dialysis patients. Dual-energy X-ray absorptiometry (DXA) of the distal end of the forearm was performed in seven predialysis patients, and the findings correlated with histologic parameters. Predialysis patients compared with dialysis patients showed increased cortical bone thickness (p = 0.027) and decreased osteonal bone formation rate (p = 0.020) and adjusted apposition rate (p = 0.018), mainly for external cortical bone. In this predialysis population, trabecular bone volume positively correlated with external cortical porosity (r = 0.723, p = 0.003), external cortical thickness (r = 0.569, p = 0.034), and external osteonal accumulation (osteonal osteoid thickness, r = 0.530, p = 0.05; osteonal osteoid volume to bone volume ratio, r = 0.921, p < 0.001; and osteonal osteoid surface to bone surface ratio, r = 0.631, p = 0.016). These correlations were not observed in the internal cortical bone. Cortical osteonal mineralization surface negatively correlated with DXA Z and T scores and bone mineral density for the distal end of the forearm. The osteonal bone formation rate of both internal cortical bone and external cortical bone correlated with Z score (r = −0.975, p = 0.005 and r = −0.880, p = 0.021 respectively). We found no significant correlations between cortical thickness or porosity and DXA parameters for either external cortical bone or internal cortical bone. Our results suggest that a greater degree of kidney disease is associated with thinner cortices, eventually contributing to the higher fracture rate observed in the chronic kidney disease population. In predialysis patients, parathyroid hormone seems to have a modulating effect on both trabecular bone and cortical bone, particularly in external cortical bone.
Literature
1.
go back to reference Elder G (2002) Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res 17:2094–2105CrossRefPubMed Elder G (2002) Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res 17:2094–2105CrossRefPubMed
3.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int 76:(Suppl 113):S1-130 Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int 76:(Suppl 113):S1-130
4.
go back to reference Seeman E (2003) The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am 32:25–38CrossRefPubMed Seeman E (2003) The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am 32:25–38CrossRefPubMed
5.
go back to reference Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21:543–548CrossRefPubMed Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21:543–548CrossRefPubMed
6.
go back to reference Dooley AC, Weiss NS, Kestenbaum B (2008) Increased risk of hip fracture among men with CKD. Am J Kidney Dis 51:38–44CrossRefPubMed Dooley AC, Weiss NS, Kestenbaum B (2008) Increased risk of hip fracture among men with CKD. Am J Kidney Dis 51:38–44CrossRefPubMed
7.
go back to reference Fried LF, Biggs ML, Shlipak MG, Seliger S, Kestenbaum B, Stehman-Breen C, Sarnak M, Siscovick D, Harris T, Cauley J, Newman AB, Robbins J (2007) Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol 18:282–286CrossRefPubMed Fried LF, Biggs ML, Shlipak MG, Seliger S, Kestenbaum B, Stehman-Breen C, Sarnak M, Siscovick D, Harris T, Cauley J, Newman AB, Robbins J (2007) Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol 18:282–286CrossRefPubMed
8.
go back to reference Carvalho CG, Pereira RC, Gales B, Salusky IB, Wesseling-Perry K (2015) Cortical and trabecular bone in pediatric end-stage kidney disease. Pediatr Nephrol 30:497–502CrossRefPubMed Carvalho CG, Pereira RC, Gales B, Salusky IB, Wesseling-Perry K (2015) Cortical and trabecular bone in pediatric end-stage kidney disease. Pediatr Nephrol 30:497–502CrossRefPubMed
9.
go back to reference Carvalho C, Magalhaes J, Pereira L, Simoes-Silva L, Castro-Ferreira I, Frazao JM (2016) Evolution of bone disease after kidney transplantation: a prospective histomorphometric analysis of trabecular and cortical bone. Nephrology (Carlton) 21:55–61CrossRef Carvalho C, Magalhaes J, Pereira L, Simoes-Silva L, Castro-Ferreira I, Frazao JM (2016) Evolution of bone disease after kidney transplantation: a prospective histomorphometric analysis of trabecular and cortical bone. Nephrology (Carlton) 21:55–61CrossRef
10.
go back to reference Bucur RC, Panjwani DD, Turner L, Rader T, West SL, Jamal SA (2015) Low bone mineral density and fractures in stages 3–5 CKD: an updated systematic review and meta-analysis. Osteoporos Int 26:449–458CrossRefPubMed Bucur RC, Panjwani DD, Turner L, Rader T, West SL, Jamal SA (2015) Low bone mineral density and fractures in stages 3–5 CKD: an updated systematic review and meta-analysis. Osteoporos Int 26:449–458CrossRefPubMed
11.
go back to reference West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Fusaro M, Wald R, Weinstein J, Jamal SA (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res 30:913–919CrossRefPubMed West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Fusaro M, Wald R, Weinstein J, Jamal SA (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res 30:913–919CrossRefPubMed
12.
go back to reference Adragao T, Herberth J, Monier-Faugere MC, Branscum AJ, Ferreira A, Frazao JM, Malluche HH (2010) Femoral bone mineral density reflects histologically determined cortical bone volume in hemodialysis patients. Osteoporos Int 21:619–625CrossRefPubMed Adragao T, Herberth J, Monier-Faugere MC, Branscum AJ, Ferreira A, Frazao JM, Malluche HH (2010) Femoral bone mineral density reflects histologically determined cortical bone volume in hemodialysis patients. Osteoporos Int 21:619–625CrossRefPubMed
13.
go back to reference Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470CrossRefPubMed Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470CrossRefPubMed
14.
go back to reference (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1-S266 (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1-S266
15.
go back to reference Hernandez JD, Wesseling K, Pereira R, Gales B, Harrison R, Salusky IB (2008) Technical approach to iliac crest biopsy. Clin J Am Soc Nephrol 3:S164–S169CrossRefPubMedPubMedCentral Hernandez JD, Wesseling K, Pereira R, Gales B, Harrison R, Salusky IB (2008) Technical approach to iliac crest biopsy. Clin J Am Soc Nephrol 3:S164–S169CrossRefPubMedPubMedCentral
16.
go back to reference Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17CrossRefPubMedPubMedCentral Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17CrossRefPubMedPubMedCentral
17.
go back to reference Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:1945–1953CrossRefPubMed Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:1945–1953CrossRefPubMed
18.
go back to reference NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795 NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795
19.
go back to reference Kazama JJ, Matsuo K, Iwasaki Y, Fukagawa M (2015) Chronic kidney disease and bone metabolism. J Bone Miner Metab 33:245–252CrossRefPubMed Kazama JJ, Matsuo K, Iwasaki Y, Fukagawa M (2015) Chronic kidney disease and bone metabolism. J Bone Miner Metab 33:245–252CrossRefPubMed
20.
go back to reference Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691CrossRefPubMed Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691CrossRefPubMed
21.
go back to reference Malluche HH, Mawad HW, Monier-Faugere MC (2011) Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res 26:1368–1376CrossRefPubMed Malluche HH, Mawad HW, Monier-Faugere MC (2011) Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res 26:1368–1376CrossRefPubMed
22.
go back to reference Blomquist GA, Davenport DL, Mawad HW, Monier-Faugere MC, Malluche HH (2016) Diagnosis of low bone mass in CKD-5D patients. Clin Nephrol 85:77–83CrossRefPubMed Blomquist GA, Davenport DL, Mawad HW, Monier-Faugere MC, Malluche HH (2016) Diagnosis of low bone mass in CKD-5D patients. Clin Nephrol 85:77–83CrossRefPubMed
Metadata
Title
Cortical bone analysis in a predialysis population: a comparison with a dialysis population
Authors
Catarina Carvalho
J. Magalhães
R. Neto
L. Pereira
P. Branco
T. Adragão
J. M. Frazão
Publication date
01-09-2017
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 5/2017
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-016-0781-8

Other articles of this Issue 5/2017

Journal of Bone and Mineral Metabolism 5/2017 Go to the issue