Skip to main content
Top
Published in: Archives of Virology 1/2019

01-01-2019 | Original Article

Vector competence analysis of two Aedes aegypti lineages from Bello, Colombia, reveals that they are affected similarly by dengue-2 virus infection

Authors: Laura Silvana Pérez-Restrepo, Omar Triana-Chávez, Ana María Mejía-Jaramillo, Sair Orieta Arboleda-Sánchez

Published in: Archives of Virology | Issue 1/2019

Login to get access

Abstract

Dengue is the second most prevalent vector-borne disease after malaria in Colombia. It is caused by dengue virus, an arbovirus that exhibits high epidemic power, which is evidenced by its occurrence in more than 80% of the country, largely because of the extensive dispersion of the mosquito vector Aedes aegypti. The existence of two lineages of Ae. aegypti has been proposed based on genetic differences at the mitochondrial level, and they have been reported to circulate in similar proportions in the municipality of Bello (Colombia). It has been suggested that the differentiation of these lineages could influence features such as vector competence (VC) and life table. With the aim of testing this hypothesis, female mosquitoes from both lineages collected from Bello were orally challenged with dengue virus serotype 2 (strain D2-HAN) to measure infection, dissemination, survival and fecundity. Analysis of VC showed an increase in viral titer over time; however, no significant differences were observed between the lineages. The survival rate was not different between the infected lineages, but comparing lineages, it was lower in infected mosquitoes, which may affect the intensity of transmission. Finally, we conclude that the genetic differentiation of Ae. aegypti into lineages did not confer differences in epidemiological status when the mosquitoes were infected with this D2 serotype strain.
Appendix
Available only for authorised users
Literature
2.
go back to reference Instituto Nacional de Salud (2014) Ministerio de Salud y Proteccion Social: Protocolo de vigilancia en Salud Pública Instituto Nacional de Salud (2014) Ministerio de Salud y Proteccion Social: Protocolo de vigilancia en Salud Pública
3.
go back to reference Moore M, Sylla M, Goss L et al (2013) Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA. PLoS Negl Trop Dis 7:e2175CrossRefPubMedPubMedCentral Moore M, Sylla M, Goss L et al (2013) Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA. PLoS Negl Trop Dis 7:e2175CrossRefPubMedPubMedCentral
4.
go back to reference Huber K, Loan LL, Hoang TH et al (2002) Temporal genetic variation in Aedes aegypti populations in Ho Chi Minh City (Vietnam). Heredity (Edinb) 89:7–14CrossRef Huber K, Loan LL, Hoang TH et al (2002) Temporal genetic variation in Aedes aegypti populations in Ho Chi Minh City (Vietnam). Heredity (Edinb) 89:7–14CrossRef
5.
go back to reference Lourenço-de-Oliveira R, Vazeille M, de Filippis AM (2004) Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans R Soc Trop Med Hyg 98:43–54CrossRefPubMed Lourenço-de-Oliveira R, Vazeille M, de Filippis AM (2004) Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans R Soc Trop Med Hyg 98:43–54CrossRefPubMed
6.
go back to reference Tabachnick WJ, Wallis GP, Aitken TH (1985) Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 34:1219–1224CrossRefPubMed Tabachnick WJ, Wallis GP, Aitken TH (1985) Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 34:1219–1224CrossRefPubMed
8.
go back to reference Maciel-de-Freitas R, Codeço CT, Lourenço-de-Oliveira R (2007) Daily survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. Am J Trop Med Hyg 76:659–665CrossRefPubMed Maciel-de-Freitas R, Codeço CT, Lourenço-de-Oliveira R (2007) Daily survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. Am J Trop Med Hyg 76:659–665CrossRefPubMed
9.
go back to reference Moura AJF, Santos MA, Oliveira CM et al (2015) Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus. Parasites Vectors 8:114CrossRefPubMedPubMedCentral Moura AJF, Santos MA, Oliveira CM et al (2015) Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus. Parasites Vectors 8:114CrossRefPubMedPubMedCentral
10.
go back to reference Bennett KE, Olson KE, Muñoz ML et al (2002) Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67:85–92CrossRefPubMed Bennett KE, Olson KE, Muñoz ML et al (2002) Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67:85–92CrossRefPubMed
11.
go back to reference Vazeille-Falcoz M, Mousson L, Rodhain F et al (1999) Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia. Am J Trop Med Hyg 60:292–299CrossRefPubMed Vazeille-Falcoz M, Mousson L, Rodhain F et al (1999) Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia. Am J Trop Med Hyg 60:292–299CrossRefPubMed
12.
go back to reference Mutebi JP, Barrett AD (2002) The epidemiology of yellow fever in Africa. Microbes Infect 4:1459–1468CrossRefPubMed Mutebi JP, Barrett AD (2002) The epidemiology of yellow fever in Africa. Microbes Infect 4:1459–1468CrossRefPubMed
13.
go back to reference Lambrechts L, Scott TW (2009) Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proc R Soc B 276:1369–1378CrossRefPubMed Lambrechts L, Scott TW (2009) Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proc R Soc B 276:1369–1378CrossRefPubMed
14.
go back to reference Jaimes-Dueñez J, Arboleda S, Triana-Chávez O, Gómez-Palacio A (2015) Spatio-temporal distribution of Aedes aegypti (Diptera : Culicidae) mitochondrial lineages in cities with distinct Dengue incidence rates suggests complex population dynamics of the Dengue vector in Colombia. PLoS Negl Trop Dis 9:1–21CrossRef Jaimes-Dueñez J, Arboleda S, Triana-Chávez O, Gómez-Palacio A (2015) Spatio-temporal distribution of Aedes aegypti (Diptera : Culicidae) mitochondrial lineages in cities with distinct Dengue incidence rates suggests complex population dynamics of the Dengue vector in Colombia. PLoS Negl Trop Dis 9:1–21CrossRef
15.
go back to reference Peña-García VH, Triana-Chávez O, Mejia-Jaramillo AM et al (2016) Infection rates by dengue virus in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities. Int J Environ Res Public Health 13:1–16CrossRef Peña-García VH, Triana-Chávez O, Mejia-Jaramillo AM et al (2016) Infection rates by dengue virus in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities. Int J Environ Res Public Health 13:1–16CrossRef
17.
go back to reference González CR, Jercic MI, Reyes C et al (2008) A pictorial key to the genera of Culicidae (Diptera) from Chile of medical importance. Acta Entomol Chil 32:35–42 González CR, Jercic MI, Reyes C et al (2008) A pictorial key to the genera of Culicidae (Diptera) from Chile of medical importance. Acta Entomol Chil 32:35–42
18.
go back to reference Black WC, Bernhardt SA (2009) Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Mol Biol 18:705–713CrossRef Black WC, Bernhardt SA (2009) Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Mol Biol 18:705–713CrossRef
19.
go back to reference Porter CH, Collins FH (1996) Phylogeny of nearctic members of the Anopheles maculipennis species group derived from the D2 variable region of 28S ribosomal RNA. Mol Phylogenet Evol 6:178–188CrossRefPubMed Porter CH, Collins FH (1996) Phylogeny of nearctic members of the Anopheles maculipennis species group derived from the D2 variable region of 28S ribosomal RNA. Mol Phylogenet Evol 6:178–188CrossRefPubMed
20.
go back to reference Costa-da-silva AL, Capurro ML, Bracco JE (2005) Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera : Culicidae) from Peru. Mem Inst Oswaldo Cruz 100:539–544CrossRefPubMed Costa-da-silva AL, Capurro ML, Bracco JE (2005) Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera : Culicidae) from Peru. Mem Inst Oswaldo Cruz 100:539–544CrossRefPubMed
21.
go back to reference Paupy C, Le Goff G, Brengues C et al (2012) Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infect Genet Evol 12:1260–1269CrossRefPubMed Paupy C, Le Goff G, Brengues C et al (2012) Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infect Genet Evol 12:1260–1269CrossRefPubMed
22.
go back to reference Thompson JD, Gilson TJ, Plewniak F et al (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentral Thompson JD, Gilson TJ, Plewniak F et al (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentral
23.
go back to reference Halls TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98 Halls TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
24.
go back to reference Tamura K, Peterson D, Peterson N (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentral Tamura K, Peterson D, Peterson N (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentral
26.
go back to reference Steinly B, Novak RJ, Webb DW (1991) A new method for monitoring mosquito oviposition in artificial and natural containers. J Am Mosq Control Assoc 7:649–650PubMed Steinly B, Novak RJ, Webb DW (1991) A new method for monitoring mosquito oviposition in artificial and natural containers. J Am Mosq Control Assoc 7:649–650PubMed
27.
go back to reference Chepkorir E, Lutomiah J, Mutisya J et al (2014) Vector competence of Aedes aegypti populations from Kilifi and Nairobi for dengue 2 virus and the influence of temperature. Parasites Vectors 7:435–443CrossRefPubMedPubMedCentral Chepkorir E, Lutomiah J, Mutisya J et al (2014) Vector competence of Aedes aegypti populations from Kilifi and Nairobi for dengue 2 virus and the influence of temperature. Parasites Vectors 7:435–443CrossRefPubMedPubMedCentral
28.
go back to reference Hanley KA, Nelson JT, Schirtzinger EE et al (2008) Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol 8:1CrossRefPubMedPubMedCentral Hanley KA, Nelson JT, Schirtzinger EE et al (2008) Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol 8:1CrossRefPubMedPubMedCentral
29.
go back to reference Camacho DE, Guzmán MG, Morier L et al (1999) Estudio de algunas propiedades biológicas de 3 cepas de dengue 2 con diferencias en sus secuencias nucleotídicas. Rev Cuba Med Trop 51:177–180 Camacho DE, Guzmán MG, Morier L et al (1999) Estudio de algunas propiedades biológicas de 3 cepas de dengue 2 con diferencias en sus secuencias nucleotídicas. Rev Cuba Med Trop 51:177–180
30.
go back to reference Instituto de Medicina Tropical Pedro Kourí (2013) Técnicas de laboratorio para el diagnóstico y la caracterización de los virus del dengue. Laboratorio de Arbovirus, Departamento de Virología La Habana, Cuba. Rev Inst Med Trop, pp 1–133 Instituto de Medicina Tropical Pedro Kourí (2013) Técnicas de laboratorio para el diagnóstico y la caracterización de los virus del dengue. Laboratorio de Arbovirus, Departamento de Virología La Habana, Cuba. Rev Inst Med Trop, pp 1–133
32.
go back to reference Cosgrove JB, Wood RJ, Petrić D et al (1994) A convenient mosquito membrane feeding system. J Am Mosq Control Assoc 10:434–436PubMed Cosgrove JB, Wood RJ, Petrić D et al (1994) A convenient mosquito membrane feeding system. J Am Mosq Control Assoc 10:434–436PubMed
33.
go back to reference Hagen H, Grunewald J (1990) Routine Blood-feding of Aedes aegypti via a new membrane. Oper Sci Notes 6:535–536 Hagen H, Grunewald J (1990) Routine Blood-feding of Aedes aegypti via a new membrane. Oper Sci Notes 6:535–536
34.
go back to reference Foggie T, Achee N (2009) Standard operating procedures: rearing Aedes aegypti for the HITSS and Box Laboratory Assays Training Manual v1.0, pp 1–18 Foggie T, Achee N (2009) Standard operating procedures: rearing Aedes aegypti for the HITSS and Box Laboratory Assays Training Manual v1.0, pp 1–18
35.
go back to reference Lutomiah JL, Koka H, Mutisya J, Yalwala S et al (2011) Ability of selected Kenyan mosquito (Diptera: Culicidae) species to transmit West Nile virus under laboratory conditions. J Med Entomol 48:1197–1201CrossRefPubMed Lutomiah JL, Koka H, Mutisya J, Yalwala S et al (2011) Ability of selected Kenyan mosquito (Diptera: Culicidae) species to transmit West Nile virus under laboratory conditions. J Med Entomol 48:1197–1201CrossRefPubMed
36.
go back to reference Turell M, Rossignol P, Rossi C, Bailey C (1984) Enhanced arboviral transmission by mosquitoes that concurrently ingested microfilariae. Science 80:225 Turell M, Rossignol P, Rossi C, Bailey C (1984) Enhanced arboviral transmission by mosquitoes that concurrently ingested microfilariae. Science 80:225
37.
39.
go back to reference Smith DR, Adams PA, Kenney JL et al (2008) Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: infection initiated by a small number of susceptible epithelial cells and a population bottleneck. Virology 372:176–186CrossRefPubMed Smith DR, Adams PA, Kenney JL et al (2008) Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: infection initiated by a small number of susceptible epithelial cells and a population bottleneck. Virology 372:176–186CrossRefPubMed
40.
go back to reference Lima RS, Scarpassa VM (2009) Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet Mol Biol 32:414–422CrossRefPubMed Lima RS, Scarpassa VM (2009) Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet Mol Biol 32:414–422CrossRefPubMed
41.
go back to reference Bustamante DM, Lord CC (2010) Sources of error in the estimation of mosquito infection rates used to assess risk of arbovirus transmission. Am J Trop Med Hyg 82:1172–1184CrossRefPubMedPubMedCentral Bustamante DM, Lord CC (2010) Sources of error in the estimation of mosquito infection rates used to assess risk of arbovirus transmission. Am J Trop Med Hyg 82:1172–1184CrossRefPubMedPubMedCentral
42.
go back to reference Maciel-de-Freitas R, Koella JC, Lourenço-de-Oliveira R (2011) Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2. Trans R Soc Trop Med Hyg 105:452–458CrossRefPubMed Maciel-de-Freitas R, Koella JC, Lourenço-de-Oliveira R (2011) Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2. Trans R Soc Trop Med Hyg 105:452–458CrossRefPubMed
43.
go back to reference Sylvestre G, Gandini M, Maciel-de-Freitas R (2013) Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae) feeding behavior, survival, oviposition success and fecundity. PLoS One 8:1–8CrossRef Sylvestre G, Gandini M, Maciel-de-Freitas R (2013) Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae) feeding behavior, survival, oviposition success and fecundity. PLoS One 8:1–8CrossRef
44.
go back to reference Schmidt WP, Suzuki M, Dinh Thiem V (2011) Population density, water supply, and the risk of dengue Fever in Vietnam: cohort study and spatial analysis. PLoS Med 8:e1001082CrossRefPubMedPubMedCentral Schmidt WP, Suzuki M, Dinh Thiem V (2011) Population density, water supply, and the risk of dengue Fever in Vietnam: cohort study and spatial analysis. PLoS Med 8:e1001082CrossRefPubMedPubMedCentral
46.
go back to reference Díaz F, Ospina M, Higuita E, Osorio J (2007) Molecular characterization of dengue viruses isolated in Medellin, Colombia and surrounding areas. Am J Trop Med Hyg 77:118CrossRef Díaz F, Ospina M, Higuita E, Osorio J (2007) Molecular characterization of dengue viruses isolated in Medellin, Colombia and surrounding areas. Am J Trop Med Hyg 77:118CrossRef
47.
go back to reference Bosio CF, Fulton RE, Salasek ML et al (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156:687–698PubMedPubMedCentral Bosio CF, Fulton RE, Salasek ML et al (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156:687–698PubMedPubMedCentral
48.
go back to reference Salazar MI, Richardson JH, Sánchez-Vargas I et al (2007) Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7:9CrossRefPubMedPubMedCentral Salazar MI, Richardson JH, Sánchez-Vargas I et al (2007) Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7:9CrossRefPubMedPubMedCentral
49.
go back to reference Carrington LB, Simmons CP (2014) Human to mosquito transmission of dengue viruses. Front Immunol 5(June):1–8 Carrington LB, Simmons CP (2014) Human to mosquito transmission of dengue viruses. Front Immunol 5(June):1–8
50.
go back to reference Mousson L, Vazeille M, Chawprom S, Prajakwong S, Rodhain F (2002) Genetic structure of Aedes aegypti populations in Chiang Mai (Thailand) and relation with dengue transmission. Science 7:865–872 Mousson L, Vazeille M, Chawprom S, Prajakwong S, Rodhain F (2002) Genetic structure of Aedes aegypti populations in Chiang Mai (Thailand) and relation with dengue transmission. Science 7:865–872
51.
go back to reference Tien TK, Vazeille-Falcoz M, Mousson L, Hoang TH, Rodhain F, Nguyen LTH, Failloux A (1999) Aedes aegypti in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation. Trans R Soc Trop Med Hyg 93:581–586CrossRef Tien TK, Vazeille-Falcoz M, Mousson L, Hoang TH, Rodhain F, Nguyen LTH, Failloux A (1999) Aedes aegypti in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation. Trans R Soc Trop Med Hyg 93:581–586CrossRef
52.
go back to reference Armstrong PM, Rico-hesse R (2003) Efficiency of dendue serotype 2 virus strains to Infect and disseminate in Aedes aegypti. Am J Trop Med Hyg 68:539–544CrossRefPubMedPubMedCentral Armstrong PM, Rico-hesse R (2003) Efficiency of dendue serotype 2 virus strains to Infect and disseminate in Aedes aegypti. Am J Trop Med Hyg 68:539–544CrossRefPubMedPubMedCentral
53.
go back to reference Rosen L, Rosemboom LE, Gubler D, Lien JC, Chaniotis BN (1985) Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. ASTMH 34:603–615 Rosen L, Rosemboom LE, Gubler D, Lien JC, Chaniotis BN (1985) Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. ASTMH 34:603–615
54.
go back to reference Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, Jarman RG, Scott TW (2009) Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol 9:1–11CrossRef Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, Jarman RG, Scott TW (2009) Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol 9:1–11CrossRef
55.
go back to reference Aliota MT, Walker E, Yepes A, Velez ID, Christensen BM, Osorio JE (2016) The wMel strain of wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis 2016:13 Aliota MT, Walker E, Yepes A, Velez ID, Christensen BM, Osorio JE (2016) The wMel strain of wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis 2016:13
56.
go back to reference Aliota MT, Peinado SA, Velez ID, Osorio JE (2016) The wMel strain of wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci Rep 6:1–13CrossRef Aliota MT, Peinado SA, Velez ID, Osorio JE (2016) The wMel strain of wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci Rep 6:1–13CrossRef
Metadata
Title
Vector competence analysis of two Aedes aegypti lineages from Bello, Colombia, reveals that they are affected similarly by dengue-2 virus infection
Authors
Laura Silvana Pérez-Restrepo
Omar Triana-Chávez
Ana María Mejía-Jaramillo
Sair Orieta Arboleda-Sánchez
Publication date
01-01-2019
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 1/2019
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-018-4049-6

Other articles of this Issue 1/2019

Archives of Virology 1/2019 Go to the issue