Skip to main content
Top
Published in: Archives of Virology 11/2018

01-11-2018 | Original Article

Cor interacts with outer membrane proteins to exclude FhuA-dependent phages

Authors: Emma S. Arguijo-Hernández, Javier Hernandez-Sanchez, Saida J. Briones-Peña, Norma Oviedo, Guillermo Mendoza-Hernández, Gabriel Guarneros, Luis Kameyama

Published in: Archives of Virology | Issue 11/2018

Login to get access

Abstract

Superinfection exclusion (Sie) of FhuA-dependent phages is carried out by Cor in the Escherichia coli mEp167 prophage lysogenic strain. In this work, we present evidence that Cor is an outer membrane (OM) lipoprotein that requires the participation of additional outer membrane proteins (OMPs) to exclude FhuA-dependent phages. Two Cor species of ~13 and ~8.5 kDa, corresponding to the preprolipoprotein/prolipoprotein and lipoprotein, were observed by Western blot. Cell mutants for CorC17F, CorA18D and CorA57E lost the Sie phenotype for FhuA-dependent phages. A copurification affinity binding assay combined with LC_ESI_MS/MS showed that Cor bound to OMPs: OmpA, OmpC, OmpF, OmpW, LamB, and Slp. Interestingly, Sie for FhuA-dependent phages was reduced on Cor overexpressing FhuA+ mutant strains, where ompA, ompC, ompF, ompW, lamB, fhuE, genes were knocked out. The exclusion was restored when these strains were supplemented with plasmids expressing these genes. Sie was not lost in other Cor overexpressing FhuA+ null mutant strains JW3938(btuB-), JW5100(tolB-), JW3474(slp-). These results indicate that Cor interacts and requires some OMPs to exclude FhuA-dependent phages.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heller K, Braun V (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J Bacteriol 139:32–38PubMedPubMedCentral Heller K, Braun V (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J Bacteriol 139:32–38PubMedPubMedCentral
2.
go back to reference Sukupolvi S (1984) Role of lipopolysaccharide in the receptor function for bacteriophage Ox2. FEMS Microbiol Lett 21:83–87CrossRef Sukupolvi S (1984) Role of lipopolysaccharide in the receptor function for bacteriophage Ox2. FEMS Microbiol Lett 21:83–87CrossRef
4.
go back to reference Silverman JA, Benson SA (1987) Bacteriophage K20 requires both the OmpF porin and lipopolysaccharide for receptor function. J Bacteriol 169:4830–4833CrossRefPubMedPubMedCentral Silverman JA, Benson SA (1987) Bacteriophage K20 requires both the OmpF porin and lipopolysaccharide for receptor function. J Bacteriol 169:4830–4833CrossRefPubMedPubMedCentral
5.
go back to reference Reyes-Cortes R, Martinez-Penafiel E, Martinez-Perez F, de la Garza M, Kameyama L (2012) A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology 158:3063–3071CrossRefPubMed Reyes-Cortes R, Martinez-Penafiel E, Martinez-Perez F, de la Garza M, Kameyama L (2012) A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology 158:3063–3071CrossRefPubMed
6.
go back to reference Hazelbauer GL (1975) Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol 124:119–126PubMedPubMedCentral Hazelbauer GL (1975) Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol 124:119–126PubMedPubMedCentral
7.
go back to reference Hernandez-Sanchez J, Bautista-Santos A, Fernandez L, Bermudez-Cruz RM, Uc-Mass A, Martinez-Penafiel E, Martinez MA, Garcia-Mena J, Guarneros G, Kameyama L (2008) Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+, FhuA-dependent phages. Arch Virol 153:1271–1280CrossRefPubMed Hernandez-Sanchez J, Bautista-Santos A, Fernandez L, Bermudez-Cruz RM, Uc-Mass A, Martinez-Penafiel E, Martinez MA, Garcia-Mena J, Guarneros G, Kameyama L (2008) Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+, FhuA-dependent phages. Arch Virol 153:1271–1280CrossRefPubMed
8.
go back to reference Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96:437–447CrossRefPubMed Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96:437–447CrossRefPubMed
9.
go back to reference Morona R, Tommassen J, Henning U (1985) Demonstration of a bacteriophage receptor site on the Escherichia coli K12 outer-membrane protein OmpC by the use of a protease. Eur J Biochem 150:161–169CrossRefPubMed Morona R, Tommassen J, Henning U (1985) Demonstration of a bacteriophage receptor site on the Escherichia coli K12 outer-membrane protein OmpC by the use of a protease. Eur J Biochem 150:161–169CrossRefPubMed
10.
go back to reference Traurig M, Misra R (1999) Identification of bacteriophage K20 binding regions of OmpF and lipopolysaccharide in Escherichia coli K-12. FEMS Microbiol Lett 181:101–108CrossRefPubMed Traurig M, Misra R (1999) Identification of bacteriophage K20 binding regions of OmpF and lipopolysaccharide in Escherichia coli K-12. FEMS Microbiol Lett 181:101–108CrossRefPubMed
11.
go back to reference Killmann H, Videnov G, Jung G, Schwarz H, Braun V (1995) Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J Bacteriol 177:694–698CrossRefPubMedPubMedCentral Killmann H, Videnov G, Jung G, Schwarz H, Braun V (1995) Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J Bacteriol 177:694–698CrossRefPubMedPubMedCentral
12.
go back to reference Uc-Mass A, Loeza EJ, de la Garza M, Guarneros G, Hernandez-Sanchez J, Kameyama L (2004) An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology 329:425–433CrossRefPubMed Uc-Mass A, Loeza EJ, de la Garza M, Guarneros G, Hernandez-Sanchez J, Kameyama L (2004) An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology 329:425–433CrossRefPubMed
14.
go back to reference Yu F, Mizushima S (1982) Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151:718–722PubMedPubMedCentral Yu F, Mizushima S (1982) Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151:718–722PubMedPubMedCentral
15.
go back to reference Goldberg E, Grinius L, Letellier L (1994) Recognition, attachment, and injection. In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 347–356 Goldberg E, Grinius L, Letellier L (1994) Recognition, attachment, and injection. In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 347–356
16.
go back to reference Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG (2004) The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180CrossRefPubMed Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG (2004) The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180CrossRefPubMed
17.
go back to reference Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8CrossRefPubMed Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8CrossRefPubMed
18.
go back to reference Chang CY, Kemp P, Molineux IJ (2010) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186CrossRefPubMed Chang CY, Kemp P, Molineux IJ (2010) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186CrossRefPubMed
19.
go back to reference Gonzalez-Garcia VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ, Martin-Benito J, Cuervo A, Carrascosa JL (2015) Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 290:10038–10044CrossRefPubMedPubMedCentral Gonzalez-Garcia VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ, Martin-Benito J, Cuervo A, Carrascosa JL (2015) Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 290:10038–10044CrossRefPubMedPubMedCentral
20.
go back to reference Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, Pogliano J, Baker TS, Casjens SR (2014) OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol 92:47–60CrossRefPubMedPubMedCentral Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, Pogliano J, Baker TS, Casjens SR (2014) OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol 92:47–60CrossRefPubMedPubMedCentral
21.
go back to reference Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3:361–370PubMed Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3:361–370PubMed
22.
go back to reference Samsonov VV, Samsonov VV, Sineoky SP (2002) DcrA and dcrB Escherichia coli genes can control DNA injection by phages specific for BtuB and FhuA receptors. Res Microbiol 153:639–646CrossRefPubMed Samsonov VV, Samsonov VV, Sineoky SP (2002) DcrA and dcrB Escherichia coli genes can control DNA injection by phages specific for BtuB and FhuA receptors. Res Microbiol 153:639–646CrossRefPubMed
23.
go back to reference Darlington OF, Levine M (1971) Superinfection exclusion by P22 prophage and the replication complex. J Virol 8:347–348PubMedPubMedCentral Darlington OF, Levine M (1971) Superinfection exclusion by P22 prophage and the replication complex. J Virol 8:347–348PubMedPubMedCentral
24.
go back to reference Donnelly-Wu MK, Jacobs WR Jr, Hatfull GF (1993) Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417CrossRefPubMed Donnelly-Wu MK, Jacobs WR Jr, Hatfull GF (1993) Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417CrossRefPubMed
25.
go back to reference Hofer B, Ruge M, Dreiseikelmann B (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J Bacteriol 177:3080–3086CrossRefPubMedPubMedCentral Hofer B, Ruge M, Dreiseikelmann B (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J Bacteriol 177:3080–3086CrossRefPubMedPubMedCentral
26.
go back to reference Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front Microbiol 5:98CrossRefPubMedPubMedCentral Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front Microbiol 5:98CrossRefPubMedPubMedCentral
27.
go back to reference Cumby N, Edwards AM, Davidson AR, Maxwell KL (2012) The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J Bacteriol 194:5012–5019CrossRefPubMedPubMedCentral Cumby N, Edwards AM, Davidson AR, Maxwell KL (2012) The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J Bacteriol 194:5012–5019CrossRefPubMedPubMedCentral
28.
go back to reference Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogens. Infect Immun 79:548–561CrossRefPubMed Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogens. Infect Immun 79:548–561CrossRefPubMed
29.
30.
go back to reference Inouye S, Nakazawa A, Nakazawa T (1983) Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operons of the TOL plasmid. J Bacteriol 155:1192–1199PubMedPubMedCentral Inouye S, Nakazawa A, Nakazawa T (1983) Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operons of the TOL plasmid. J Bacteriol 155:1192–1199PubMedPubMedCentral
31.
go back to reference Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1694(1–3):IN1–9PubMed Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1694(1–3):IN1–9PubMed
32.
go back to reference Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516CrossRefPubMedPubMedCentral Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516CrossRefPubMedPubMedCentral
33.
go back to reference Braun V, Killmann H, Herrmann C (1994) Inactivation of FhuA at the cell surface of Escherichia coli K-12 by a phage T5 lipoprotein at the periplasmic face of the outer membrane. J Bacteriol 176:4710–4717CrossRefPubMedPubMedCentral Braun V, Killmann H, Herrmann C (1994) Inactivation of FhuA at the cell surface of Escherichia coli K-12 by a phage T5 lipoprotein at the periplasmic face of the outer membrane. J Bacteriol 176:4710–4717CrossRefPubMedPubMedCentral
34.
go back to reference Decker K, Krauel V, Meesmann A, Heller KJ (1994) Lytic conversion of Escherichia coli by bacteriophage T5: blocking of the FhuA receptor protein by a lipoprotein expressed early during infection. Mol Microbiol 12:321–332CrossRefPubMed Decker K, Krauel V, Meesmann A, Heller KJ (1994) Lytic conversion of Escherichia coli by bacteriophage T5: blocking of the FhuA receptor protein by a lipoprotein expressed early during infection. Mol Microbiol 12:321–332CrossRefPubMed
35.
go back to reference Mondigler M, Ayoub AT, Heller KJ (2006) The DNA region of phage BF23 encoding receptor binding protein and receptor blocking lipoprotein lacks homology to the corresponding region of closely related phage T5. J Basic Microbiol 46:116–125CrossRefPubMed Mondigler M, Ayoub AT, Heller KJ (2006) The DNA region of phage BF23 encoding receptor binding protein and receptor blocking lipoprotein lacks homology to the corresponding region of closely related phage T5. J Basic Microbiol 46:116–125CrossRefPubMed
36.
go back to reference Susskind MM, Wright A, Botstein D (1971) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology 45:638–652CrossRefPubMed Susskind MM, Wright A, Botstein D (1971) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology 45:638–652CrossRefPubMed
37.
go back to reference Susskind MM, Botstein D, Wright A (1974) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. Virology 62:350–366CrossRefPubMed Susskind MM, Botstein D, Wright A (1974) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. Virology 62:350–366CrossRefPubMed
39.
go back to reference Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407CrossRefPubMedPubMedCentral Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407CrossRefPubMedPubMedCentral
40.
go back to reference Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452PubMedPubMedCentral Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452PubMedPubMedCentral
41.
go back to reference Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMed Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMed
42.
go back to reference Kameyama L, Fernandez L, Calderon J, Ortiz-Rojas A, Patterson TA (1999) Characterization of wild lambdoid bacteriophages: detection of a wide distribution of phage immunity groups and identification of a nus-dependent, nonlambdoid phage group. Virology 263:100–111CrossRefPubMed Kameyama L, Fernandez L, Calderon J, Ortiz-Rojas A, Patterson TA (1999) Characterization of wild lambdoid bacteriophages: detection of a wide distribution of phage immunity groups and identification of a nus-dependent, nonlambdoid phage group. Virology 263:100–111CrossRefPubMed
43.
go back to reference Matsushiro A (1963) Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage ∅80. Virology 19:475–482CrossRefPubMed Matsushiro A (1963) Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage ∅80. Virology 19:475–482CrossRefPubMed
44.
go back to reference Dhillon TS, Dhillon EK (1976) Temperate coliphage HK022. Clear plaque mutants and preliminary vegetative map. Jpn J Microbiol 20:385–396CrossRefPubMed Dhillon TS, Dhillon EK (1976) Temperate coliphage HK022. Clear plaque mutants and preliminary vegetative map. Jpn J Microbiol 20:385–396CrossRefPubMed
45.
go back to reference Silhavy TJ, Berman, ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor Silhavy TJ, Berman, ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor
46.
go back to reference Polayes D, Hughes AJ (1994) Efficient protein expression and simple purification using the pPROEX-1 super(TM) system. FOCUS 16:81–84 Polayes D, Hughes AJ (1994) Efficient protein expression and simple purification using the pPROEX-1 super(TM) system. FOCUS 16:81–84
47.
go back to reference Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning. IRL Press, Oxford, pp 109–135 Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning. IRL Press, Oxford, pp 109–135
48.
go back to reference Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113CrossRefPubMed Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113CrossRefPubMed
49.
go back to reference Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944PubMedPubMedCentral Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944PubMedPubMedCentral
50.
go back to reference Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMed Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMed
51.
go back to reference Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMed Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMed
52.
go back to reference Ricci DP, Hagan CL, Kahne D, Silhavy TJ (2012) Activation of the Escherichia coli beta-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc Natl Acad Sci USA 109:3487–3491CrossRefPubMed Ricci DP, Hagan CL, Kahne D, Silhavy TJ (2012) Activation of the Escherichia coli beta-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc Natl Acad Sci USA 109:3487–3491CrossRefPubMed
54.
go back to reference Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299CrossRefPubMed Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299CrossRefPubMed
55.
go back to reference Vostrov AA, Vostrukhina OA, Svarchevsky AN, Rybchin VN (1996) Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous. J Bacteriol 178:1484–1486CrossRefPubMedPubMedCentral Vostrov AA, Vostrukhina OA, Svarchevsky AN, Rybchin VN (1996) Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous. J Bacteriol 178:1484–1486CrossRefPubMedPubMedCentral
56.
go back to reference Price GP, St John AC (2000) Purification and analysis of expression of the stationary phase-inducible slp lipoprotein in Escherichia coli: role of the Mar system. FEMS Microbiol Lett 193:51–56CrossRefPubMed Price GP, St John AC (2000) Purification and analysis of expression of the stationary phase-inducible slp lipoprotein in Escherichia coli: role of the Mar system. FEMS Microbiol Lett 193:51–56CrossRefPubMed
57.
go back to reference Kleanthous C, Rassam P, Baumann CG (2015) Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins. Curr Opin Struct Biol 35:109–115CrossRefPubMedPubMedCentral Kleanthous C, Rassam P, Baumann CG (2015) Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins. Curr Opin Struct Biol 35:109–115CrossRefPubMedPubMedCentral
58.
go back to reference Zhang H, Tang X, Munske GR, Zakharova N, Yang L, Zheng C, Wolff MA, Tolic N, Anderson GA, Shi L, Marshall MJ, Fredrickson JK, Bruce JE (2008) In vivo identification of the outer membrane protein OmcA-MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J Proteome Res 7:1712–1720CrossRefPubMedPubMedCentral Zhang H, Tang X, Munske GR, Zakharova N, Yang L, Zheng C, Wolff MA, Tolic N, Anderson GA, Shi L, Marshall MJ, Fredrickson JK, Bruce JE (2008) In vivo identification of the outer membrane protein OmcA-MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J Proteome Res 7:1712–1720CrossRefPubMedPubMedCentral
Metadata
Title
Cor interacts with outer membrane proteins to exclude FhuA-dependent phages
Authors
Emma S. Arguijo-Hernández
Javier Hernandez-Sanchez
Saida J. Briones-Peña
Norma Oviedo
Guillermo Mendoza-Hernández
Gabriel Guarneros
Luis Kameyama
Publication date
01-11-2018
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 11/2018
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-018-3954-z

Other articles of this Issue 11/2018

Archives of Virology 11/2018 Go to the issue