Skip to main content
Top
Published in: Archives of Virology 9/2017

01-09-2017 | Original Article

Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir

Authors: Chiara Chiozzini, Claudia Arenaccio, Eleonora Olivetta, Simona Anticoli, Francesco Manfredi, Flavia Ferrantelli, Gabriella d’Ettorre, Ivan Schietroma, Mauro Andreotti, Maurizio Federico

Published in: Archives of Virology | Issue 9/2017

Login to get access

Abstract

Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4+ T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4+ T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4+ T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4+ T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4+ T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4+ T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.
Literature
1.
go back to reference Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytophathic infection to CD4+ T cells. Science 257:383–386CrossRefPubMed Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytophathic infection to CD4+ T cells. Science 257:383–386CrossRefPubMed
2.
go back to reference Geijtenbeek TBH, Kwon DS, Torensma R et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597CrossRefPubMed Geijtenbeek TBH, Kwon DS, Torensma R et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597CrossRefPubMed
3.
go back to reference McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297CrossRefPubMed McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297CrossRefPubMed
5.
go back to reference Laguette N, Sobhian B, Casartelli N et al (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657CrossRefPubMedPubMedCentral Laguette N, Sobhian B, Casartelli N et al (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657CrossRefPubMedPubMedCentral
7.
go back to reference Garcia E, Pion M, Pelchen-Matthews A et al (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:488–501CrossRefPubMed Garcia E, Pion M, Pelchen-Matthews A et al (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:488–501CrossRefPubMed
8.
go back to reference Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PloS Pathog 4:e1000134CrossRefPubMedPubMedCentral Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PloS Pathog 4:e1000134CrossRefPubMedPubMedCentral
9.
go back to reference Sagar M, Akiyama H, Etemad B, Ramirez N, Freitas I, Gummuluru S (2012) Transmembrane domain membrane proximal external region but not surface unit-directed broadly neutralizing HIV-1 antibodies can restrict dendritic cell-mediated HIV-1 trans-infection. J Infect Dis 205:1248–1257CrossRefPubMedPubMedCentral Sagar M, Akiyama H, Etemad B, Ramirez N, Freitas I, Gummuluru S (2012) Transmembrane domain membrane proximal external region but not surface unit-directed broadly neutralizing HIV-1 antibodies can restrict dendritic cell-mediated HIV-1 trans-infection. J Infect Dis 205:1248–1257CrossRefPubMedPubMedCentral
10.
go back to reference Sanders RW, de Jong EC, Baldwin CE, Schuitemaker JHN, Kapsenberg ML, Berkhout B (2002) Differential transmission of human immunodeficiency virus type I by distinct subsets of effector dendritic cells. J Virol 76:7812–7821CrossRefPubMedPubMedCentral Sanders RW, de Jong EC, Baldwin CE, Schuitemaker JHN, Kapsenberg ML, Berkhout B (2002) Differential transmission of human immunodeficiency virus type I by distinct subsets of effector dendritic cells. J Virol 76:7812–7821CrossRefPubMedPubMedCentral
11.
go back to reference Puryear WB, Akiyama H, Geer SD, Ramirez NP, Yu XW, Reinhard BM, Gummuluru S (2013) Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on siglec-1/CD169. PloS Pathog 9(4):e1003291CrossRefPubMedPubMedCentral Puryear WB, Akiyama H, Geer SD, Ramirez NP, Yu XW, Reinhard BM, Gummuluru S (2013) Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on siglec-1/CD169. PloS Pathog 9(4):e1003291CrossRefPubMedPubMedCentral
12.
go back to reference Izquierdo-Useros N, Lorizate M, Puertas MC et al (2012) Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PloS Biol 10(12):e1001448CrossRefPubMedPubMedCentral Izquierdo-Useros N, Lorizate M, Puertas MC et al (2012) Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PloS Biol 10(12):e1001448CrossRefPubMedPubMedCentral
13.
go back to reference Izquierdo-Useros N, Lorizate M, Contreras FX et al (2012) Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 10(4):e1001315CrossRefPubMedPubMedCentral Izquierdo-Useros N, Lorizate M, Contreras FX et al (2012) Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 10(4):e1001315CrossRefPubMedPubMedCentral
14.
go back to reference Puryear WB, Yu XW, Ramirez NP, Reinhard BM, Gummuluru S (2012) HIV-1 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci USA 109:7475–7480CrossRefPubMedPubMedCentral Puryear WB, Yu XW, Ramirez NP, Reinhard BM, Gummuluru S (2012) HIV-1 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci USA 109:7475–7480CrossRefPubMedPubMedCentral
15.
go back to reference Schorey JS, Cheng Y, Singh PP, Smith VL (2015) Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep 16:24–43CrossRefPubMed Schorey JS, Cheng Y, Singh PP, Smith VL (2015) Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep 16:24–43CrossRefPubMed
16.
go back to reference Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteom 73:1907–1920CrossRef Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteom 73:1907–1920CrossRef
17.
go back to reference Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedPubMedCentral Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedPubMedCentral
18.
go back to reference Hubert A, Barbeau B, Subra C, Bissonnette L, Gilbert C (2015) Role and future applications of extracellular vesicles in HIV-1 pathogenesis. Future Virol 10:357–370CrossRef Hubert A, Barbeau B, Subra C, Bissonnette L, Gilbert C (2015) Role and future applications of extracellular vesicles in HIV-1 pathogenesis. Future Virol 10:357–370CrossRef
21.
go back to reference Lee JH, Wittki S, Brau T et al (2013) HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 49:668–679CrossRefPubMed Lee JH, Wittki S, Brau T et al (2013) HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 49:668–679CrossRefPubMed
23.
go back to reference Arenaccio C, Chiozzini C, Columba-Cabezas S et al (2014) Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4(+) T lymphocytes to replicate HIV-1 through a Nef- and ADAM17-dependent mechanism. J Virol 88:11529–11539CrossRefPubMedPubMedCentral Arenaccio C, Chiozzini C, Columba-Cabezas S et al (2014) Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4(+) T lymphocytes to replicate HIV-1 through a Nef- and ADAM17-dependent mechanism. J Virol 88:11529–11539CrossRefPubMedPubMedCentral
26.
go back to reference Izquierdo-Useros N, Naranjo-Gomez M, Archer J et al (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113:2732–2741CrossRefPubMedPubMedCentral Izquierdo-Useros N, Naranjo-Gomez M, Archer J et al (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113:2732–2741CrossRefPubMedPubMedCentral
27.
go back to reference Adachi A, Gendelman HE, Koenig S et al (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–2891PubMedPubMedCentral Adachi A, Gendelman HE, Koenig S et al (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–2891PubMedPubMedCentral
28.
go back to reference Federico M, Titti F, Butto S et al (1989) Biologic and molecular characterization of producer and non-producer clones from HUT-78 cells infected with a patient HIV isolate. AIDS Res Hum Retrovir 5:385–396CrossRefPubMed Federico M, Titti F, Butto S et al (1989) Biologic and molecular characterization of producer and non-producer clones from HUT-78 cells infected with a patient HIV isolate. AIDS Res Hum Retrovir 5:385–396CrossRefPubMed
29.
go back to reference Sparacio S, Pfeiffer T, Schaal H, Bosch V (2001) Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors. Mol Ther 3:602–612CrossRefPubMed Sparacio S, Pfeiffer T, Schaal H, Bosch V (2001) Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors. Mol Ther 3:602–612CrossRefPubMed
30.
go back to reference Federico M, Percario Z, Olivetta E et al (2001) HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors. Blood 8:2752–2761CrossRef Federico M, Percario Z, Olivetta E et al (2001) HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors. Blood 8:2752–2761CrossRef
31.
go back to reference Dettenhofer M, Yu XF (1999) Highly purified human immunodeficiency virus type 1 reveals a virtual absence of vif in virions. J Virol 73:1460–1467PubMedPubMedCentral Dettenhofer M, Yu XF (1999) Highly purified human immunodeficiency virus type 1 reveals a virtual absence of vif in virions. J Virol 73:1460–1467PubMedPubMedCentral
32.
go back to reference Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006 Chapter 3, Unit 3.22 Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006 Chapter 3, Unit 3.22
34.
go back to reference Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091CrossRefPubMedPubMedCentral Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091CrossRefPubMedPubMedCentral
35.
go back to reference Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54:1237–1248CrossRefPubMedPubMedCentral Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54:1237–1248CrossRefPubMedPubMedCentral
36.
go back to reference Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452CrossRefPubMedPubMedCentral Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452CrossRefPubMedPubMedCentral
37.
go back to reference Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T (2012) Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287:1397–1405CrossRefPubMed Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T (2012) Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287:1397–1405CrossRefPubMed
38.
go back to reference Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247CrossRefPubMed Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247CrossRefPubMed
39.
go back to reference Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287:10977–10989CrossRefPubMedPubMedCentral Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287:10977–10989CrossRefPubMedPubMedCentral
40.
go back to reference Liu YJ, Kanzler H, Soumeli V, Gilliet M (2001) Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2:585–589CrossRefPubMed Liu YJ, Kanzler H, Soumeli V, Gilliet M (2001) Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2:585–589CrossRefPubMed
41.
go back to reference Sanchez G, Xu XY, Chermann JC, Hirsch I (1997) Accumulation of defective viral genomes in peripheral blood mononuclear cells of human immunodeficiency virus type 1-infected individuals. J Virol 71:2233–2240PubMedPubMedCentral Sanchez G, Xu XY, Chermann JC, Hirsch I (1997) Accumulation of defective viral genomes in peripheral blood mononuclear cells of human immunodeficiency virus type 1-infected individuals. J Virol 71:2233–2240PubMedPubMedCentral
42.
go back to reference Fourati S, Lambert-Niclot S, Soulie C et al (2012) HIV-1 genome is often defective in PBMCs and rectal tissues after long-term HAART as a result of APOBEC3 editing and correlates with the size of reservoirs. J Antimicrob Chemother 67:2323–2326CrossRefPubMed Fourati S, Lambert-Niclot S, Soulie C et al (2012) HIV-1 genome is often defective in PBMCs and rectal tissues after long-term HAART as a result of APOBEC3 editing and correlates with the size of reservoirs. J Antimicrob Chemother 67:2323–2326CrossRefPubMed
43.
go back to reference Janini M, Rogers M, Birx DR, McCutchan F (2001) Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+) T cells. J Virol 75:7973–7986CrossRefPubMedPubMedCentral Janini M, Rogers M, Birx DR, McCutchan F (2001) Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+) T cells. J Virol 75:7973–7986CrossRefPubMedPubMedCentral
44.
go back to reference Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: Purification of both vesicles from cell-free supernatants. J Immunol Methods 338:21–30CrossRefPubMed Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: Purification of both vesicles from cell-free supernatants. J Immunol Methods 338:21–30CrossRefPubMed
45.
go back to reference Rieu S, Geminard C, Rabesandratana H, Sainte-Marie J, Vidal M (2000) Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha 4 beta 1. Eur J Biochem 267:583–590CrossRefPubMed Rieu S, Geminard C, Rabesandratana H, Sainte-Marie J, Vidal M (2000) Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha 4 beta 1. Eur J Biochem 267:583–590CrossRefPubMed
46.
47.
go back to reference Sagar D, Foss C, El Baz R, Pomper MG, Khan ZK, Jain P (2012) Mechanisms of dendritic cell trafficking across the blood–brain barrier. J Neuroimmune Pharmacol 7:74–94CrossRefPubMed Sagar D, Foss C, El Baz R, Pomper MG, Khan ZK, Jain P (2012) Mechanisms of dendritic cell trafficking across the blood–brain barrier. J Neuroimmune Pharmacol 7:74–94CrossRefPubMed
50.
go back to reference Palmer S, Maldarelli F, Wiegand A et al (2001) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 105:3879–3884CrossRef Palmer S, Maldarelli F, Wiegand A et al (2001) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 105:3879–3884CrossRef
Metadata
Title
Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir
Authors
Chiara Chiozzini
Claudia Arenaccio
Eleonora Olivetta
Simona Anticoli
Francesco Manfredi
Flavia Ferrantelli
Gabriella d’Ettorre
Ivan Schietroma
Mauro Andreotti
Maurizio Federico
Publication date
01-09-2017
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 9/2017
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-017-3391-4

Other articles of this Issue 9/2017

Archives of Virology 9/2017 Go to the issue