Skip to main content
Top
Published in: Journal of Neural Transmission 7/2016

Open Access 01-07-2016 | Neurology and Preclinical Neurological Studies - Review Article

Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems

Authors: Kaoru Takakusaki, Ryosuke Chiba, Tsukasa Nozu, Toshikatsu Okumura

Published in: Journal of Neural Transmission | Issue 7/2016

Login to get access

Abstract

The lateral part of the mesopontine tegmentum contains functionally important structures involved in the control of posture and gait. Specifically, the mesencephalic locomotor region, which may consist of the cuneiform nucleus and pedunculopontine tegmental nucleus (PPN), occupies the interest with respect to the pathophysiology of posture-gait disorders. The purpose of this article is to review the mechanisms involved in the control of postural muscle tone and locomotion by the mesopontine tegmentum and the pontomedullary reticulospinal system. To make interpretation and discussion more robust, the above issue is considered largely based on our findings in the experiments using decerebrate cat preparations in addition to the results in animal experimentations and clinical investigations in other laboratories. Our investigations revealed the presence of functional topographical organizations with respect to the regulation of postural muscle tone and locomotion in both the mesopontine tegmentum and the pontomedullary reticulospinal system. These organizations were modified by neurotransmitter systems, particularly the cholinergic PPN projection to the pontine reticular formation. Because efferents from the forebrain structures as well as the cerebellum converge to the mesencephalic and pontomedullary reticular formation, changes in these organizations may be involved in the appropriate regulation of posture-gait synergy depending on the behavioral context. On the other hand, abnormal signals from the higher motor centers may produce dysfunction of the mesencephalic-reticulospinal system. Here we highlight the significance of elucidating the mechanisms of the mesencephalic-reticulospinal control of posture and locomotion so that thorough understanding of the pathophysiological mechanisms of posture-gait disorders can be made.
Literature
go back to reference Adkins R, Cegner MR, Rafuse DD (1971) Differential effects of lesions of the anterior posterior sigmoid gyri in cats. Brain Res 30:411–414PubMedCrossRef Adkins R, Cegner MR, Rafuse DD (1971) Differential effects of lesions of the anterior posterior sigmoid gyri in cats. Brain Res 30:411–414PubMedCrossRef
go back to reference Alam M, Schwabe K, Krauss JK (2011) The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134(Pt 1):11–23PubMedCrossRef Alam M, Schwabe K, Krauss JK (2011) The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134(Pt 1):11–23PubMedCrossRef
go back to reference Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA, Burn DJ (2009) Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat Disord 15(2):110–115PubMedCrossRef Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA, Burn DJ (2009) Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat Disord 15(2):110–115PubMedCrossRef
go back to reference Amemiya M, Yamaguchi T (1984) Fictive locomotion of the forelimb evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. Neurosci Lett 50:91–96PubMedCrossRef Amemiya M, Yamaguchi T (1984) Fictive locomotion of the forelimb evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. Neurosci Lett 50:91–96PubMedCrossRef
go back to reference Antonino-Green DM, Cheng J, Magnuson DS (2002) Neurons labeled from locomotor-related ventrolateral funiculus stimulus sites in the neonatal rat spinal cord. J Comp Neurol 442:226–238PubMedCrossRef Antonino-Green DM, Cheng J, Magnuson DS (2002) Neurons labeled from locomotor-related ventrolateral funiculus stimulus sites in the neonatal rat spinal cord. J Comp Neurol 442:226–238PubMedCrossRef
go back to reference Aravamuthan BR, McNab JA, Miller KL, Rushworth M, Jenkinson N, Stein JF, Aziz TZ (2009) Cortical and subcortical connections within the pedunculopontine nucleus of the primate Macaca mulatta determined using probabilistic diffusion tractography. J Clin Neurosci 16:413–420PubMedCrossRef Aravamuthan BR, McNab JA, Miller KL, Rushworth M, Jenkinson N, Stein JF, Aziz TZ (2009) Cortical and subcortical connections within the pedunculopontine nucleus of the primate Macaca mulatta determined using probabilistic diffusion tractography. J Clin Neurosci 16:413–420PubMedCrossRef
go back to reference Armstrong DM (1986) Supraspinal contributions to the initiation and control of locomotion in the cat. Prog Neurobiol 26:273–361PubMedCrossRef Armstrong DM (1986) Supraspinal contributions to the initiation and control of locomotion in the cat. Prog Neurobiol 26:273–361PubMedCrossRef
go back to reference Arnulf I, Ferraye M, Fraix V, Benabid AL, Chabardès S, Goetz L, Pollak P, Debû B (2010) Sleep induced by stimulation in the human pedunculopontine nucleus area. Ann Neurol 67:546–549PubMedCrossRef Arnulf I, Ferraye M, Fraix V, Benabid AL, Chabardès S, Goetz L, Pollak P, Debû B (2010) Sleep induced by stimulation in the human pedunculopontine nucleus area. Ann Neurol 67:546–549PubMedCrossRef
go back to reference Asanome M, Matsuyama K, Mori S (1998) Augmentation of postural muscle tone induced by the stimulation of the descending fibers in the midline area of the cerebellar white matter in the acute decerebrate cat. Neurosci Res 30:257–269PubMedCrossRef Asanome M, Matsuyama K, Mori S (1998) Augmentation of postural muscle tone induced by the stimulation of the descending fibers in the midline area of the cerebellar white matter in the acute decerebrate cat. Neurosci Res 30:257–269PubMedCrossRef
go back to reference Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA (1987) A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs. Brain Res 414:245–261PubMedCrossRef Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA (1987) A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs. Brain Res 414:245–261PubMedCrossRef
go back to reference Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217PubMedCrossRef Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217PubMedCrossRef
go back to reference Benarroch EE (2013) Pedunculopontine nucleus: functional organization and clinical implications. Neurology 80:1148–1155PubMedCrossRef Benarroch EE (2013) Pedunculopontine nucleus: functional organization and clinical implications. Neurology 80:1148–1155PubMedCrossRef
go back to reference Bianchi A, Gestreau C (2009) The brainstem respiratory network: an overview of a half century of research. Respir Physiol Neurobiol 168:4–12PubMedCrossRef Bianchi A, Gestreau C (2009) The brainstem respiratory network: an overview of a half century of research. Respir Physiol Neurobiol 168:4–12PubMedCrossRef
go back to reference Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH (2001) Prospective assessment of falls in Parkinson’s disease. J Neurol 248:950–958PubMedCrossRef Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH (2001) Prospective assessment of falls in Parkinson’s disease. J Neurol 248:950–958PubMedCrossRef
go back to reference Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573PubMedCrossRef Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573PubMedCrossRef
go back to reference Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Scott PJ, Albin RL, Müller ML (2013) Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurol 81(18):1611–1616CrossRef Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Scott PJ, Albin RL, Müller ML (2013) Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurol 81(18):1611–1616CrossRef
go back to reference Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, Mathis CA, Moore RY, DeKosky ST (2003) Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60(12):1745–1748PubMedCrossRef Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, Mathis CA, Moore RY, DeKosky ST (2003) Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60(12):1745–1748PubMedCrossRef
go back to reference Bohnen NI, Müller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676PubMedPubMedCentralCrossRef Bohnen NI, Müller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676PubMedPubMedCentralCrossRef
go back to reference Bohnen NI, Müller ML, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S, Albin RL, Frey KA (2012) Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab 32(8):1609–1617PubMedPubMedCentralCrossRef Bohnen NI, Müller ML, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S, Albin RL, Frey KA (2012) Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab 32(8):1609–1617PubMedPubMedCentralCrossRef
go back to reference Brodal A (1981) Neurological anatomy in relation to Clinical Medicine. Oxford University Press, Oxford, pp 394–447 Brodal A (1981) Neurological anatomy in relation to Clinical Medicine. Oxford University Press, Oxford, pp 394–447
go back to reference Brooks VB, Storney SDJr (1971) Motor mechanisms; the role of the pyramidal system in motor control. Annu Rev Physiol 33:337–392PubMedCrossRef Brooks VB, Storney SDJr (1971) Motor mechanisms; the role of the pyramidal system in motor control. Annu Rev Physiol 33:337–392PubMedCrossRef
go back to reference Brudzyński SM, Mogenson GJ (1985) Association of the mesencephalic locomotor region with locomotor activity induced by injections of amphetamine into the nucleus accumbens. Brain Res 334:77–84PubMedCrossRef Brudzyński SM, Mogenson GJ (1985) Association of the mesencephalic locomotor region with locomotor activity induced by injections of amphetamine into the nucleus accumbens. Brain Res 334:77–84PubMedCrossRef
go back to reference Brudzynski SM, Houghton PE, Brownlee RD, Mogenson GJ (1986) Involvement of neuronal cell bodies of the mesencephalic locomotor region in the initiation of locomotor activity of freely behaving rats. Brain Res Bull 16:377–381PubMedCrossRef Brudzynski SM, Houghton PE, Brownlee RD, Mogenson GJ (1986) Involvement of neuronal cell bodies of the mesencephalic locomotor region in the initiation of locomotor activity of freely behaving rats. Brain Res Bull 16:377–381PubMedCrossRef
go back to reference Brudzynski SM, Wu M, Mogenson GJ (1993) Decreases in rat locomotor activity as a result of changes in synaptic transmission to neurons within the mesencephalic locomotor region. Can J Physiol Pharmacol 71:394–406PubMedCrossRef Brudzynski SM, Wu M, Mogenson GJ (1993) Decreases in rat locomotor activity as a result of changes in synaptic transmission to neurons within the mesencephalic locomotor region. Can J Physiol Pharmacol 71:394–406PubMedCrossRef
go back to reference Büttner U, Glasauer S, Glonti L, Guan Y, Kipiani E, Kleine J, Siebold C, Tchelidze T, Wilden A (2003) Multimodal signal integration in vestibular neurons of the primate fastigial nucleus. Ann N Y Acad Sci 1004:241–251PubMedCrossRef Büttner U, Glasauer S, Glonti L, Guan Y, Kipiani E, Kleine J, Siebold C, Tchelidze T, Wilden A (2003) Multimodal signal integration in vestibular neurons of the primate fastigial nucleus. Ann N Y Acad Sci 1004:241–251PubMedCrossRef
go back to reference Cavdar S, Onat FY, Yananli HR, Sehirli US, Tulay C, Saka E, Gürdal E (2002) Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. J Anat 201(6):485–491PubMedPubMedCentralCrossRef Cavdar S, Onat FY, Yananli HR, Sehirli US, Tulay C, Saka E, Gürdal E (2002) Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. J Anat 201(6):485–491PubMedPubMedCentralCrossRef
go back to reference Chan SH, Barnes CD (1974) Postsynaptic effects evoked from brain stem reticular formation in lumbar cord and their temporal correlations with a presynaptic mechanism. Arch Ital Biol 112:81–97PubMed Chan SH, Barnes CD (1974) Postsynaptic effects evoked from brain stem reticular formation in lumbar cord and their temporal correlations with a presynaptic mechanism. Arch Ital Biol 112:81–97PubMed
go back to reference Chase MH (1980) The motor functions of the reticular formation are multifaceted and state-determined. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited. Raven Press, New York, pp 449–472 Chase MH (1980) The motor functions of the reticular formation are multifaceted and state-determined. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited. Raven Press, New York, pp 449–472
go back to reference Chase MH, Morales FR (1990) The atonia and myoclonia of active (REM) sleep. Annu Rev Psychol 41:557–584PubMedCrossRef Chase MH, Morales FR (1990) The atonia and myoclonia of active (REM) sleep. Annu Rev Psychol 41:557–584PubMedCrossRef
go back to reference Chase MH, Wills N (1979) Brain stem control of masseteric reflex activity during sleep and wakefulness: medulla. Exp Neurol 64:118–131PubMedCrossRef Chase MH, Wills N (1979) Brain stem control of masseteric reflex activity during sleep and wakefulness: medulla. Exp Neurol 64:118–131PubMedCrossRef
go back to reference Chase MH, Morales FR, Boxer P, Fung SJ, Soja PJ (1986) Effect of stimulation of the nucleus reticularis gigantocellularis on the membrane potential of cat lumbar motoneurons during sleep and wakefulness. Brain Res 386:237–244PubMedCrossRef Chase MH, Morales FR, Boxer P, Fung SJ, Soja PJ (1986) Effect of stimulation of the nucleus reticularis gigantocellularis on the membrane potential of cat lumbar motoneurons during sleep and wakefulness. Brain Res 386:237–244PubMedCrossRef
go back to reference Chastan N, Westby GW, Yelnik J, Bardinet E, Do MC, Agid Y, Welter ML (2009) Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain 132:172–184PubMedCrossRef Chastan N, Westby GW, Yelnik J, Bardinet E, Do MC, Agid Y, Welter ML (2009) Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain 132:172–184PubMedCrossRef
go back to reference Clements JR, Grant S (1990) Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci Lett 120:70–73PubMedCrossRef Clements JR, Grant S (1990) Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci Lett 120:70–73PubMedCrossRef
go back to reference Coffman KA, Dum RP, Strick PL (2011) Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci USA 108(38):16068–16073PubMedPubMedCentralCrossRef Coffman KA, Dum RP, Strick PL (2011) Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci USA 108(38):16068–16073PubMedPubMedCentralCrossRef
go back to reference Coles SK, Iles JF, Nicolopoulos-Stournaras S (1989) The mesencephalic centre controlling locomotion in the rat. Neuroscience 28:149–157PubMedCrossRef Coles SK, Iles JF, Nicolopoulos-Stournaras S (1989) The mesencephalic centre controlling locomotion in the rat. Neuroscience 28:149–157PubMedCrossRef
go back to reference Datta S (2002) Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor. J Neurophysiol 87:1790–1978PubMedCrossRef Datta S (2002) Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor. J Neurophysiol 87:1790–1978PubMedCrossRef
go back to reference Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34(13):4509–4518PubMedPubMedCentralCrossRef Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34(13):4509–4518PubMedPubMedCentralCrossRef
go back to reference DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24PubMedCrossRef DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24PubMedCrossRef
go back to reference Depoortere R, Di Scala G, Sandner G (1990) Treadmill locomotion and aversive effects induced by electrical stimulation of the mesencephalic locomotor region in the rat. Brain Res Bull 25:723–727PubMedCrossRef Depoortere R, Di Scala G, Sandner G (1990) Treadmill locomotion and aversive effects induced by electrical stimulation of the mesencephalic locomotor region in the rat. Brain Res Bull 25:723–727PubMedCrossRef
go back to reference Douglas JR, Noga BR, Dai X, Jordan LM (1993) The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. J Neurosci 13:990–1000PubMed Douglas JR, Noga BR, Dai X, Jordan LM (1993) The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. J Neurosci 13:990–1000PubMed
go back to reference Drew T, Rossignol S (1990a) Functional organization within the medullary reticular formation of intact unanesthetized cat. I. Movements evoked by microstimulation. J Neurophysiol 64:767–781PubMed Drew T, Rossignol S (1990a) Functional organization within the medullary reticular formation of intact unanesthetized cat. I. Movements evoked by microstimulation. J Neurophysiol 64:767–781PubMed
go back to reference Drew T, Rossignol S (1990b) Functional organization within the medullary reticular formation of intact unanesthetized cat. II. Electromyographic activity evoked by microstimulation. J Neurophysiol 64:782–795PubMed Drew T, Rossignol S (1990b) Functional organization within the medullary reticular formation of intact unanesthetized cat. II. Electromyographic activity evoked by microstimulation. J Neurophysiol 64:782–795PubMed
go back to reference Drew T, Dubuc R, Rossignol S (1986) Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J Neurophysiol 55:375–401PubMed Drew T, Dubuc R, Rossignol S (1986) Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J Neurophysiol 55:375–401PubMed
go back to reference Eccles JC, Nicoll RA, Schwarz DWF, Taborikova H, Willey TJ (1975) Reticulospinal neurons with and without monosynaptic inputs from cerebellar nuclei. J Neurophysiol 38:513–530PubMed Eccles JC, Nicoll RA, Schwarz DWF, Taborikova H, Willey TJ (1975) Reticulospinal neurons with and without monosynaptic inputs from cerebellar nuclei. J Neurophysiol 38:513–530PubMed
go back to reference Edelman G (1987) Neural Darwinism. The theory of neuronal group selection. Basic Books, New York Edelman G (1987) Neural Darwinism. The theory of neuronal group selection. Basic Books, New York
go back to reference Eidelberg E, Yu J (1981) Effects of corticospinal lesion upon treadmill locomotion by cat. Exp Brain Res 45:101–103 Eidelberg E, Yu J (1981) Effects of corticospinal lesion upon treadmill locomotion by cat. Exp Brain Res 45:101–103
go back to reference Fenaux F, Corio M, Palisses R, Viala D (1991) Effects of an NMDA-receptor antagonist, MK-801, on central locomotor programming in the rabbit. Exp Brain Res 86:393–401PubMedCrossRef Fenaux F, Corio M, Palisses R, Viala D (1991) Effects of an NMDA-receptor antagonist, MK-801, on central locomotor programming in the rabbit. Exp Brain Res 86:393–401PubMedCrossRef
go back to reference Ferraye MU, Debû B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardès S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133(Pt 1):205–214PubMedCrossRef Ferraye MU, Debû B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardès S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133(Pt 1):205–214PubMedCrossRef
go back to reference Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151PubMed Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151PubMed
go back to reference Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG, Horak FB (2014) Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One 9(6):e10029CrossRef Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG, Horak FB (2014) Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One 9(6):e10029CrossRef
go back to reference Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363:177–196PubMedCrossRef Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363:177–196PubMedCrossRef
go back to reference Fortin M, Parent A (1999) Calretinin-immunoreactive neurons in primate pedunculopontine and laterodorsal tegmental nuclei. Neuroscience 88:535–547PubMedCrossRef Fortin M, Parent A (1999) Calretinin-immunoreactive neurons in primate pedunculopontine and laterodorsal tegmental nuclei. Neuroscience 88:535–547PubMedCrossRef
go back to reference Fung SJ, Barnes CD (1981) Evidence of facilitatory coerulospinal action in lumbar motoneurons of cats. Brain Res 216:299–311PubMedCrossRef Fung SJ, Barnes CD (1981) Evidence of facilitatory coerulospinal action in lumbar motoneurons of cats. Brain Res 216:299–311PubMedCrossRef
go back to reference Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21(4):331–342PubMedCrossRef Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21(4):331–342PubMedCrossRef
go back to reference Gai WP, Halliday GM, Blumbergs PC, Geffen LB, Blessing WW (1991) Substance P-containing neurons in the mesopontine tegmentum are severely affected in Parkinson’s disease. Brain 114(Pt 5):2253–2267PubMedCrossRef Gai WP, Halliday GM, Blumbergs PC, Geffen LB, Blessing WW (1991) Substance P-containing neurons in the mesopontine tegmentum are severely affected in Parkinson’s disease. Brain 114(Pt 5):2253–2267PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20PubMedCrossRef Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD, Jackson MB, Smith MM (1983a) Connections of the mesencephalic locomotor region (MLR) I. Substantia nigra afferents. Brain Res Bull 10:57–62PubMedCrossRef Garcia-Rill E, Skinner RD, Jackson MB, Smith MM (1983a) Connections of the mesencephalic locomotor region (MLR) I. Substantia nigra afferents. Brain Res Bull 10:57–62PubMedCrossRef
go back to reference Garcia-Rill E, Skinner RD, Gilmore SA, Owings R (1983b) Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res Bull 10:63–71PubMedCrossRef Garcia-Rill E, Skinner RD, Gilmore SA, Owings R (1983b) Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res Bull 10:63–71PubMedCrossRef
go back to reference Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18:731–738PubMedCrossRef Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18:731–738PubMedCrossRef
go back to reference Garcia-Rill E, Simon C, Smith K, Kezunovic N, Hyde J (2011) The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: arousal from slices to humans: implications for DBS. J Neural Transm 118(10):1397–1407PubMedCrossRef Garcia-Rill E, Simon C, Smith K, Kezunovic N, Hyde J (2011) The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: arousal from slices to humans: implications for DBS. J Neural Transm 118(10):1397–1407PubMedCrossRef
go back to reference Georgopoulos AP, Grillner S (1989) Visuomotor coordination in reaching and locomotion. Science 245:1209–1210PubMedCrossRef Georgopoulos AP, Grillner S (1989) Visuomotor coordination in reaching and locomotion. Science 245:1209–1210PubMedCrossRef
go back to reference Gerin C, Privat A (1998) Direct evidence for the link between monoaminergic descending pathways and motor activity: II. A study with microdialysis probes implanted in the ventral horn of the spinal cord. Brain Res 794:169–173PubMedCrossRef Gerin C, Privat A (1998) Direct evidence for the link between monoaminergic descending pathways and motor activity: II. A study with microdialysis probes implanted in the ventral horn of the spinal cord. Brain Res 794:169–173PubMedCrossRef
go back to reference Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S, Civelli O, Hirsch EC, François C (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33(29):11986–11993PubMedCrossRef Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S, Civelli O, Hirsch EC, François C (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33(29):11986–11993PubMedCrossRef
go back to reference Grantyn A, Berthoz A (1987) Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat I. Behavioral properties. Exp Brain Res 66:339–354PubMedCrossRef Grantyn A, Berthoz A (1987) Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat I. Behavioral properties. Exp Brain Res 66:339–354PubMedCrossRef
go back to reference Grantyn A, Ong-Meang Jacques V, Berthoz A (1987) Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. II. Morphological properties as revealed by intra-axonal injections of horseradish peroxidase. Exp Brain Res 66:355–377PubMedCrossRef Grantyn A, Ong-Meang Jacques V, Berthoz A (1987) Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. II. Morphological properties as revealed by intra-axonal injections of horseradish peroxidase. Exp Brain Res 66:355–377PubMedCrossRef
go back to reference Greene RW, Carpenter DO (1985) Actions of neurotransmitters on pontine medical reticular formation neurons of the cat. J Neurophysiol 54:520–531PubMed Greene RW, Carpenter DO (1985) Actions of neurotransmitters on pontine medical reticular formation neurons of the cat. J Neurophysiol 54:520–531PubMed
go back to reference Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) The nervous system II. Am Physiol Soc Press, Bethesda, pp 1179–1236 Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) The nervous system II. Am Physiol Soc Press, Bethesda, pp 1179–1236
go back to reference Grillner S, Georgopoulos AP, Jordan LM (1997) Selection and initiation of motor behavior. In: Stein PSG et al (eds) Neurons, networks, and motor behavior. MIT Press, Cambridge, pp 3–19 Grillner S, Georgopoulos AP, Jordan LM (1997) Selection and initiation of motor behavior. In: Stein PSG et al (eds) Neurons, networks, and motor behavior. MIT Press, Cambridge, pp 3–19
go back to reference Gut NK, Winn P (2015) Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 35(12):4792–4803PubMedPubMedCentralCrossRef Gut NK, Winn P (2015) Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 35(12):4792–4803PubMedPubMedCentralCrossRef
go back to reference Habaguchi T, Takakusaki K, Saitoh K, Sugimoto J, Sakamoto T (2002) Medullary reticulospinal tract mediating the generalized motor inhibition in cats: II. Functional organization within the medullary reticular formation with respect to postsynaptic inhibition of forelimb and hindlimb motoneurons. Neuroscience 113:65–77PubMedCrossRef Habaguchi T, Takakusaki K, Saitoh K, Sugimoto J, Sakamoto T (2002) Medullary reticulospinal tract mediating the generalized motor inhibition in cats: II. Functional organization within the medullary reticular formation with respect to postsynaptic inhibition of forelimb and hindlimb motoneurons. Neuroscience 113:65–77PubMedCrossRef
go back to reference Hagevik A, McClellan AD (1994) Role of excitatory amino acids in brainstem activation of spinal locomotor networks in larval lamprey. Brain Res 636:147–152PubMedCrossRef Hagevik A, McClellan AD (1994) Role of excitatory amino acids in brainstem activation of spinal locomotor networks in larval lamprey. Brain Res 636:147–152PubMedCrossRef
go back to reference Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262(1):105–124PubMedCrossRef Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262(1):105–124PubMedCrossRef
go back to reference Hamani C, Stone S, Laxton A, Lozano AM (2007) The pedunculopontine nucleus and movement disorders: anatomy and the role for deep brain stimulation. Parkinsonism Relat Disord 13(Suppl 3):S276–S280PubMedCrossRef Hamani C, Stone S, Laxton A, Lozano AM (2007) The pedunculopontine nucleus and movement disorders: anatomy and the role for deep brain stimulation. Parkinsonism Relat Disord 13(Suppl 3):S276–S280PubMedCrossRef
go back to reference Hamani C, Moro E, Lozano AM (2011) The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm 118:1461–1468PubMedCrossRef Hamani C, Moro E, Lozano AM (2011) The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm 118:1461–1468PubMedCrossRef
go back to reference Harada H, Takakusaki K, Kita S, Matsuda M, Nonaka S, Sakamoto T (2005) Effects of injecting GABAergic agents into the medullary reticular formation upon swallowing induced by the superior laryngeal nerve stimulation in decerebrate cats. Neurosci Res 51:395–404PubMedCrossRef Harada H, Takakusaki K, Kita S, Matsuda M, Nonaka S, Sakamoto T (2005) Effects of injecting GABAergic agents into the medullary reticular formation upon swallowing induced by the superior laryngeal nerve stimulation in decerebrate cats. Neurosci Res 51:395–404PubMedCrossRef
go back to reference Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36(1):52–73PubMedCrossRef Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36(1):52–73PubMedCrossRef
go back to reference Hathout GM, Bhidayasiri R (2005) Midbrain ataxia: an introduction to the mesencephalic locomotor region and the pedunculopontine nucleus. AJR Am J Roentgenol 184(3):953–956PubMedCrossRef Hathout GM, Bhidayasiri R (2005) Midbrain ataxia: an introduction to the mesencephalic locomotor region and the pedunculopontine nucleus. AJR Am J Roentgenol 184(3):953–956PubMedCrossRef
go back to reference Hazrati LN, Parent A (1992) Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585(1–2):267–271PubMedCrossRef Hazrati LN, Parent A (1992) Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585(1–2):267–271PubMedCrossRef
go back to reference Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22(10):464–471PubMedCrossRef Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22(10):464–471PubMedCrossRef
go back to reference Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978PubMed Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978PubMed
go back to reference Hinsey JC, Ranson SW, McNattin FR (1930) The role of the hypothalamus and mesencephalon in locomotion. Arch Neurol Psychiat 23:1–43CrossRef Hinsey JC, Ranson SW, McNattin FR (1930) The role of the hypothalamus and mesencephalon in locomotion. Arch Neurol Psychiat 23:1–43CrossRef
go back to reference Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84(16):5976–5980PubMedPubMedCentralCrossRef Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84(16):5976–5980PubMedPubMedCentralCrossRef
go back to reference Holstege JC, Kuypers HG (1987) Brainstem projections to spinal motoneurons: an update. Neuroscience 23:809–821PubMedCrossRef Holstege JC, Kuypers HG (1987) Brainstem projections to spinal motoneurons: an update. Neuroscience 23:809–821PubMedCrossRef
go back to reference Homma Y, Nonaka S, Matsuyama K, Mori S (1995) Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci Res 23:89–102PubMedCrossRef Homma Y, Nonaka S, Matsuyama K, Mori S (1995) Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci Res 23:89–102PubMedCrossRef
go back to reference Honda T, Semba K (1994) Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Res 647:299–306PubMedCrossRef Honda T, Semba K (1994) Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Res 647:299–306PubMedCrossRef
go back to reference Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17:234–242PubMedCrossRef Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17:234–242PubMedCrossRef
go back to reference Huber J, Grottel K, Mrówczyński W, Krutki P (1999) Spinoreticular neurons in the second sacral segment of the feline spinal cord. Neurosci Res 34:59–65PubMedCrossRef Huber J, Grottel K, Mrówczyński W, Krutki P (1999) Spinoreticular neurons in the second sacral segment of the feline spinal cord. Neurosci Res 34:59–65PubMedCrossRef
go back to reference Iwakiri H, Oka T, Takakusaki K, Mori S (1995) Stimulus effects of the medial pontine reticular formation and the mesencephalic locomotor region upon medullary reticulospinal neurons in acute decerebrate cats. Neurosci Res 23:47–53PubMedCrossRef Iwakiri H, Oka T, Takakusaki K, Mori S (1995) Stimulus effects of the medial pontine reticular formation and the mesencephalic locomotor region upon medullary reticulospinal neurons in acute decerebrate cats. Neurosci Res 23:47–53PubMedCrossRef
go back to reference Jacob BL, Fornal CA (1993) 5-HT and motor control: a hypothesis. Trends Neurosci 16:346–352CrossRef Jacob BL, Fornal CA (1993) 5-HT and motor control: a hypothesis. Trends Neurosci 16:346–352CrossRef
go back to reference Jacobs JV, Lou JS, Kraakevik JA, Horak FB (2009) The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience 164:877–885PubMedPubMedCentralCrossRef Jacobs JV, Lou JS, Kraakevik JA, Horak FB (2009) The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience 164:877–885PubMedPubMedCentralCrossRef
go back to reference Jahn K, Deutschländer A, Stephan T, Kalla R, Wiesmann M, Strupp M, Brandt T (2008a) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39:786–792PubMedCrossRef Jahn K, Deutschländer A, Stephan T, Kalla R, Wiesmann M, Strupp M, Brandt T (2008a) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39:786–792PubMedCrossRef
go back to reference Jahn K, Deutschländer A, Stephan T, Kalla R, Hüfner K, Wagner J, Strupp M, Brandt T (2008b) Supraspinal locomotor control in quadrupeds and humans. Prog Brain Res 171:353–362PubMedCrossRef Jahn K, Deutschländer A, Stephan T, Kalla R, Hüfner K, Wagner J, Strupp M, Brandt T (2008b) Supraspinal locomotor control in quadrupeds and humans. Prog Brain Res 171:353–362PubMedCrossRef
go back to reference Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81:929–969PubMed Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81:929–969PubMed
go back to reference Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543PubMedPubMedCentralCrossRef Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543PubMedPubMedCentralCrossRef
go back to reference Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40(3):637–756PubMedCrossRef Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40(3):637–756PubMedCrossRef
go back to reference Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26(11):578–586PubMedCrossRef Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26(11):578–586PubMedCrossRef
go back to reference Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 57:183–191PubMedCrossRef Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 57:183–191PubMedCrossRef
go back to reference Karachi C, André A, Bertasi E, Bardinet E, Lehéricy S, Bernard FA (2012) Functional parcellation of the lateral mesencephalus. J Neurosci 32(27):9396–9401PubMedCrossRef Karachi C, André A, Bertasi E, Bardinet E, Lehéricy S, Bernard FA (2012) Functional parcellation of the lateral mesencephalus. J Neurosci 32(27):9396–9401PubMedCrossRef
go back to reference Keizer K, Kuypers HGJM (1989) Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in Monkey (Macaca fascicularis). Exp Brain Res 74:311–318PubMedCrossRef Keizer K, Kuypers HGJM (1989) Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in Monkey (Macaca fascicularis). Exp Brain Res 74:311–318PubMedCrossRef
go back to reference Kinjo N, Atsuta Y, Webber M, Kyle R, Skinner RD, Garcia-Rill E (1990) Medioventral medulla-induced locomotion. Brain Res Bull 24:509–516PubMedCrossRef Kinjo N, Atsuta Y, Webber M, Kyle R, Skinner RD, Garcia-Rill E (1990) Medioventral medulla-induced locomotion. Brain Res Bull 24:509–516PubMedCrossRef
go back to reference Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 18:263–272PubMedCrossRef Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 18:263–272PubMedCrossRef
go back to reference Kobayashi Y, Matsuyama K, Mori S (1994) Distribution of serotonin cells projecting to the pontomedullary reticular formation in the cat. Neurosci Res 20:43–55PubMedCrossRef Kobayashi Y, Matsuyama K, Mori S (1994) Distribution of serotonin cells projecting to the pontomedullary reticular formation in the cat. Neurosci Res 20:43–55PubMedCrossRef
go back to reference Kobayashi T, Homma Y, Good C, Skinner RD, Garcia-Rill E (2003) Developmental changes in the effects of serotonin on neurons in the region of the pedunculopontine nucleus. Brain Res Dev Brain Res 140(1):57–66PubMedCrossRef Kobayashi T, Homma Y, Good C, Skinner RD, Garcia-Rill E (2003) Developmental changes in the effects of serotonin on neurons in the region of the pedunculopontine nucleus. Brain Res Dev Brain Res 140(1):57–66PubMedCrossRef
go back to reference Kohyama J, Lai YY, Siegel JM (1998) Reticulospinal systems mediate atonia with short and long latencies. J Neurophysiol 80:1839–1851PubMed Kohyama J, Lai YY, Siegel JM (1998) Reticulospinal systems mediate atonia with short and long latencies. J Neurophysiol 80:1839–1851PubMed
go back to reference Koyama Y, Sakai K (2000) Modulation of presumed cholinergic mesopontine tegmental neurons by acetylcholine and monoamines applied iontophoretically in unanesthetized cats. Neuroscience 96:723–733PubMedCrossRef Koyama Y, Sakai K (2000) Modulation of presumed cholinergic mesopontine tegmental neurons by acetylcholine and monoamines applied iontophoretically in unanesthetized cats. Neuroscience 96:723–733PubMedCrossRef
go back to reference Koyama Y, Jodo E, Kayama Y (1994) Sensory responsiveness of “broad-spike” neurons in the laterodorsal tegmental nucleus, locus coeruleus and dorsal raphe of awake rats: implications for cholinergic and monoaminergic neuron-specific responses. Neuroscience 63:1021–1031PubMedCrossRef Koyama Y, Jodo E, Kayama Y (1994) Sensory responsiveness of “broad-spike” neurons in the laterodorsal tegmental nucleus, locus coeruleus and dorsal raphe of awake rats: implications for cholinergic and monoaminergic neuron-specific responses. Neuroscience 63:1021–1031PubMedCrossRef
go back to reference Koyama Y, Takahashi K, Kodama T, Kayama Y (2003) State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking. Neuroscience 119:1209–1219PubMedCrossRef Koyama Y, Takahashi K, Kodama T, Kayama Y (2003) State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking. Neuroscience 119:1209–1219PubMedCrossRef
go back to reference Kubin L (2001) Carbachol models of REM sleep: recent developments and new directions. Arch Ital Biol 139:147–168PubMed Kubin L (2001) Carbachol models of REM sleep: recent developments and new directions. Arch Ital Biol 139:147–168PubMed
go back to reference Lai YY, Siegel JM (1988) Medullary regions mediating atonia. J Neurosci 8:4790–4796PubMed Lai YY, Siegel JM (1988) Medullary regions mediating atonia. J Neurosci 8:4790–4796PubMed
go back to reference Lai YY, Clements JR, Siegel JM (1993) Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol 336:321–330PubMedCrossRef Lai YY, Clements JR, Siegel JM (1993) Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol 336:321–330PubMedCrossRef
go back to reference Lai YY, Kodama T, Schenkel E, Siegel JM (2010) Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol 104:2024–2033PubMedPubMedCentralCrossRef Lai YY, Kodama T, Schenkel E, Siegel JM (2010) Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol 104:2024–2033PubMedPubMedCentralCrossRef
go back to reference Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344(2):190–209PubMedCrossRef Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344(2):190–209PubMedCrossRef
go back to reference Leonard CS, Llinás R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59:309–330PubMedCrossRef Leonard CS, Llinás R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59:309–330PubMedCrossRef
go back to reference Liddle EGT, Phillips CG (1944) Pyramidal section in the cat. Brain 88:397–406 Liddle EGT, Phillips CG (1944) Pyramidal section in the cat. Brain 88:397–406
go back to reference Lima MM (2013) Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev 17(5):367–375PubMedCrossRef Lima MM (2013) Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev 17(5):367–375PubMedCrossRef
go back to reference Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578PubMedCrossRef Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578PubMedCrossRef
go back to reference Magoun MW, Rhines R (1946) An inhibitory mechanism in the bulbar reticular formation. J Neurophysiol 9:165–171PubMed Magoun MW, Rhines R (1946) An inhibitory mechanism in the bulbar reticular formation. J Neurophysiol 9:165–171PubMed
go back to reference Marigold DS, Drew T (2011) Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 105:2457–2470PubMedCrossRef Marigold DS, Drew T (2011) Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 105:2457–2470PubMedCrossRef
go back to reference Marsden CD (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32(5):514–539PubMedCrossRef Marsden CD (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32(5):514–539PubMedCrossRef
go back to reference Masdeu JC, Alampur U, Cavaliere R et al (1994) Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 35:619–621PubMedCrossRef Masdeu JC, Alampur U, Cavaliere R et al (1994) Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 35:619–621PubMedCrossRef
go back to reference Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56PubMedCrossRef Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56PubMedCrossRef
go back to reference Matsumura M, Nambu A, Yamaji Y, Watanabe K, Imai H, Inase M, Tokuno H, Takada M (2000) Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience 98:97–110PubMedCrossRef Matsumura M, Nambu A, Yamaji Y, Watanabe K, Imai H, Inase M, Tokuno H, Takada M (2000) Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience 98:97–110PubMedCrossRef
go back to reference Matsuyama K, Drew T (1997) Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris- leucoagglutinin. J Comp Neurol 389:617–641PubMedCrossRef Matsuyama K, Drew T (1997) Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris- leucoagglutinin. J Comp Neurol 389:617–641PubMedCrossRef
go back to reference Matsuyama K, Drew T (2000a) Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. I. Walking on a level surface. J Neurophysiol 84:2237–2256PubMed Matsuyama K, Drew T (2000a) Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. I. Walking on a level surface. J Neurophysiol 84:2237–2256PubMed
go back to reference Matsuyama K, Drew T (2000b) Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane. J Neurophysiol 84:2257–2276PubMed Matsuyama K, Drew T (2000b) Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane. J Neurophysiol 84:2257–2276PubMed
go back to reference Matsuyama K, Ohta Y, Mori S (1988) Ascending and descending projections of the nucleus reticularis gigantocellularis in the cat demonstrated by the anterograde neural tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 460:124–141PubMedCrossRef Matsuyama K, Ohta Y, Mori S (1988) Ascending and descending projections of the nucleus reticularis gigantocellularis in the cat demonstrated by the anterograde neural tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 460:124–141PubMedCrossRef
go back to reference Matsuyama K, Kobayashi Y, Takakusaki K, Mori S, Kimura H (1993) Termination mode and branching patterns of reticuloreticular and reticulospinal fibers of the nucleus reticularis pontis oralis in the cat: an anterograde PHA-L tracing study. Neurosci Res 17:9–21PubMedCrossRef Matsuyama K, Kobayashi Y, Takakusaki K, Mori S, Kimura H (1993) Termination mode and branching patterns of reticuloreticular and reticulospinal fibers of the nucleus reticularis pontis oralis in the cat: an anterograde PHA-L tracing study. Neurosci Res 17:9–21PubMedCrossRef
go back to reference Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881PubMedCrossRef Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881PubMedCrossRef
go back to reference Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotactic surgery of nucleus tegmenti pedunculopontine. Br J Neurosurg 22(Suppl 1):S33–S40PubMedCrossRef Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E (2008) Stereotactic surgery of nucleus tegmenti pedunculopontine. Br J Neurosurg 22(Suppl 1):S33–S40PubMedCrossRef
go back to reference Mazzone P, Scarnati E, Garcia-Rill E (2011) Commentary: the pedunculopontine nucleus: clinical experience, basic questions and future directions. J Neural Transm 118:1391–1396PubMedCrossRef Mazzone P, Scarnati E, Garcia-Rill E (2011) Commentary: the pedunculopontine nucleus: clinical experience, basic questions and future directions. J Neural Transm 118:1391–1396PubMedCrossRef
go back to reference McCall AA, Miller DJ, Catanzaro MF, Cotter LA, Yates BJ (2015) Hindlimb movement modulates the activity of rostral fastigial nucleus neurons that process vestibular input. Exp Brain Res 233(8):2411–2419PubMedPubMedCentralCrossRef McCall AA, Miller DJ, Catanzaro MF, Cotter LA, Yates BJ (2015) Hindlimb movement modulates the activity of rostral fastigial nucleus neurons that process vestibular input. Exp Brain Res 233(8):2411–2419PubMedPubMedCentralCrossRef
go back to reference Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58:265–271PubMedCrossRef Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58:265–271PubMedCrossRef
go back to reference Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515:397–408PubMedCrossRef Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515:397–408PubMedCrossRef
go back to reference Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633PubMedCrossRef Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633PubMedCrossRef
go back to reference Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31(2–3):236–250PubMedCrossRef Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31(2–3):236–250PubMedCrossRef
go back to reference Mileykovskiy BY, Kiyashchenko LI, Kodama T, Lai YY, Siegel JM (2000) Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 20:8551–8558PubMed Mileykovskiy BY, Kiyashchenko LI, Kodama T, Lai YY, Siegel JM (2000) Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 20:8551–8558PubMed
go back to reference Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798PubMedCrossRef Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798PubMedCrossRef
go back to reference Milner KL, Mogenson GJ (1988) Electrical and chemical activation of the mesencephalic and subthalamic locomotor regions in freely moving rats. Brain Res 452:273–285PubMedCrossRef Milner KL, Mogenson GJ (1988) Electrical and chemical activation of the mesencephalic and subthalamic locomotor regions in freely moving rats. Brain Res 452:273–285PubMedCrossRef
go back to reference Mitani A, Ito K, Hallanger AE, Wainer BH, Kataoka K, McCarley RW (1988) Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine giganotocellular tegmental field in the cat. Brain Res 451:397–402PubMedCrossRef Mitani A, Ito K, Hallanger AE, Wainer BH, Kataoka K, McCarley RW (1988) Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine giganotocellular tegmental field in the cat. Brain Res 451:397–402PubMedCrossRef
go back to reference Mogenson GJ (1991) The role of mesolimbic dopamine projections to the ventral striatum in response to initiation. In: Shimamura M, Grillner S, Edgarton VR (eds) Neurobiological basis of human locomotion. Japan Scientific Societies Press, Tokyo, pp 33–44 Mogenson GJ (1991) The role of mesolimbic dopamine projections to the ventral striatum in response to initiation. In: Shimamura M, Grillner S, Edgarton VR (eds) Neurobiological basis of human locomotion. Japan Scientific Societies Press, Tokyo, pp 33–44
go back to reference Mori S (1987) Integration of posture and locomotion in acute decerebrate cats and in awake, free moving cats. Prog Neurobiol 28:161–196PubMedCrossRef Mori S (1987) Integration of posture and locomotion in acute decerebrate cats and in awake, free moving cats. Prog Neurobiol 28:161–196PubMedCrossRef
go back to reference Mori S, Kawahara K, Sakamoto T, Aoki M, Tomiyama T (1982) Setting and resetting of level of postural muscle tone in decerebrate cat by stimulation of brain stem. J Neurophysiol 48(3):737–748PubMed Mori S, Kawahara K, Sakamoto T, Aoki M, Tomiyama T (1982) Setting and resetting of level of postural muscle tone in decerebrate cat by stimulation of brain stem. J Neurophysiol 48(3):737–748PubMed
go back to reference Mori S, Sakamoto T, Ohta Y, Takakusaki K, Matsuyama K (1989) Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res 505:66–74PubMedCrossRef Mori S, Sakamoto T, Ohta Y, Takakusaki K, Matsuyama K (1989) Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res 505:66–74PubMedCrossRef
go back to reference Mori S, Matsuyama K, Kohyama J, Kobayashi Y, Takakusaki K (1992) Neuronal constituents of postural and locomotor control systems and their interactions in cats. Brain Dev 14(Suppl):S109–120PubMed Mori S, Matsuyama K, Kohyama J, Kobayashi Y, Takakusaki K (1992) Neuronal constituents of postural and locomotor control systems and their interactions in cats. Brain Dev 14(Suppl):S109–120PubMed
go back to reference Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1998) Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann N Y Acad Sci 860:94–105PubMedCrossRef Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1998) Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann N Y Acad Sci 860:94–105PubMedCrossRef
go back to reference Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82:290–300PubMed Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82:290–300PubMed
go back to reference Mori S, Matsui T, Mori F, Nakajima K, Matsuyama K (2000) Instigation and control of treadmill locomotion in high decerebrate cats by stimulation of the hook bundle of Russell in the cerebellum. Can J Physiol Pharmacol 78(11):945–957PubMedCrossRef Mori S, Matsui T, Mori F, Nakajima K, Matsuyama K (2000) Instigation and control of treadmill locomotion in high decerebrate cats by stimulation of the hook bundle of Russell in the cerebellum. Can J Physiol Pharmacol 78(11):945–957PubMedCrossRef
go back to reference Mori F, Nakajima K, Tachibana A, Mori S (2003) Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA). Neurosci Res 46(Suppl 1):S157 Mori F, Nakajima K, Tachibana A, Mori S (2003) Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA). Neurosci Res 46(Suppl 1):S157
go back to reference Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133(Pt 1):215–224PubMedCrossRef Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133(Pt 1):215–224PubMedCrossRef
go back to reference Müller ML, Albin RL, Kotagal V, Koeppe RA, Scott PJ, Frey KA, Bohnen NI (2013) Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 136(Pt 11):3282–3829PubMedPubMedCentralCrossRef Müller ML, Albin RL, Kotagal V, Koeppe RA, Scott PJ, Frey KA, Bohnen NI (2013) Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 136(Pt 11):3282–3829PubMedPubMedCentralCrossRef
go back to reference Müller ML, Bohnen NI, Kotagal V, Scott PJ, Koeppe RA, Frey KA, Albin RL (2015) Clinical markers for identifying cholinergic deficits in Parkinson’s disease. Mov Disord 30(2):269–273PubMedCrossRef Müller ML, Bohnen NI, Kotagal V, Scott PJ, Koeppe RA, Frey KA, Albin RL (2015) Clinical markers for identifying cholinergic deficits in Parkinson’s disease. Mov Disord 30(2):269–273PubMedCrossRef
go back to reference Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107(4):814–820PubMedCrossRef Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H, Stein JF, Aziz TZ (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 107(4):814–820PubMedCrossRef
go back to reference Nakajima K, Mori F, Tachibana A, Mori S (2003) Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1). Neurosci Res 46(Suppl 1):S156 Nakajima K, Mori F, Tachibana A, Mori S (2003) Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1). Neurosci Res 46(Suppl 1):S156
go back to reference Nakamura Y, Tokuno H, Moriizumi T, Kitao Y, Kudo M (1989) Monosynaptic nigral inputs to the pedunculopontine tegmental nucleus neurons which send their axons to the medial reticular formation in the medulla oblongata. An electron microscopic study in the cat. Neurosci Lett 103(2):145–150PubMedCrossRef Nakamura Y, Tokuno H, Moriizumi T, Kitao Y, Kudo M (1989) Monosynaptic nigral inputs to the pedunculopontine tegmental nucleus neurons which send their axons to the medial reticular formation in the medulla oblongata. An electron microscopic study in the cat. Neurosci Lett 103(2):145–150PubMedCrossRef
go back to reference Nicola SM, Hopf FW, Hjelmstad GO (2004) Contrast enhancement: a physiological effect of striatal dopamine? Cell Tissue Res 318:93–106PubMedCrossRef Nicola SM, Hopf FW, Hjelmstad GO (2004) Contrast enhancement: a physiological effect of striatal dopamine? Cell Tissue Res 318:93–106PubMedCrossRef
go back to reference Nutt JG, Bloem BR, Giladi N, Hallet M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744PubMedCrossRef Nutt JG, Bloem BR, Giladi N, Hallet M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744PubMedCrossRef
go back to reference Oka T, Iwakiri H, Mori S (1993) Pontine-induced generalized suppression of postural muscle tone in a reflexively standing acute decerebrate cat. Neurosci Res 17(2):127–140PubMedCrossRef Oka T, Iwakiri H, Mori S (1993) Pontine-induced generalized suppression of postural muscle tone in a reflexively standing acute decerebrate cat. Neurosci Res 17(2):127–140PubMedCrossRef
go back to reference Okumura T, Takakusaki K (2008) Role of orexin in central regulation of gastrointestinal functions. J Gastroenterol 43:652–660PubMedCrossRef Okumura T, Takakusaki K (2008) Role of orexin in central regulation of gastrointestinal functions. J Gastroenterol 43:652–660PubMedCrossRef
go back to reference Olszewski J, Baxter D (1954) Cytoarchitecture of the human brainstem. J. B. Lippincott, Philadelphia Olszewski J, Baxter D (1954) Cytoarchitecture of the human brainstem. J. B. Lippincott, Philadelphia
go back to reference Orlovsky GN (1972) The effect of different descending systems on flexor and extensor activity during locomotion. Brain Res 40:359–371PubMedCrossRef Orlovsky GN (1972) The effect of different descending systems on flexor and extensor activity during locomotion. Brain Res 40:359–371PubMedCrossRef
go back to reference Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev 3:591–605CrossRef Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev 3:591–605CrossRef
go back to reference Pagnoni G, Zink CF, Montague PR, Berns GS (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5:97–98PubMedCrossRef Pagnoni G, Zink CF, Montague PR, Berns GS (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5:97–98PubMedCrossRef
go back to reference Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783PubMedCrossRef Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783PubMedCrossRef
go back to reference Pal D, Mallick BN (2006) Role of noradrenergic and GABAergic inputs in pedunculopontine tegmentum for regulation of rapid eye movement sleep in rats. Neuropharmacology 51:1–11PubMedCrossRef Pal D, Mallick BN (2006) Role of noradrenergic and GABAergic inputs in pedunculopontine tegmentum for regulation of rapid eye movement sleep in rats. Neuropharmacology 51:1–11PubMedCrossRef
go back to reference Parent M, Descarries L (2008) Acetylcholine innervation of the adult rat thalamus: distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. J Comp Neurol 511(5):678–691PubMedCrossRef Parent M, Descarries L (2008) Acetylcholine innervation of the adult rat thalamus: distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. J Comp Neurol 511(5):678–691PubMedCrossRef
go back to reference Parikh V, St Peters M, Blakely RD, Sarter M (2013) The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J Neurosci 33(6):2326–2337PubMedPubMedCentralCrossRef Parikh V, St Peters M, Blakely RD, Sarter M (2013) The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J Neurosci 33(6):2326–2337PubMedPubMedCentralCrossRef
go back to reference Peppe A, Pierantozzi M, Baiamonte V, Moschella V, Caltagirone C, Stanzione P, Stefani A (2012) Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced Parkinson disease patients: one-year follow-up. Sleep 35:1637–1642PubMedPubMedCentralCrossRef Peppe A, Pierantozzi M, Baiamonte V, Moschella V, Caltagirone C, Stanzione P, Stefani A (2012) Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced Parkinson disease patients: one-year follow-up. Sleep 35:1637–1642PubMedPubMedCentralCrossRef
go back to reference Pereira EA, Nandi D, Jenkinson N, Stein JF, Green AL, Aziz TZ (2011) Pedunculopontine stimulation from primate to patient. J Neural Transm 118:1453–1460PubMedCrossRef Pereira EA, Nandi D, Jenkinson N, Stein JF, Green AL, Aziz TZ (2011) Pedunculopontine stimulation from primate to patient. J Neural Transm 118:1453–1460PubMedCrossRef
go back to reference Perreault MC, Drew T, Rossignol S (1993) Activity of medullary reticulospinal neurons during fictive locomotion. J Neurophysiol 69:2232–2247PubMed Perreault MC, Drew T, Rossignol S (1993) Activity of medullary reticulospinal neurons during fictive locomotion. J Neurophysiol 69:2232–2247PubMed
go back to reference Peterson BW (1984) The reticulospinal system and its role in the control of movement. In: Barnes CD (ed) Brainstem control of spinal cord function. Academic Press, London, pp 27–86CrossRef Peterson BW (1984) The reticulospinal system and its role in the control of movement. In: Barnes CD (ed) Brainstem control of spinal cord function. Academic Press, London, pp 27–86CrossRef
go back to reference Peterson BW, Pitts NG, Fukushima K, Mackel RG (1978) Reticulospinal excitation and inhibition of neck motoneurons. Exp Brain Res 32:471–489PubMed Peterson BW, Pitts NG, Fukushima K, Mackel RG (1978) Reticulospinal excitation and inhibition of neck motoneurons. Exp Brain Res 32:471–489PubMed
go back to reference Peterson BW, Pitts NG, Fukushima K (1979) Reticulospinal connections with limb and axial motoneurons. Exp Brain Res 36:1–20PubMedCrossRef Peterson BW, Pitts NG, Fukushima K (1979) Reticulospinal connections with limb and axial motoneurons. Exp Brain Res 36:1–20PubMedCrossRef
go back to reference Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMed Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMed
go back to reference Piallat B, Chabardès S, Torres N, Fraix V, Goetz L, Seigneuret E, Bardinet E, Ferraye M, Debu B, Krack P, Yelnik J, Pollak P, Benabid AL (2009) Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons. Neuroscience 158:1201–1205PubMedCrossRef Piallat B, Chabardès S, Torres N, Fraix V, Goetz L, Seigneuret E, Bardinet E, Ferraye M, Debu B, Krack P, Yelnik J, Pollak P, Benabid AL (2009) Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons. Neuroscience 158:1201–1205PubMedCrossRef
go back to reference Prentice SD, Trevor Drew T (2001) Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J Neurophysiol 85:679–698PubMed Prentice SD, Trevor Drew T (2001) Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J Neurophysiol 85:679–698PubMed
go back to reference Rinne JO, Ma SY, Lee MS, Collan Y, Röyttä M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557PubMedCrossRef Rinne JO, Ma SY, Lee MS, Collan Y, Röyttä M (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557PubMedCrossRef
go back to reference Rolland AS, Karachi C, Muriel MP, Hirsch EC, François C (2011) Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate. Mov Disord 26(9):1648–1656PubMedCrossRef Rolland AS, Karachi C, Muriel MP, Hirsch EC, François C (2011) Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate. Mov Disord 26(9):1648–1656PubMedCrossRef
go back to reference Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Shepherd JT (eds) Handbook of physiology, Sec 12. Oxford University Press, New York, pp 173–216 Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Shepherd JT (eds) Handbook of physiology, Sec 12. Oxford University Press, New York, pp 173–216
go back to reference Ruggiero DA, Anwar M, Golanov EV, Reis DJ (1997) The pedunculopontine tegmental nucleus issues collaterals to the fastigial nucleus and rostral ventrolateral reticular nucleus in the rat. Brain Res 760(1–2):272–276PubMedCrossRef Ruggiero DA, Anwar M, Golanov EV, Reis DJ (1997) The pedunculopontine tegmental nucleus issues collaterals to the fastigial nucleus and rostral ventrolateral reticular nucleus in the rat. Brain Res 760(1–2):272–276PubMedCrossRef
go back to reference Saitoh K, Hattori S, Song WJ, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18:879–886PubMedCrossRef Saitoh K, Hattori S, Song WJ, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18:879–886PubMedCrossRef
go back to reference Sakai K, Crochet S (2004) Role of the locus coeruleus in the control of paradoxical sleep generation in the cat. Arch Ital Biol 142:421–427PubMed Sakai K, Crochet S (2004) Role of the locus coeruleus in the control of paradoxical sleep generation in the cat. Arch Ital Biol 142:421–427PubMed
go back to reference Sakai M, Matsunaga M, Kubota A, Yamanishi Y, Nishizawa Y (2000) Reduction in excessive muscle tone by selective depletion of serotonin in intercollicularly decerebrated rats. Brain Res 860:104–111PubMedCrossRef Sakai M, Matsunaga M, Kubota A, Yamanishi Y, Nishizawa Y (2000) Reduction in excessive muscle tone by selective depletion of serotonin in intercollicularly decerebrated rats. Brain Res 860:104–111PubMedCrossRef
go back to reference Sakai ST, Davidson AG, Buford JA (2009) Reticulospinal neurons in the pontomedullary reticular formation of the monkey (Macaca fascicularis). Neuroscience 163:1158–1170PubMedPubMedCentralCrossRef Sakai ST, Davidson AG, Buford JA (2009) Reticulospinal neurons in the pontomedullary reticular formation of the monkey (Macaca fascicularis). Neuroscience 163:1158–1170PubMedPubMedCentralCrossRef
go back to reference Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181PubMedCrossRef Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181PubMedCrossRef
go back to reference Scheibel ME, Scheibel AB (1958) Structural substrates for integrative patterns in the brain stem reticular core. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little Brown, Boston, pp 31–55 Scheibel ME, Scheibel AB (1958) Structural substrates for integrative patterns in the brain stem reticular core. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little Brown, Boston, pp 31–55
go back to reference Schepens B, Stapley P, Drew T (2008) Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently. J Neurophysiol 100:2235–2253PubMedCrossRef Schepens B, Stapley P, Drew T (2008) Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently. J Neurophysiol 100:2235–2253PubMedCrossRef
go back to reference Schrag A, Ben-Shlomo Y, Quinn N (2002) How common are complications of Parkinson’s disease? J Neurol 249:419–423PubMedCrossRef Schrag A, Ben-Shlomo Y, Quinn N (2002) How common are complications of Parkinson’s disease? J Neurol 249:419–423PubMedCrossRef
go back to reference Schweder PM, Hansen PC, Green AL, Quaghebeur G, Stein J, Aziz TZ (2010) Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait. NeuroReport 21(14):914–916PubMedCrossRef Schweder PM, Hansen PC, Green AL, Quaghebeur G, Stein J, Aziz TZ (2010) Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait. NeuroReport 21(14):914–916PubMedCrossRef
go back to reference Semba K (1993) Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 330:543–556PubMedCrossRef Semba K (1993) Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 330:543–556PubMedCrossRef
go back to reference Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and anterograde transport and immunohistochemical study. J Comp Neurol 323:387–410PubMedCrossRef Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and anterograde transport and immunohistochemical study. J Comp Neurol 323:387–410PubMedCrossRef
go back to reference Shefchyk SJ, Jordan LM (1985) Excitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. J Neurophysiol 53:1345–1355PubMed Shefchyk SJ, Jordan LM (1985) Excitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. J Neurophysiol 53:1345–1355PubMed
go back to reference Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501PubMed Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501PubMed
go back to reference Shik ML, Severin FV, Orlovskiĭ GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666PubMed Shik ML, Severin FV, Orlovskiĭ GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666PubMed
go back to reference Shimamura M, Edgerton VR, Kogure I (1987) Application of autoradiographic analysis of 2-deoxyglucose in the study of locomotion. J Neurosci Meth 21:303–310CrossRef Shimamura M, Edgerton VR, Kogure I (1987) Application of autoradiographic analysis of 2-deoxyglucose in the study of locomotion. J Neurosci Meth 21:303–310CrossRef
go back to reference Shiromani PJ, Lai YY, Siegel JM (1990) Descending projections from the dorsolateral pontine tegmentum to the paramedian reticular nucleus of the caudal medulla in the cat. Brain Res 517:224–228PubMedCrossRef Shiromani PJ, Lai YY, Siegel JM (1990) Descending projections from the dorsolateral pontine tegmentum to the paramedian reticular nucleus of the caudal medulla in the cat. Brain Res 517:224–228PubMedCrossRef
go back to reference Shiromani PJ, Kilduff TS, Bloom FE, McCarley RW (1992) Cholinergically induced REM sleep triggers Fos-like immunoreactivity in dorsolateral pontine regions associated with REM sleep. Brain Res 580:351–357PubMedCrossRef Shiromani PJ, Kilduff TS, Bloom FE, McCarley RW (1992) Cholinergically induced REM sleep triggers Fos-like immunoreactivity in dorsolateral pontine regions associated with REM sleep. Brain Res 580:351–357PubMedCrossRef
go back to reference Shiromani PJ, Malik M, Winston S, McCarley RW (1995) Time course of Fos-like immunoreactivity associated with cholinergically induced REM sleep. J Neurosci 15:3500–3508PubMed Shiromani PJ, Malik M, Winston S, McCarley RW (1995) Time course of Fos-like immunoreactivity associated with cholinergically induced REM sleep. J Neurosci 15:3500–3508PubMed
go back to reference Shiromani PJ, Winston S, McCarley RW (1996) Pontine cholinergic neurons show Fos-like immunoreactivity associated with cholinergically induced REM sleep. Brain Res Mol Brain Res 38(1):77–84PubMedCrossRef Shiromani PJ, Winston S, McCarley RW (1996) Pontine cholinergic neurons show Fos-like immunoreactivity associated with cholinergically induced REM sleep. Brain Res Mol Brain Res 38(1):77–84PubMedCrossRef
go back to reference Sinnamon HM (1993) Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Prog Neurobiol 41:323–344PubMedCrossRef Sinnamon HM (1993) Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Prog Neurobiol 41:323–344PubMedCrossRef
go back to reference Sinnamon HM, Stopford CK (1987) Locomotion elicited by lateral hypothalamic stimulation in the anesthetized rat does not require the dorsal midbrain. Brain Res 402:78–86PubMedCrossRef Sinnamon HM, Stopford CK (1987) Locomotion elicited by lateral hypothalamic stimulation in the anesthetized rat does not require the dorsal midbrain. Brain Res 402:78–86PubMedCrossRef
go back to reference Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990a) Locomotor projections from the pedunculopontine nucleus to the spinal cord. NeuroReport 1:183–186PubMedCrossRef Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990a) Locomotor projections from the pedunculopontine nucleus to the spinal cord. NeuroReport 1:183–186PubMedCrossRef
go back to reference Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990b) Locomotor projections from the pedunculopontine nucleus to the spinal cord. NeuroReport 1(3–4):183–186PubMedCrossRef Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990b) Locomotor projections from the pedunculopontine nucleus to the spinal cord. NeuroReport 1(3–4):183–186PubMedCrossRef
go back to reference Skinner RD, Kinjo N, Ishikawa Y, Biedermann JA, Garcia-Rill E (1990c) Locomotor projections from the pedunculopontine nucleus to the medioventral medulla. NeuroReport 1:207–210PubMedCrossRef Skinner RD, Kinjo N, Ishikawa Y, Biedermann JA, Garcia-Rill E (1990c) Locomotor projections from the pedunculopontine nucleus to the medioventral medulla. NeuroReport 1:207–210PubMedCrossRef
go back to reference Sławińska U, Kasicki S (1995) Theta-like rhythm in depth EEG activity of hypothalamic areas during spontaneous or electrically induced locomotion in the rat. Brain Res 678:117–126PubMedCrossRef Sławińska U, Kasicki S (1995) Theta-like rhythm in depth EEG activity of hypothalamic areas during spontaneous or electrically induced locomotion in the rat. Brain Res 678:117–126PubMedCrossRef
go back to reference Sławińska U, Majczyński H, Dai Y, Jordan LM (2012) The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol 590:1721–1736PubMedPubMedCentralCrossRef Sławińska U, Majczyński H, Dai Y, Jordan LM (2012) The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol 590:1721–1736PubMedPubMedCentralCrossRef
go back to reference Sławińska U, Miazga K, Jordan LM (2014) The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury. Acta Neurobiol Exp 74:172–187 Sławińska U, Miazga K, Jordan LM (2014) The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury. Acta Neurobiol Exp 74:172–187
go back to reference Spann BM, Grofova I (1989) Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat. J Comp Neurol 283(1):13–27PubMedCrossRef Spann BM, Grofova I (1989) Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat. J Comp Neurol 283(1):13–27PubMedCrossRef
go back to reference Spann BM, Grofova I (1991) Nigropedunculopontine projection in the rat: an anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 311:375–388PubMedCrossRef Spann BM, Grofova I (1991) Nigropedunculopontine projection in the rat: an anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 311:375–388PubMedCrossRef
go back to reference Sprague JM, Chambers WW (1954) Control of posture by reticular formation and cerebellum in the intact, anesthetized and unanesthetized and in the decerebrated cat. Am J Physiol 176:52–64PubMed Sprague JM, Chambers WW (1954) Control of posture by reticular formation and cerebellum in the intact, anesthetized and unanesthetized and in the decerebrated cat. Am J Physiol 176:52–64PubMed
go back to reference Stecina K, Fedirchuk B, Hultborn H (2013) Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J Physiol 591(Pt 22):5433–5443PubMedPubMedCentralCrossRef Stecina K, Fedirchuk B, Hultborn H (2013) Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J Physiol 591(Pt 22):5433–5443PubMedPubMedCentralCrossRef
go back to reference Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130(Pt 6):1596–1607PubMedCrossRef Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130(Pt 6):1596–1607PubMedCrossRef
go back to reference Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685PubMedCrossRef Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685PubMedCrossRef
go back to reference Sterman MB, Fairchild MD (1966) Modification of locomotor performance by reticular formation and basal forebrain stimulation in the cat: evidence for reciprocal systems. Brain Res 2:205–217PubMedCrossRef Sterman MB, Fairchild MD (1966) Modification of locomotor performance by reticular formation and basal forebrain stimulation in the cat: evidence for reciprocal systems. Brain Res 2:205–217PubMedCrossRef
go back to reference Swanson LW, Mogenson GJ (1981) Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res 228:1–34PubMedCrossRef Swanson LW, Mogenson GJ (1981) Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res 228:1–34PubMedCrossRef
go back to reference Takahashi M, Sugiuchi Y, Shinoda Y (2014) Convergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons. J Neurophysiol 111:849–867PubMedCrossRef Takahashi M, Sugiuchi Y, Shinoda Y (2014) Convergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons. J Neurophysiol 111:849–867PubMedCrossRef
go back to reference Takakusaki K (2013) Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord 28:1483–1491PubMedCrossRef Takakusaki K (2013) Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord 28:1483–1491PubMedCrossRef
go back to reference Takakusaki K (2015) Pre- and post-synaptic inhibitory mechanisms acting on lumber spinal cord neurons during generalized motor inhibition induced by stimulating the medullary reticular formation in the decerebrate cat. Soc Neuroci Abstr Control No: 5113 Takakusaki K (2015) Pre- and post-synaptic inhibitory mechanisms acting on lumber spinal cord neurons during generalized motor inhibition induced by stimulating the medullary reticular formation in the decerebrate cat. Soc Neuroci Abstr Control No: 5113
go back to reference Takakusaki K, Kitai ST (1997) Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neurosci 78(3):771–794CrossRef Takakusaki K, Kitai ST (1997) Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neurosci 78(3):771–794CrossRef
go back to reference Takakusaki K, Kohyama J, Matsuyama K, Mori S (1993a) Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats. Exp Brain Res 93:471–482PubMedCrossRef Takakusaki K, Kohyama J, Matsuyama K, Mori S (1993a) Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats. Exp Brain Res 93:471–482PubMedCrossRef
go back to reference Takakusaki K, Matsuyama K, Kobayashi Y, Kohyama J, Mori S (1993b) Pontine microinjection of carbachol and critical zone for inducing postural atonia in reflexively standing decerebrate cats. Neurosci Lett 153:185–188PubMedCrossRef Takakusaki K, Matsuyama K, Kobayashi Y, Kohyama J, Mori S (1993b) Pontine microinjection of carbachol and critical zone for inducing postural atonia in reflexively standing decerebrate cats. Neurosci Lett 153:185–188PubMedCrossRef
go back to reference Takakusaki K, Shimoda N, Matsuyama K, Mori S (1994) Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats. Exp Brain Res 99:361–374PubMedCrossRef Takakusaki K, Shimoda N, Matsuyama K, Mori S (1994) Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats. Exp Brain Res 99:361–374PubMedCrossRef
go back to reference Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371(3):345–361PubMedCrossRef Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371(3):345–361PubMedCrossRef
go back to reference Takakusaki K, Kohyama J, Matsuyama K, Mori S (2001) Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways. Neuroscience 103:511–527PubMedCrossRef Takakusaki K, Kohyama J, Matsuyama K, Mori S (2001) Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways. Neuroscience 103:511–527PubMedCrossRef
go back to reference Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003a) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308PubMedCrossRef Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003a) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308PubMedCrossRef
go back to reference Takakusaki K, Kohyama J, Matsuyama K (2003b) Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments. Neuroscience 121:731–746PubMedCrossRef Takakusaki K, Kohyama J, Matsuyama K (2003b) Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments. Neuroscience 121:731–746PubMedCrossRef
go back to reference Takakusaki K, Habaguchi T, Saitoh K, Kohyama J (2004a) Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 124:467–480PubMedCrossRef Takakusaki K, Habaguchi T, Saitoh K, Kohyama J (2004a) Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 124:467–480PubMedCrossRef
go back to reference Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M (2004b) Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50:137–151PubMedCrossRef Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M (2004b) Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50:137–151PubMedCrossRef
go back to reference Takakusaki K, Saitoh K, Harada H, Okumura T, Sakamoto T (2004c) Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 124:207–220PubMedCrossRef Takakusaki K, Saitoh K, Harada H, Okumura T, Sakamoto T (2004c) Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 124:207–220PubMedCrossRef
go back to reference Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y (2005) Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 568:1003–1020PubMedPubMedCentralCrossRef Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y (2005) Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 568:1003–1020PubMedPubMedCentralCrossRef
go back to reference Takakusaki K, Tomita N, Yano M (2008) Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol 255(Suppl 4):19–29PubMedCrossRef Takakusaki K, Tomita N, Yano M (2008) Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol 255(Suppl 4):19–29PubMedCrossRef
go back to reference Takakusaki K, Obara K, Nozu T, Okumura T (2011) Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 149:385–405PubMed Takakusaki K, Obara K, Nozu T, Okumura T (2011) Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 149:385–405PubMed
go back to reference Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474PubMedCrossRef Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474PubMedCrossRef
go back to reference Thevathasan W, Pogosyan A, Hyam JA, Jenkinson N, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, Brown P (2012) Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain 135:148–160PubMedPubMedCentralCrossRef Thevathasan W, Pogosyan A, Hyam JA, Jenkinson N, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, Brown P (2012) Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain 135:148–160PubMedPubMedCentralCrossRef
go back to reference Trulson ME, Jacobs BL, Morrison AR (1981) Raphe unit activity during REM sleep in normal cats and in pontine lesioned cats displaying REM sleep without atonia. Brain Res 226:75–91PubMedCrossRef Trulson ME, Jacobs BL, Morrison AR (1981) Raphe unit activity during REM sleep in normal cats and in pontine lesioned cats displaying REM sleep without atonia. Brain Res 226:75–91PubMedCrossRef
go back to reference Vanni-Mercier G, Sakai K, Lin JS, Jouvet M (1989) Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol 127:133–164PubMed Vanni-Mercier G, Sakai K, Lin JS, Jouvet M (1989) Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol 127:133–164PubMed
go back to reference Veasey SC, Fornal CA, Metzler CW, Jacobs BL (1995) Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. J Neurosci 15:5346–5359PubMed Veasey SC, Fornal CA, Metzler CW, Jacobs BL (1995) Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. J Neurosci 15:5346–5359PubMed
go back to reference Vicaro DS, Martin JH, Ghez C (1983) Specialized subregions in the cat motor cortex: a single unit analysis in the behaving animal. Exp Brain Res 51:351–367 Vicaro DS, Martin JH, Ghez C (1983) Specialized subregions in the cat motor cortex: a single unit analysis in the behaving animal. Exp Brain Res 51:351–367
go back to reference Vincent SR (2000) The ascending reticular activating system–from aminergic neurons to nitric oxide. J Chem Neuroanat 18:23–30PubMedCrossRef Vincent SR (2000) The ascending reticular activating system–from aminergic neurons to nitric oxide. J Chem Neuroanat 18:23–30PubMedCrossRef
go back to reference Vincent SR, Satoh K, Armstrong DM, Fibiger HC (1983) Substance P in the ascending cholinergic reticular system. Nature 306:688–691PubMedCrossRef Vincent SR, Satoh K, Armstrong DM, Fibiger HC (1983) Substance P in the ascending cholinergic reticular system. Nature 306:688–691PubMedCrossRef
go back to reference Wills N, Chase MH (1979) Brain stem control of masseteric reflex activity during sleep and wakefulness: mesencephalon and pons. Exp Neurol 64:98–117PubMedCrossRef Wills N, Chase MH (1979) Brain stem control of masseteric reflex activity during sleep and wakefulness: mesencephalon and pons. Exp Neurol 64:98–117PubMedCrossRef
go back to reference Winn P (2008) Experimental studies of pedunculopontine functions: are they motor, sensory or integrative? Parkinsonism Relat Disord 14(Suppl 2):S194–S198PubMedCrossRef Winn P (2008) Experimental studies of pedunculopontine functions: are they motor, sensory or integrative? Parkinsonism Relat Disord 14(Suppl 2):S194–S198PubMedCrossRef
go back to reference Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16:1–14PubMedCrossRef Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16:1–14PubMedCrossRef
go back to reference Xi MC, Morales FR, Chase MH (2004) Interactions between GABAergic and cholinergic processes in the nucleus pontis oralis: neuronal mechanisms controlling active (rapid eye movement) sleep and wakefulness. J Neurosci 24(47):10670–10678PubMedCrossRef Xi MC, Morales FR, Chase MH (2004) Interactions between GABAergic and cholinergic processes in the nucleus pontis oralis: neuronal mechanisms controlling active (rapid eye movement) sleep and wakefulness. J Neurosci 24(47):10670–10678PubMedCrossRef
go back to reference Xiang HB, Zhu WZ, Guan XH, Ye DW (2013) The cuneiform nucleus may be involved in the regulation of skeletal muscle tone by motor pathway: a virally mediated trans-synaptic tracing study in surgically sympathectomized mice. Brain 136:1–4CrossRef Xiang HB, Zhu WZ, Guan XH, Ye DW (2013) The cuneiform nucleus may be involved in the regulation of skeletal muscle tone by motor pathway: a virally mediated trans-synaptic tracing study in surgically sympathectomized mice. Brain 136:1–4CrossRef
go back to reference Yamamoto K, Mamelak AN, Quattrochi JJ, Hobson AH (1990) A cholinoceptive desynchronized sleep induction zone in the anterodorsal pontine tegmentum: locus of sensitive region. Neuroscience 39:270–293 Yamamoto K, Mamelak AN, Quattrochi JJ, Hobson AH (1990) A cholinoceptive desynchronized sleep induction zone in the anterodorsal pontine tegmentum: locus of sensitive region. Neuroscience 39:270–293
go back to reference Yang C, Brown RE (2014) The cholinergic agonist carbachol increases the firing frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse. Neuroscience 258:62–73PubMedCrossRef Yang C, Brown RE (2014) The cholinergic agonist carbachol increases the firing frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse. Neuroscience 258:62–73PubMedCrossRef
go back to reference Yasui Y, Tsumori T, Ando A, Domoto T (1995) Demonstration of axon collateral projections from the substantia nigra pars reticulata to the superior colliculus and the parvicellular reticular formation in the rat. Brain Res 674(1):122–126PubMedCrossRef Yasui Y, Tsumori T, Ando A, Domoto T (1995) Demonstration of axon collateral projections from the substantia nigra pars reticulata to the superior colliculus and the parvicellular reticular formation in the rat. Brain Res 674(1):122–126PubMedCrossRef
go back to reference Yasui Y, Tsumori T, Ono K, Kishi T (1997) Nigral axon terminals are in contact with parvicellular reticular neurons which project to the motor trigeminal nucleus in the rat. Brain Res 775(1–2):219–224PubMedCrossRef Yasui Y, Tsumori T, Ono K, Kishi T (1997) Nigral axon terminals are in contact with parvicellular reticular neurons which project to the motor trigeminal nucleus in the rat. Brain Res 775(1–2):219–224PubMedCrossRef
go back to reference Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46PubMedCrossRef Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46PubMedCrossRef
go back to reference Zwergal A, Linn J, Xiong G, Brandt T, Strupp M, Jahn K (2012) Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging 33(6):1073–1084PubMedCrossRef Zwergal A, Linn J, Xiong G, Brandt T, Strupp M, Jahn K (2012) Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging 33(6):1073–1084PubMedCrossRef
Metadata
Title
Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems
Authors
Kaoru Takakusaki
Ryosuke Chiba
Tsukasa Nozu
Toshikatsu Okumura
Publication date
01-07-2016
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 7/2016
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-015-1475-4

Other articles of this Issue 7/2016

Journal of Neural Transmission 7/2016 Go to the issue

Neurology and Preclinical Neurological Studies - Original Article

Understanding the human pedunculopontine nucleus in Parkinson’s disease

Neurology and Preclinical Neurological Studies - Review Article

The rationale for deep brain stimulation in Alzheimer’s disease