Skip to main content
Top
Published in: Journal of Neural Transmission 7/2016

01-07-2016 | Neurology and Preclinical Neurological Studies - Original Article

Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain

Author: Nicholas D. Schiff

Published in: Journal of Neural Transmission | Issue 7/2016

Login to get access

Abstract

This integrative review frames a general rationale for the use of central thalamic deep brain stimulation (CT-DBS) to support arousal regulation mechanisms in the severely injured brain. The organizing role of the anterior forebrain mesocircuit in recovery mechanisms following widespread deafferentation produced by multi-focal structural brain injuries is emphasized. The mesocircuit model provides the conceptual foundation for the key role of the central thalamus as a privileged node for neuromodulation to support forebrain arousal regulation. In this context, cellular mechanisms arising at the neocortical, striatal, and thalamic population level are considered in the assessment of an individual patient’s capacity for harboring underlying reserve that could be recruited for further recovery. Recent preclinical studies and pilot clinical results are compared to frame the detailed rationale for CT-DBS. Application of CT-DBS across the range of outcomes following severe-to-moderate brain injuries is discussed with the aim of improving consciousness and cognition in patients with non-progressive brain injuries.
Literature
go back to reference Baker JL, Ryou JW, Wei XF, Butson CR, Schiff ND, Purpura KP (2011) Modulation of global beta oscillations within the frontal-striatal-central thalamic network during sustained attention. Soc Neurosci Abstr 197:26 Baker JL, Ryou JW, Wei XF, Butson CR, Schiff ND, Purpura KP (2011) Modulation of global beta oscillations within the frontal-striatal-central thalamic network during sustained attention. Soc Neurosci Abstr 197:26
go back to reference Baker JL, Ryou JW, Wei X, Butson C, Schiff ND, Purpura KP (2012) Behavioral modulation with central thalamic deep brain stimulation in non-human primates. Soc Neurosci Abstr 597:14 Baker JL, Ryou JW, Wei X, Butson C, Schiff ND, Purpura KP (2012) Behavioral modulation with central thalamic deep brain stimulation in non-human primates. Soc Neurosci Abstr 597:14
go back to reference Cohadon F et al (1985) Deep brain stimulation in cases of prolonged traumatic unconsciousness. In: Lazorthes Y, Upton ARM (eds) Neurostimulation: an overview. Futura Publishers, Mt Kisco, New York Cohadon F et al (1985) Deep brain stimulation in cases of prolonged traumatic unconsciousness. In: Lazorthes Y, Upton ARM (eds) Neurostimulation: an overview. Futura Publishers, Mt Kisco, New York
go back to reference Cruikshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzalez AN, Elmaleh M, Connors BW (2012) Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci 32(49):17813–17823CrossRefPubMedPubMedCentral Cruikshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzalez AN, Elmaleh M, Connors BW (2012) Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci 32(49):17813–17823CrossRefPubMedPubMedCentral
go back to reference Deliac P, Richer E, Berthomieu J, Paty J, Cohadon F (1993) Electrophysiological evolution of post-traumatic persistent vegetative states under thalamic stimulation. Report on 25 observations. Neurochirurgie 39:293–303PubMed Deliac P, Richer E, Berthomieu J, Paty J, Cohadon F (1993) Electrophysiological evolution of post-traumatic persistent vegetative states under thalamic stimulation. Report on 25 observations. Neurochirurgie 39:293–303PubMed
go back to reference Deschenes M, Bourassa J, Parent A (1996) Striatal and cortical projections of single neurons from the central lateral thalamic nucleus in the rat. Neuroscience 72:679–687CrossRefPubMed Deschenes M, Bourassa J, Parent A (1996) Striatal and cortical projections of single neurons from the central lateral thalamic nucleus in the rat. Neuroscience 72:679–687CrossRefPubMed
go back to reference Dikmen SS, Machamer JE, Powell JM, Temkin NR (2003) Outcome 3 to 5 years after moderate to severe traumatic brain injury. Arch Phys Med Rehabil 84(10):1449–1457CrossRefPubMed Dikmen SS, Machamer JE, Powell JM, Temkin NR (2003) Outcome 3 to 5 years after moderate to severe traumatic brain injury. Arch Phys Med Rehabil 84(10):1449–1457CrossRefPubMed
go back to reference Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483CrossRefPubMed Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483CrossRefPubMed
go back to reference Ellender TJ, Harwood J, Kosillo P, Capogna M, Bolam JP (2013) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol 591(1):257–272CrossRefPubMed Ellender TJ, Harwood J, Kosillo P, Capogna M, Bolam JP (2013) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol 591(1):257–272CrossRefPubMed
go back to reference Forgacs PB, Conte MM, Fridman EA, Voss HU, Victor JD, Schiff ND (2014) Preservation of Electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann Neurol 76:869–879CrossRefPubMedPubMedCentral Forgacs PB, Conte MM, Fridman EA, Voss HU, Victor JD, Schiff ND (2014) Preservation of Electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann Neurol 76:869–879CrossRefPubMedPubMedCentral
go back to reference Fridman EA, Schiff ND (2014) Neuromodulation of the conscious state following severe brain injuries. Curr Opin Neurobiol 29C:172–177CrossRef Fridman EA, Schiff ND (2014) Neuromodulation of the conscious state following severe brain injuries. Curr Opin Neurobiol 29C:172–177CrossRef
go back to reference Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND (2014) Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci USA 111(17):6473–6478CrossRefPubMedPubMedCentral Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND (2014) Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci USA 111(17):6473–6478CrossRefPubMedPubMedCentral
go back to reference Giacino J, Fins JJ, Machado A, Schiff ND (2012) Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation 15(4):339–349CrossRefPubMed Giacino J, Fins JJ, Machado A, Schiff ND (2012) Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation 15(4):339–349CrossRefPubMed
go back to reference Gold L, Lauritzen M (2002) Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci USA 99(11):7699–7704CrossRefPubMedPubMedCentral Gold L, Lauritzen M (2002) Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci USA 99(11):7699–7704CrossRefPubMedPubMedCentral
go back to reference Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci 28:364–370CrossRefPubMed Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci 28:364–370CrossRefPubMed
go back to reference Hassler R, Dalle Ore G, Dieckmann G, Bricolo A, Dolce G (1969) Behavioural and EEG arousal induced by stimulation of unspecific projection systems in a patient with post-traumatic apallic syndrome. Electroencephalogr Clin Neurophysiol 27:306–310CrossRefPubMed Hassler R, Dalle Ore G, Dieckmann G, Bricolo A, Dolce G (1969) Behavioural and EEG arousal induced by stimulation of unspecific projection systems in a patient with post-traumatic apallic syndrome. Electroencephalogr Clin Neurophysiol 27:306–310CrossRefPubMed
go back to reference Hosobuchi Y, Yingling C (1993) The treatment of prolonged coma with neurostimulation. In: Devinsky O, Beric A, Dogali M (eds) Electrical and magnetic stimulation of the brain and spinal cord. Raven Press, Ltd., New York, pp 247–252 Hosobuchi Y, Yingling C (1993) The treatment of prolonged coma with neurostimulation. In: Devinsky O, Beric A, Dogali M (eds) Electrical and magnetic stimulation of the brain and spinal cord. Raven Press, Ltd., New York, pp 247–252
go back to reference Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85(2):331–345CrossRefPubMed Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85(2):331–345CrossRefPubMed
go back to reference Kato T, Nakayama N, Yasokawa Y, Okumura A, Shinoda J, Iwama T (2007) Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma 24(6):919–926CrossRefPubMed Kato T, Nakayama N, Yasokawa Y, Okumura A, Shinoda J, Iwama T (2007) Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma 24(6):919–926CrossRefPubMed
go back to reference Kawai N, Maeda Y, Kudomi N, Yamamoto Y, Nishiyama Y, Tamiya T (2010) Focal neuronal damage in patients with neuropsychological impairment after diffuse traumatic brain injury: evaluation using 11C-flumazenil positron emission tomography with statistical image analysis. J Neurotrauma 27(12):2131–2138. doi:10.1089/neu.2010.1464 CrossRefPubMed Kawai N, Maeda Y, Kudomi N, Yamamoto Y, Nishiyama Y, Tamiya T (2010) Focal neuronal damage in patients with neuropsychological impairment after diffuse traumatic brain injury: evaluation using 11C-flumazenil positron emission tomography with statistical image analysis. J Neurotrauma 27(12):2131–2138. doi:10.​1089/​neu.​2010.​1464 CrossRefPubMed
go back to reference Kinomura S, Larsson J, Gulyás B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515CrossRefPubMed Kinomura S, Larsson J, Gulyás B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515CrossRefPubMed
go back to reference Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, Fisher R, Pinskiy V, Tolpygo A, Mitra P, Schiff N, Lee JH (2015) Frequency-selective control of cortical and subcortical networks by central thalamus. Elife 4:e09215. doi:10.7554/eLife.09215 PubMedPubMedCentral Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, Fisher R, Pinskiy V, Tolpygo A, Mitra P, Schiff N, Lee JH (2015) Frequency-selective control of cortical and subcortical networks by central thalamus. Elife 4:e09215. doi:10.​7554/​eLife.​09215 PubMedPubMedCentral
go back to reference Mair RG, Onos KD, Hembrook JR (2011) Cognitive activation by central thalamic stimulation: the yerkes-dodson law revisited. Dose Response 9(3):313–331 Epub 2010 Aug 20 CrossRefPubMed Mair RG, Onos KD, Hembrook JR (2011) Cognitive activation by central thalamic stimulation: the yerkes-dodson law revisited. Dose Response 9(3):313–331 Epub 2010 Aug 20 CrossRefPubMed
go back to reference Maxwell WL, MacKinnon MA, Smith DH, McIntosh TK, Graham DI (2006) Thalamic nuclei after human blunt head injury. J Neuropathol Exp Neurol 65:478–488CrossRefPubMed Maxwell WL, MacKinnon MA, Smith DH, McIntosh TK, Graham DI (2006) Thalamic nuclei after human blunt head injury. J Neuropathol Exp Neurol 65:478–488CrossRefPubMed
go back to reference McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13(11):1219–1231CrossRefPubMed McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13(11):1219–1231CrossRefPubMed
go back to reference McLardy T, Ervin F, Mark V, Scoville W, Sweet W (1968) Attempted inset-electrodes-arousal from traumatic coma: neuropathological findings. Trans Am Neurol Assoc 93:25–30PubMed McLardy T, Ervin F, Mark V, Scoville W, Sweet W (1968) Attempted inset-electrodes-arousal from traumatic coma: neuropathological findings. Trans Am Neurol Assoc 93:25–30PubMed
go back to reference Narayanan NS, Cavanagh JF, Frank MJ, Laubach M (2013) Common medial frontal mechanisms of adaptive control in humans and rodents. Nat Neurosci 16(12):1888–1895CrossRefPubMedPubMedCentral Narayanan NS, Cavanagh JF, Frank MJ, Laubach M (2013) Common medial frontal mechanisms of adaptive control in humans and rodents. Nat Neurosci 16(12):1888–1895CrossRefPubMedPubMedCentral
go back to reference Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides M, Evans AC (1997) Time-related changes in Neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 9:392–408CrossRefPubMed Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides M, Evans AC (1997) Time-related changes in Neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 9:392–408CrossRefPubMed
go back to reference Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9(3):277–299CrossRefPubMed Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9(3):277–299CrossRefPubMed
go back to reference Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105–118CrossRefPubMed Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105–118CrossRefPubMed
go back to reference Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33:1–9CrossRefPubMed Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33:1–9CrossRefPubMed
go back to reference Schiff ND (2016) Mesocircuit mechanisms underlying recovery of consciousness following severe brain injuries: models and predictions. In: MM Monti, WG Sannita (eds) Brain function and responsiveness in disorders of consciousness. doi:10.1007/978-3-319-21425-2_15 Schiff ND (2016) Mesocircuit mechanisms underlying recovery of consciousness following severe brain injuries: models and predictions. In: MM Monti, WG Sannita (eds) Brain function and responsiveness in disorders of consciousness. doi:10.​1007/​978-3-319-21425-2_​15
go back to reference Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T, O’Connor J, Kobylarz EJ, Farris S, Machado A, McCagg C, Plum F, Fins JJ, Rezai AR (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603CrossRefPubMed Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T, O’Connor J, Kobylarz EJ, Farris S, Machado A, McCagg C, Plum F, Fins JJ, Rezai AR (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603CrossRefPubMed
go back to reference Shah S, Schiff ND (2010) Central thalamic deep brain stimulation for cognitive neuromodulation: a review of proposed mechanisms and investigational studies. Eur J Neurosci 32(7):1135–1144CrossRefPubMedPubMedCentral Shah S, Schiff ND (2010) Central thalamic deep brain stimulation for cognitive neuromodulation: a review of proposed mechanisms and investigational studies. Eur J Neurosci 32(7):1135–1144CrossRefPubMedPubMedCentral
go back to reference Shirvalkar P, Seth M, Schiff ND, Herrera DG (2006) Cognitive enhancement through central thalamic deep brain stimulation. Proc Natl Acad Sci 103(45):17007–17012CrossRefPubMedPubMedCentral Shirvalkar P, Seth M, Schiff ND, Herrera DG (2006) Cognitive enhancement through central thalamic deep brain stimulation. Proc Natl Acad Sci 103(45):17007–17012CrossRefPubMedPubMedCentral
go back to reference Smith AC, Shah SA, Hudson AE, Purpura KP, Victor JD, Brown EN, Schiff ND (2009) A Bayesian statistical analysis of behavioral facilitation associated with deep brain stimulation. J Neurosci Methods 183:267–276CrossRefPubMedPubMedCentral Smith AC, Shah SA, Hudson AE, Purpura KP, Victor JD, Brown EN, Schiff ND (2009) A Bayesian statistical analysis of behavioral facilitation associated with deep brain stimulation. J Neurosci Methods 183:267–276CrossRefPubMedPubMedCentral
go back to reference Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier, New York Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier, New York
go back to reference Steriade M et al (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85(5):1969–1985PubMed Steriade M et al (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85(5):1969–1985PubMed
go back to reference Sturm V, Kuhner A, Schmitt HP, Assmus H, Stock G (1979) Chronic electrical stimulation of the thalamic unspecific activating system in a patient with coma due to midbrain and upper brain stem infarction. Acta Neurochir (Wien) 47:235–244CrossRef Sturm V, Kuhner A, Schmitt HP, Assmus H, Stock G (1979) Chronic electrical stimulation of the thalamic unspecific activating system in a patient with coma due to midbrain and upper brain stem infarction. Acta Neurochir (Wien) 47:235–244CrossRef
go back to reference Stuss DT, Knight RT (2013) Principles of frontal lobe function. Oxford University Press, OxfordCrossRef Stuss DT, Knight RT (2013) Principles of frontal lobe function. Oxford University Press, OxfordCrossRef
go back to reference Tabansky I, Quinkert AW, Rahman N, Muller SZ, Lofgren J, Rudling J, Goodman A, Wang Y, Pfaff DW (2014) Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury. Behav Brain Res 273:123–132CrossRefPubMedPubMedCentral Tabansky I, Quinkert AW, Rahman N, Muller SZ, Lofgren J, Rudling J, Goodman A, Wang Y, Pfaff DW (2014) Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury. Behav Brain Res 273:123–132CrossRefPubMedPubMedCentral
go back to reference Thibaut A, Bruno MA, Ledoux D, Demertzi A, Laureys S (2014) tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology 82(13):1112–1118CrossRefPubMed Thibaut A, Bruno MA, Ledoux D, Demertzi A, Laureys S (2014) tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology 82(13):1112–1118CrossRefPubMed
go back to reference Tsubokawa T et al (1990) Deep-brain stimulation in a persistent vegetative state: follow-up results and criteria for selection of candidates. Brain Inj 4(4):315–327CrossRefPubMed Tsubokawa T et al (1990) Deep-brain stimulation in a persistent vegetative state: follow-up results and criteria for selection of candidates. Brain Inj 4(4):315–327CrossRefPubMed
go back to reference Williams ST, Conte MC, Goldfine AM, Norihomme Q, Thonnard M, Gosseries O, Beattie B, Hersh J, Katz DI, Victor JD, Laureys S, Schiff ND (2013) Zolpidem-induced behavioral facilitation in severe brain injury reveals common mechanism of dysfunction and recovery across etiologies. Elife 2:e01157PubMedPubMedCentral Williams ST, Conte MC, Goldfine AM, Norihomme Q, Thonnard M, Gosseries O, Beattie B, Hersh J, Katz DI, Victor JD, Laureys S, Schiff ND (2013) Zolpidem-induced behavioral facilitation in severe brain injury reveals common mechanism of dysfunction and recovery across etiologies. Elife 2:e01157PubMedPubMedCentral
go back to reference Yamamoto T, Katayama Y (2005) Deep brain stimulation therapy for the vegetative state. Neuropsychol Rehabil 15(3–4):406–413CrossRefPubMed Yamamoto T, Katayama Y (2005) Deep brain stimulation therapy for the vegetative state. Neuropsychol Rehabil 15(3–4):406–413CrossRefPubMed
Metadata
Title
Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain
Author
Nicholas D. Schiff
Publication date
01-07-2016
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 7/2016
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-016-1547-0

Other articles of this Issue 7/2016

Journal of Neural Transmission 7/2016 Go to the issue

Neurology and Preclinical Neurological Studies - Review Article

Reward functions of the basal ganglia

Neurology and Preclinical Neurological Studies - Original Article

The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state

Neurology and Preclinical Neurological Studies - Review Article

DBS in Tourette syndrome: where are we standing now?