Skip to main content
Top
Published in: Surgery Today 1/2020

01-01-2020 | Angiography | Original Article

Influence of residual coronary flow on bypass graft flow for graft assessment using near-infrared fluorescence angiography

Authors: Masaki Yamamoto, Hitoshi Ninomiya, Kohei Miyashita, Miwa Tashiro, Kazumasa Orihashi, Keiji Inoue, Takayuki Sato, Kazuhiro Hanazaki

Published in: Surgery Today | Issue 1/2020

Login to get access

Abstract

Purpose

Near-infrared fluorescence angiography (NIR) detects the attenuation of fluorescence luminance intensity (FLI) through coronary artery bypass grafts affected by anastomotic stenosis. This study investigates the influence of residual blood flow of the host coronary artery (Ho) on bypass graft (Gr) FLI using a coronary artery bypass (CABG) model.

Methods

A mock circuit system was created using artificial vessels and artificial blood was supplied to the Gr and the Ho. We used NIR to examine the changes in FLI through the Gr.

Results

The Gr FLI was significantly attenuated according to the degree of Gr stenosis. The Gr FLI did not differ significantly among all degrees of Ho stenosis. High FLI grafts included grafts with degrees of Gr stenosis ≤ 75%, regardless of the severity of Ho stenosis. Moderate and low FLI grafts had 90 or 99% Gr stenosis, regardless of the severity of Ho stenosis. Gr FLI with 99% Gr stenosis was higher in 99% Ho stenosis than in ≤ 90% Ho stenosis.

Conclusions

A high Gr FLI indicated the absence of ≥ 90% stenosis in the anastomosis and a low Gr FLI indicated severe stenosis in the anastomosis despite Ho stenosis. High Ho stenosis may prevent the attenuation of Gr FLI in severely stenosed grafts.
Literature
1.
go back to reference Kleisli T, Cheng W, Jacobs MJ, Mirocha J, Derobertis MA, Kass RM, et al. In the current era, complete revascularization improves survival after coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2005;129(6):1283–91.CrossRef Kleisli T, Cheng W, Jacobs MJ, Mirocha J, Derobertis MA, Kass RM, et al. In the current era, complete revascularization improves survival after coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2005;129(6):1283–91.CrossRef
2.
go back to reference Jokinen JJ, Werkkala K, Vainikka T, Perakyla T, Simpanen J, Ihlberg L. Clinical value of intra-operative transit-time flow measurement for coronary artery bypass grafting: a prospective angiography-controlled study. Eur J Cardiothorac Surg. 2011;39(6):918–23.CrossRef Jokinen JJ, Werkkala K, Vainikka T, Perakyla T, Simpanen J, Ihlberg L. Clinical value of intra-operative transit-time flow measurement for coronary artery bypass grafting: a prospective angiography-controlled study. Eur J Cardiothorac Surg. 2011;39(6):918–23.CrossRef
3.
go back to reference Desai ND, Miwa S, Kodama D, Cohen G, Christakis GT, Goldman BS, et al. Improving the quality of coronary bypass surgery with intraoperative angiography: validation of a new technique. J Am Coll Cardiol. 2005;46(8):1521–5.CrossRef Desai ND, Miwa S, Kodama D, Cohen G, Christakis GT, Goldman BS, et al. Improving the quality of coronary bypass surgery with intraoperative angiography: validation of a new technique. J Am Coll Cardiol. 2005;46(8):1521–5.CrossRef
4.
go back to reference Yamamoto M, Sasaguri S, Sato T. Assessing intraoperative blood flow in cardiovascular surgery. Surg Today. 2011;41(11):1467–74.CrossRef Yamamoto M, Sasaguri S, Sato T. Assessing intraoperative blood flow in cardiovascular surgery. Surg Today. 2011;41(11):1467–74.CrossRef
5.
go back to reference Balacumaraswami L, Abu-Omar Y, Choudhary B, Pigott D, Taggart DP. A comparison of transit-time flowmetry and intraoperative fluorescence imaging for assessing coronary artery bypass graft patency. J Thorac Cardiovasc Surg. 2005;130(2):315–20.CrossRef Balacumaraswami L, Abu-Omar Y, Choudhary B, Pigott D, Taggart DP. A comparison of transit-time flowmetry and intraoperative fluorescence imaging for assessing coronary artery bypass graft patency. J Thorac Cardiovasc Surg. 2005;130(2):315–20.CrossRef
6.
go back to reference Kieser TM, Rose S, Kowalewski R, Belenkie I. Transit-time flow predicts outcomes in coronary artery bypass graft patients: a series of 1000 consecutive arterial grafts. Eur J Cardiothorac Surg. 2010;38(2):155–62.CrossRef Kieser TM, Rose S, Kowalewski R, Belenkie I. Transit-time flow predicts outcomes in coronary artery bypass graft patients: a series of 1000 consecutive arterial grafts. Eur J Cardiothorac Surg. 2010;38(2):155–62.CrossRef
7.
go back to reference Cherrick GR, Stein SW, Leevy CM, Davidson CS. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest. 1960;39:592–600.CrossRef Cherrick GR, Stein SW, Leevy CM, Davidson CS. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest. 1960;39:592–600.CrossRef
8.
go back to reference Detter C, Russ D, Iffland A, Wipper S, Schurr MO, Reichenspurner H, et al. Near-infrared fluorescence coronary angiography: a new noninvasive technology for intraoperative graft patency control. Heart Surg Forum. 2002;5(4):364–9.PubMed Detter C, Russ D, Iffland A, Wipper S, Schurr MO, Reichenspurner H, et al. Near-infrared fluorescence coronary angiography: a new noninvasive technology for intraoperative graft patency control. Heart Surg Forum. 2002;5(4):364–9.PubMed
9.
go back to reference Balacumaraswami L, Taggart DP. Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann Thorac Surg. 2007;83(6):2251–7.CrossRef Balacumaraswami L, Taggart DP. Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann Thorac Surg. 2007;83(6):2251–7.CrossRef
10.
go back to reference Yamamoto M, Orihashi K, Nishimori H, Wariishi S, Fukutomi T, Kondo N, et al. Indocyanine green angiography for intra-operative assessment in vascular surgery. Eur J Vasc Endovasc Surg. 2012;43(4):426–32.CrossRef Yamamoto M, Orihashi K, Nishimori H, Wariishi S, Fukutomi T, Kondo N, et al. Indocyanine green angiography for intra-operative assessment in vascular surgery. Eur J Vasc Endovasc Surg. 2012;43(4):426–32.CrossRef
11.
go back to reference Yamamoto M, Orihashi K, Nishimori H, Handa T, Kondo N, Fukutomi T, et al. Efficacy of intraoperative HyperEye Medical System angiography for coronary artery bypass grafting. Surg Today. 2015;45(8):966–72.CrossRef Yamamoto M, Orihashi K, Nishimori H, Handa T, Kondo N, Fukutomi T, et al. Efficacy of intraoperative HyperEye Medical System angiography for coronary artery bypass grafting. Surg Today. 2015;45(8):966–72.CrossRef
12.
go back to reference Nordgaard H, Nordhaug D, Kirkeby-Garstad I, Lovstakken L, Vitale N, Haaverstad R. Different graft flow patterns due to competitive flow or stenosis in the coronary anastomosis assessed by transit-time flowmetry in a porcine model. Eur J Cardiothorac Surg. 2009;36(1):137–42; discussion 42. Nordgaard H, Nordhaug D, Kirkeby-Garstad I, Lovstakken L, Vitale N, Haaverstad R. Different graft flow patterns due to competitive flow or stenosis in the coronary anastomosis assessed by transit-time flowmetry in a porcine model. Eur J Cardiothorac Surg. 2009;36(1):137–42; discussion 42.
13.
go back to reference Uchida N, Kawaue Y. Flow competition of the right gastroepiploic artery graft in coronary revascularization. Ann Thorac Surg. 1996;62(5):1342–6.CrossRef Uchida N, Kawaue Y. Flow competition of the right gastroepiploic artery graft in coronary revascularization. Ann Thorac Surg. 1996;62(5):1342–6.CrossRef
14.
go back to reference Yamamoto M, Nishimori H, Handa T, Fukutomi T, Kihara K, Tashiro M, et al. Quantitative assessment technique of HyperEye medical system angiography for coronary artery bypass grafting. Surg Today. 2017;47(2):210–7.CrossRef Yamamoto M, Nishimori H, Handa T, Fukutomi T, Kihara K, Tashiro M, et al. Quantitative assessment technique of HyperEye medical system angiography for coronary artery bypass grafting. Surg Today. 2017;47(2):210–7.CrossRef
15.
go back to reference Shintani Y, Iino K, Yamamoto Y, Kato H, Takemura H, Kiwata T. Analysis of computational fluid dynamics and particle image velocimetry models of distal-end side-to-side and end-to-side anastomoses for coronary artery bypass grafting in a pulsatile flow. Circ J. 2017;82(1):110–7.CrossRef Shintani Y, Iino K, Yamamoto Y, Kato H, Takemura H, Kiwata T. Analysis of computational fluid dynamics and particle image velocimetry models of distal-end side-to-side and end-to-side anastomoses for coronary artery bypass grafting in a pulsatile flow. Circ J. 2017;82(1):110–7.CrossRef
16.
go back to reference Ibrahim K, Vitale N, Kirkeby-Garstad I, Samstad S, Haaverstad R. Narrowing effect of off-pump CABG on the LIMA-LAD anastomosis: epicardial ultrasound assessment. Scand Cardiovasc J. 2008;42(2):105–9.CrossRef Ibrahim K, Vitale N, Kirkeby-Garstad I, Samstad S, Haaverstad R. Narrowing effect of off-pump CABG on the LIMA-LAD anastomosis: epicardial ultrasound assessment. Scand Cardiovasc J. 2008;42(2):105–9.CrossRef
17.
go back to reference Kute SM, Vorp DA. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study. J Biomech Eng. 2001;123(3):277–83.CrossRef Kute SM, Vorp DA. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study. J Biomech Eng. 2001;123(3):277–83.CrossRef
18.
go back to reference Yamamoto M, Ninomiya H, Tashiro M, Sato T, Handa T, Inoue K, et al. Evaluation of graft anastomosis using time-intensity curves and quantitative near-infrared fluorescence angiography during peripheral arterial bypass grafting. J Artif Org. 2019;22(2):160–8.CrossRef Yamamoto M, Ninomiya H, Tashiro M, Sato T, Handa T, Inoue K, et al. Evaluation of graft anastomosis using time-intensity curves and quantitative near-infrared fluorescence angiography during peripheral arterial bypass grafting. J Artif Org. 2019;22(2):160–8.CrossRef
19.
go back to reference Ferguson TB Jr., Chen C, Babb JD, Efird JT, Daggubati R, Cahill JM. Fractional flow reserve-guided coronary artery bypass grafting: can intraoperative physiologic imaging guide decision making? J Thorac Cardiovasc Surg. 2013;146(4):824–35 e1. Ferguson TB Jr., Chen C, Babb JD, Efird JT, Daggubati R, Cahill JM. Fractional flow reserve-guided coronary artery bypass grafting: can intraoperative physiologic imaging guide decision making? J Thorac Cardiovasc Surg. 2013;146(4):824–35 e1.
20.
go back to reference Detter C, Wipper S, Russ D, Iffland A, Burdorf L, Thein E, et al. Fluorescent cardiac imaging: a novel intraoperative method for quantitative assessment of myocardial perfusion during graded coronary artery stenosis. Circulation. 2007;116(9):1007–144.CrossRef Detter C, Wipper S, Russ D, Iffland A, Burdorf L, Thein E, et al. Fluorescent cardiac imaging: a novel intraoperative method for quantitative assessment of myocardial perfusion during graded coronary artery stenosis. Circulation. 2007;116(9):1007–144.CrossRef
21.
go back to reference Balacumaraswami L, Abu-Omar Y, Anastasiadis K, Choudhary B, Pigott D, Yeong SK, et al. Does off-pump total arterial grafting increase the incidence of intraoperative graft failure? J Thorac Cardiovasc Surg. 2004;128(2):238–44.CrossRef Balacumaraswami L, Abu-Omar Y, Anastasiadis K, Choudhary B, Pigott D, Yeong SK, et al. Does off-pump total arterial grafting increase the incidence of intraoperative graft failure? J Thorac Cardiovasc Surg. 2004;128(2):238–44.CrossRef
Metadata
Title
Influence of residual coronary flow on bypass graft flow for graft assessment using near-infrared fluorescence angiography
Authors
Masaki Yamamoto
Hitoshi Ninomiya
Kohei Miyashita
Miwa Tashiro
Kazumasa Orihashi
Keiji Inoue
Takayuki Sato
Kazuhiro Hanazaki
Publication date
01-01-2020
Publisher
Springer Singapore
Published in
Surgery Today / Issue 1/2020
Print ISSN: 0941-1291
Electronic ISSN: 1436-2813
DOI
https://doi.org/10.1007/s00595-019-01850-5

Other articles of this Issue 1/2020

Surgery Today 1/2020 Go to the issue