Skip to main content
Top
Published in: European Spine Journal 8/2013

01-08-2013 | Original Article

Torsion biomechanics of the spine following lumbar laminectomy: a human cadaver study

Authors: Arno Bisschop, Jaap H. van Dieën, Idsart Kingma, Albert J. van der Veen, Timothy U. Jiya, Margriet G. Mullender, Cornelis P. L. Paul, Marinus de Kleuver, Barend J. van Royen

Published in: European Spine Journal | Issue 8/2013

Login to get access

Abstract

Purpose

Lumbar laminectomy affects spinal stability in shear loading. However, the effects of laminectomy on torsion biomechanics are unknown. The purpose of this study was to investigate the effect of laminectomy on torsion stiffness and torsion strength of lumbar spinal segments following laminectomy and whether these biomechanical parameters are affected by disc degeneration and bone mineral density (BMD).

Methods

Ten human cadaveric lumbar spines were obtained (age 75.5, range 59–88). Disc degeneration (MRI) and BMD (DXA) were assessed. Disc degeneration was classified according to Pfirrmann and dichotomized in mild or severe. BMD was defined as high BMD (≥median BMD) or low BMD (<median BMD). Laminectomy was performed either on L2 (5×) or L4 (5×). Twenty motion segments (L2–L3 and L4–L5) were isolated. The effects of laminectomy, disc degeneration and BMD on torsion stiffness (TS) and torsion moments to failure (TMF) were studied.

Results

Load–displacement curves showed a typical bi-phasic pattern with an early torsion stiffness (ETS), late torsion stiffness (LTS) and a TMF. Following laminectomy, ETS decreased 34.1 % (p < 0.001), LTS decreased 30.1 % (p = 0.027) and TMF decreased 17.6 % (p = 0.041). Disc degeneration (p < 0.001) and its interaction with laminectomy (p < 0.031) did significantly affect ETS. In the mildly degenerated group, ETS decreased 19.7 % from 7.6 Nm/degree (6.4–8.4) to 6.1 Nm/degree (1.5–10.3) following laminectomy. In the severely degenerated group, ETS decreased 22.3 % from 12.1 Nm/degree (4.6–21.9) to 9.4 Nm/degree (5.6–14.3) following laminectomy. In segments with low BMD, TMF was 40.7 % (p < 0.001) lower than segments with high BMD [34.9 Nm (range 23.7–51.2) versus 58.9 Nm (range 43.8–79.2)].

Conclusions

Laminectomy affects both torsion stiffness and torsion load to failure. In addition, torsional strength is strongly affected by BMD whereas disc degeneration affects torsional stiffness. Assessment of disc degeneration and BMD pre-operatively improves the understanding of the biomechanical effects of a lumbar laminectomy.
Literature
1.
go back to reference Abel MS (1989) Transverse posterior element fractures associated with torsion. Skeletal Radiol 17:556–560PubMedCrossRef Abel MS (1989) Transverse posterior element fractures associated with torsion. Skeletal Radiol 17:556–560PubMedCrossRef
2.
go back to reference Adams MA, Hutton WC (1981) The relevance of torsion to the mechanical derangement of the lumbar spine. Spine (Phila Pa 1976) 6:241–248CrossRef Adams MA, Hutton WC (1981) The relevance of torsion to the mechanical derangement of the lumbar spine. Spine (Phila Pa 1976) 6:241–248CrossRef
3.
go back to reference Adams MA, Hutton WC (1983) The mechanical function of the lumbar apophyseal joints. Spine (Phila Pa 1976) 8:327–330CrossRef Adams MA, Hutton WC (1983) The mechanical function of the lumbar apophyseal joints. Spine (Phila Pa 1976) 8:327–330CrossRef
4.
go back to reference Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151–2161CrossRef Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151–2161CrossRef
5.
go back to reference Bisschop A, Mullender MG, Kingma I, Jiya TU, van der Veen AJ, Roos JC, van Dieen JH, van Royen BJ (2011) The impact of bone mineral density and disc degeneration on shear strength and stiffness of the lumbar spine following laminectomy. Eur Spine J 21:530–536PubMedCrossRef Bisschop A, Mullender MG, Kingma I, Jiya TU, van der Veen AJ, Roos JC, van Dieen JH, van Royen BJ (2011) The impact of bone mineral density and disc degeneration on shear strength and stiffness of the lumbar spine following laminectomy. Eur Spine J 21:530–536PubMedCrossRef
6.
go back to reference Bisschop A, van Royen BJ, Mullender MG, Paul CP, Kingma I, Jiya TU, van der Veen AJ, van Dieen JH (2012) Which factors prognosticate spinal instability following lumbar laminectomy? Eur Spine J 21:2640–2648 Bisschop A, van Royen BJ, Mullender MG, Paul CP, Kingma I, Jiya TU, van der Veen AJ, van Dieen JH (2012) Which factors prognosticate spinal instability following lumbar laminectomy? Eur Spine J 21:2640–2648
7.
go back to reference Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14:606–610CrossRef Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14:606–610CrossRef
8.
go back to reference Busscher I, van Dieen JH, van der Veen AJ, Kingman I, Meijer GJM, Verkerke GJ, Veldhuizen AG (2011) The effects of creep and recovery on the in vitro biomechanical characteristics of human multi-level thoracolumbar spinal segments. Clin Biomech (Bristol, Avon) 26:438–444CrossRef Busscher I, van Dieen JH, van der Veen AJ, Kingman I, Meijer GJM, Verkerke GJ, Veldhuizen AG (2011) The effects of creep and recovery on the in vitro biomechanical characteristics of human multi-level thoracolumbar spinal segments. Clin Biomech (Bristol, Avon) 26:438–444CrossRef
9.
go back to reference Farfan HF (1969) Effects of torsion on the intervertebral joints. Can J Surg 12:336–341PubMed Farfan HF (1969) Effects of torsion on the intervertebral joints. Can J Surg 12:336–341PubMed
10.
go back to reference Farfan HF (1984) The torsional injury of the lumbar spine. Spine (Phila Pa 1976) 9:53CrossRef Farfan HF (1984) The torsional injury of the lumbar spine. Spine (Phila Pa 1976) 9:53CrossRef
11.
go back to reference Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52:468–497PubMed Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52:468–497PubMed
12.
go back to reference Gordon SJ, Yang KH, Mayer PJ, Mace AH Jr, Kish VL, Radin EL (1991) Mechanism of disc rupture. A preliminary report. Spine (Phila Pa 1976) 16:450–456CrossRef Gordon SJ, Yang KH, Mayer PJ, Mace AH Jr, Kish VL, Radin EL (1991) Mechanism of disc rupture. A preliminary report. Spine (Phila Pa 1976) 16:450–456CrossRef
13.
go back to reference Gunzburg R, Hutton WC, Crane G, Fraser RD (1992) Role of the capsulo-ligamentous structures in rotation and combined flexion-rotation of the lumbar spine. J Spinal Disord 5:1–7PubMedCrossRef Gunzburg R, Hutton WC, Crane G, Fraser RD (1992) Role of the capsulo-ligamentous structures in rotation and combined flexion-rotation of the lumbar spine. J Spinal Disord 5:1–7PubMedCrossRef
14.
go back to reference Haher TR, O’Brien M, Felmly WT, Welin D, Perrier G, Choueka J, Devlin V, Vassiliou A, Chow G (1992) Instantaneous axis of rotation as a function of the three columns of the spine. Spine (Phila Pa 1976) 17:149–154CrossRef Haher TR, O’Brien M, Felmly WT, Welin D, Perrier G, Choueka J, Devlin V, Vassiliou A, Chow G (1992) Instantaneous axis of rotation as a function of the three columns of the spine. Spine (Phila Pa 1976) 17:149–154CrossRef
15.
go back to reference Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312PubMedCrossRef Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312PubMedCrossRef
16.
go back to reference Kingma I, Bosch T, Bruins L, van Dieen JH (2004) Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading. Ergonomics 47:1365–1385PubMedCrossRef Kingma I, Bosch T, Bruins L, van Dieen JH (2004) Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading. Ergonomics 47:1365–1385PubMedCrossRef
17.
go back to reference Kingma I, van Dieen JH, de Looze M, Toussaint HM, Dolan P, Baten CT (1998) Asymmetric low back loading in asymmetric lifting movements is not prevented by pelvic twist. J Biomech 31:527–534PubMedCrossRef Kingma I, van Dieen JH, de Looze M, Toussaint HM, Dolan P, Baten CT (1998) Asymmetric low back loading in asymmetric lifting movements is not prevented by pelvic twist. J Biomech 31:527–534PubMedCrossRef
18.
go back to reference Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878CrossRef Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878CrossRef
19.
go back to reference Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37:197–204PubMedCrossRef Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37:197–204PubMedCrossRef
20.
go back to reference Renau A, Farrerons J, Yoldi B, Gil J, Proubasta I, Llauger J, Olivan JG, Planell J (2004) Yield point in prediction of compressive behavior of lumbar vertebral body by dual-energy X-ray absorptiometry. J Clin Densitom 7:382–389PubMedCrossRef Renau A, Farrerons J, Yoldi B, Gil J, Proubasta I, Llauger J, Olivan JG, Planell J (2004) Yield point in prediction of compressive behavior of lumbar vertebral body by dual-energy X-ray absorptiometry. J Clin Densitom 7:382–389PubMedCrossRef
21.
go back to reference Tan JS, Kayanja MM, St Clair SF (2010) The difference in spine specimen dual-energy X-ray absorptiometry bone mineral density between in situ and in vitro scans. Spine J 10:784–788PubMedCrossRef Tan JS, Kayanja MM, St Clair SF (2010) The difference in spine specimen dual-energy X-ray absorptiometry bone mineral density between in situ and in vitro scans. Spine J 10:784–788PubMedCrossRef
22.
go back to reference van Dieen JH, van der Veen A, van Royen BJ, Kingma I (2006) Fatigue failure in shear loading of porcine lumbar spine segments. Spine (Phila Pa 1976) 31:494–498CrossRef van Dieen JH, van der Veen A, van Royen BJ, Kingma I (2006) Fatigue failure in shear loading of porcine lumbar spine segments. Spine (Phila Pa 1976) 31:494–498CrossRef
Metadata
Title
Torsion biomechanics of the spine following lumbar laminectomy: a human cadaver study
Authors
Arno Bisschop
Jaap H. van Dieën
Idsart Kingma
Albert J. van der Veen
Timothy U. Jiya
Margriet G. Mullender
Cornelis P. L. Paul
Marinus de Kleuver
Barend J. van Royen
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 8/2013
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-013-2699-3

Other articles of this Issue 8/2013

European Spine Journal 8/2013 Go to the issue